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SUMMARY 

Four expl ic i t   f in i te -d i f fe rence   t echniques  designed to   so lve  the time- 
dependent,  compressible  Navier-Stokes  equations have been compared. These 
techniques  are  (1) MacCormack, ( 2 )  modified Du Fort-Frankel, (3 )  modified 
hopscotch, and (4)  Brai  1  ovskaya. The comparison was  made numeri cal   Iy by 
solving  the  quasi-one-dimensional  Navier-Stokes  equations f o r  the flow i n  a 
converging-diverging  nozzle.  Solutions w i t h  and without  standing normal 
shock waves were computed f o r  u n i t  Reynolds numbers (based on total   condi- 
tions)  ranging from  45374 t o  2269. The results ind ica t e   t ha t   a l l   f ou r  
techniques  are  comparable i n  accuracy; however, the modified  hopscotch scheme 
i s  two t o  three times  faster  than the Brai  lovskaya and MacCormack schemes and 
th ree   t o  s ix  times  faster  than  the  modified Du Fort-Frankel  scheme. 

INTRODUCTION 

Recently,  konsiderable  interest  has  surfaced i n  the numerical  solution 
of  the  compressible  Navier-Stokes  equations  (refs.  1-4). Expl i c i  t numerical 
techniques have been used i n  most  of these  studies,   especially  those  involving 
shock  waves. The limited  use  of impl i c i t  methods i s  due t o  ( 1  ) coding com- 
plexity  associated w i t h  the Navier-Stokes  equations, ( 2 )  limited  success i n  
obtaining  the  large time steps as  predicted by l i n e a r   s t a b i l i t y   a n a l y s i s ,  and 
(3)  limited  success i n  capturing  shock waves.  Another factor  involved i s  the 
apparent  success  of  explicit  methods over impl i c i t  methods for   adapt ing   to  
the new fourth  generation  computers (STAR 100 and ILLIAC IV). 

The purpose  of  the present study i s  to   inves t iga te   the   re1   a t i  ve merits 
o f  seve ra l   exp l i c i t  f i n i  te-difference  techniques  for  solving the compressible, 
time-dependent  Navier-Stokes  equations. Some of the important  aspects 
evaluated  are  (1 ) computational speed, ( 2 )  numeri cal  accuracy, ( 3 )  computer 
storage requirements, ( 4 )  Reynolds number l imi ta t ions ,  and (5 )  e f f ec t s   o f  
a r t i f i c i a l  smoothing. The four  numerical  techniques  investigated  are  (1) 
modified  hopscotch, ( 2 )  MacCormack, ( 3 )  modified Du Fort-Frankel, and ( 4 )  
Brailovskaya. Each of these methods  has been used to   so lve  a  quasi-one- 
dimensional  converging-diverging  nozzle  problem.  Solutions w i t h  and without 
standing normal shock waves a re  presented f o r  u n i t  Reynolds numbers ranging 
from 45374 t o  2269. 
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SYMBOLS 

A nozzle  cross-sect ional   area,  m 

C speed o f  sound, m/sec 

2 

E t o t a l   i n t e r n a l  

M Mach number 

P pressure , N/m 
2 

ene rgy   pe r   un i t  volume , N-m/m 3 

R Reynolds number p e r   u n i t   l e n g t h ,  m 

S smoothing  term 

- I  

t time,  sec 

T temperature , K 

U v e l o c i t y  , m/sec 

X d is tance  a long  nozz le  ax is ,  m 

A t  t ime  increment,  sec 

Ax space  increment, m 

P densi ty , kg/m 
3 

Subscr ip ts :  

i space  index 
t t o t a l   c o n d i t i o n s  
Superscr ip t  : 

n t ime  index 

GOVERNING EQUATIONS AND TEST  PROBLEM 

The converging-diverging  nozzle  problem  used i n   t h i s   s t u d y   r e p r e s e n t s  a 
r igorous   tes t   case f o r  the  numerical   techniques. The s t e a d y - s t a t e   f l o w   f i e l d  
i s   i n i t i a l l y  subsonic, goes sonic   a t   the  throat ,   passes  through a s tanding 
normal shock wave i n   t h e   d i v e r g i n g   p o r t i o n   o f   t h e   n o z z l e ,  and e x i t s   t h e  
nozz le  wi th   subsonic   f low.  Cases which do n o t   c o n t a i n  a standing  normal 
shock wave are   a lso  computed. For  these  cases  the  f low f i e l d  downstream o f  
t h e   t h r o a t   i s   s u p e r s o n i c .   D i f f e r e n t   e x i t   b o u n d a r y   c o n d i t i o n s   a r e   r e q u i r e d  
f o r  each o f  these  cases  and will be discussed i n  a subsequent  section. 
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The time-dependent,  quasi-one-dimensional flow of  a  compressible, 
viscous  fluid i s  governed by a s e t  of  three  partial  differential  equations 
expressing  the  conservation of  mass, momentum, and energy. These equations 
i n  conservative form are  as  follows: 

where 

The coefficients of viscosity (1-1) and thermal conductivity ( k )  are given by 
Sutherland's  viscosity law  and a  constant P r a n d t l  number assumption. 

Differencing Schemes 

Several characterist ics  are common t o  each of the numerical schemes 
evaluated i n  tfiis study. They are a1 1 second-order-accurate (for  the  steady- 
state  solution)  finite-difference  techniques which solve  the time-dependent 
form of  the  governing  equations i n  search of a  final  steady-state  solution. 
The methods a re   expl ic i t ,  and hence , easi ly  programmed.  In particular,   the 
methods evaluated  here have  been chosen especially w i t h  regard t o  programming 
simplicity  for  the  Navier-Stokes  equations. 

Modified Hopscotch 

The current  version of hopscotch was f i r s t  introduced i n  reference 5 
where i t  was applied  to  the  compressible Navier-Stokes  equations fo r  a  shear 
layer mix ing  problem. This modified  hopscotch technique  (applied t o  eq. ( 1 ) )  
i s  expressed i n  two sweeps given by 

f i r s t  sweep ( i + n  even) 
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second sweep ( i + n  odd) 

G o t t l i e b  and  Gustafsson ( r e f .  6 )  h a v e   i n v e s t i g a t e d   t h e   s t a b i l i t y   o f   t h e  
cur ren t   vers ion   o f   hopscotch   and have found i t  t o  be  governed  by  the  fo l lowing 
CFL c o n d i t i o n  : 

I n   a d d i t i o n   r e f e r e n c e  6 found t h e   v i s c o u s   s t a b i l i t y   c o n d i t i o n   f o r   t h e  
modi f ied  hopscotch  technique  to   be 

Gour lay   ( re f .  7)  suggested a s i m p l i f i c a t i o n   t o   t h e   s t a n d a r d  two-sweep 
hopscotch scheme w h i c h   a l m o s t   e n t i r e l y  removed t h e   f i r s t  sweep where  equation 
(3 )  i s  rep1  aced  by 

u;+1 = 2ui n - ui n-1  (i+n  even) (7 )  

Numerical   tests  were  performed  wi th and w i thout   the   use   o f   equat ion  ( 7 )  
y i e l d i n g   i d e n t i c a l   r e s u l t s .  The use o f   e q u a t i o n  (7 )  inc reases   the   speed  o f  
the  modi f ied  hopscotch  technique  by a f a c t o r   o f  two   w i thou t   requ i r i ng  
add i t iona l   s to rage.  

Mod i f i ed  Du For t -Frankel  

The c u r r e n t   v e r s i o n   o f   t h e  Du Fort -Frankel  scheme  was in t roduced  by 
G o t t l e i b  and  Gustafsson ( r e f .  8) as fo l l ows :  
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where the   l a s t  term is  a s tabi l iz ing term. The value  of w ( s t a b i l i z i n g  
coefficient)  must be determined by numerical  experiment. The s tabi l izer   takes  
the  place of the time  averaging  appearing i n  the  viscous terms  of the  standard 
Du Fort-Frankel scheme. This simplifies  the  resulting numerical  code, 
especially  for  the Navier-Stokes  equations i n  multiple  dimensions. 

In addition  to  equation (8) an additional  dissipative term must be 
added for  stable  operation 

E - 4Ul+l + 6U; - 4Uiml n + U!-2) 

where the constant E is  determined  numerically. 

MacCormack 

The version  of  the  two-step Lax-Wendroff  scheme used i n  this study was 
f i r s t  introduced by  MacCormack ( r e f .  9 ) .  Using the MacCormack technique t o  
difference  equation ( 1 )  yields 

where the  overbar on the n superscript  indicates a predicted  value. The 
s t a b i l i t y  requirement fo r   t h i s  scheme i s  the CFL condition  (eq. ( 5 ) ) .  In 
addition, a stabil i ty  condition due t o  viscous  effects i s  also  present: 

To surpress  pointwise  oscillations an a r t i f i c i a l  smoothing term can  be 
added t o  the r i g h t - h a n d  side of equations  (10) and (11)  as  follows: 
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where C, i s  an adjustable  constant. In regions of smooth f low these terms 
will be negligible and will n o t  influence  the  solution. In regions o f  point- 
wise oscil lations  these terms will provide  the  effect o f  solution smoothing. 

Brailovskaya 

The two-step finite-difference scheme introduced by Brailovskaya i n  1965 
( r e f .  10) i s  second-order  accurate i n  space and first-order  accurate i n  time. 
Using this technique t o  difference  equation ( 1 )  yields 

predictor  step 

corrector  step 

+ -  2 A  Ax t r!?+12+ BY ( CY+1 Ax - C y ) -  BY ; BY-1 ( C y  Ax - CY-l)] 

The viscous terms i n  the  predictor  step  are  identical  with  the  viscous terms 
i n  the  corrector  step  and,  therefore, need to  be computed only once  per  time 
step.  This feature reduces the  required amount o f  computer time. The s t a -  
bil i ty  requirement for the Brai lovskaya scheme is the  usual CFL condition 
(eq. ( 5 ) ) .  An additional  viscous  stability  condition  is  required and i s  given 
by equation ( 1 2 ) .  The a r t i f i c i a l  smoothing applied t o  the MacCormack  scheme 
(eqs. (13) and ( 1 4 ) )  was also  applied t o  the  Brailovskaya scheme. 

Boundary Conditions 

The boundary conditions  described i n  this  section were used fo r  each 
numerical method. Three boundary conditions a t  both  the i n f l o w  and outflow 
boundaries must  be specified.  A t  the  subsonic  inflow  total  pressure and total  
temperature were specified and held  fixed. The t h i r d  inflow boundary condition 
was obtained by requiring a zero  gradient on s ta t ic   pressure.  
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A t  the  outflow 
conditions were 

boundary ( i  = N )  for  the  supersonic  case  the boundary 

A t  the  outflow boundary for  the normal shock wave case  the  flow is  sub- 
sonic;  consequently,  the boundary conditions  are modified  as  follows 

where  Pexi t is   specif ied and held  fixed.  Obtaining  accurate  results w i t h  such 
simple boundary conditions i s  made possible by add ing  constant  area  duct  seg- 
ments at  the  inflow and outflow stat ions o f  the  nozzle. 

These boundary conditions when applied  to  the modified Du Fort-Frankel 
code resulted i n  unstable  oscillations a t  the  boundaries. These osci l la t ions 
were eliminated by  two different  methods. The f i r s t  method  was t o  apply 
second-order damping given by 

s; = 16 E ( u;+l - 2u; + ui- l  " 1  
a t  i = 2 for  the  inflow and i = N -1 for  the  outflow. 

The second method of removing the  oscillations  consisted of replacing  the 
original boundary conditions w i t h  a new s e t  given by 

n - n-1 
P t  = const, T = const, P1 - P2 t 

pnN = pexi t, UN = u 
n n-1 n - n-1 

N - 1  ' 'N - 'N-1 

where equations (20) and (21) were used for the no shock 
equations (20) and (22)  for   the normal shock wave case. 
solutions  the second method of removing the  oscil lations 

wave case and 
For shock-free  flow 
produced the  best 

resul ts  and are  presented i n  the  next  section. For the normal shock wave 
case, both methods produced similar resu l t s .  
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DISCUSSION OF RESULTS 

Shock-Free Solution 

The initial  condition  solution  for  the  isentropic  calculation was 
.established by f i r s t  computing the inf low and outflow  endpoints from one- 
dimensional isentropic  theory. Then l inear   dis t r ibut ions for a l l  the flow 
variables were  computed  between the  endpoints. 

Table I summarizes the computing s t a t i s t i c s  of all  the  results  presented. 
The resul ts  of  the  isentropic (shock free)  calculation  are  presented i n  f igure 
I .  Included are Mach number, pressure, and temperature  distributions along 
the  nozzle  axis for  a l l  four numerical techniques.  Overall  the agreement is  
very good. In par t icular ,  a1 1 f o u r  numerically  predicted  values of pressure 
a t  the  throat 1 i e  w i t h i n  0.5  percent of the  theoretical  value. The 1 arges t 
disagreement  occurs a t  the  outflow where theory  predicts an e x i t  Mach number 
of  1.925. The numerically  predicted  exit Mach numbers are below th is  and l i e  
between 1.907 and 1.920. 

The maximum e r ro r  ( E R R )  versus 
i s  presented i n  f igure 2 where 

ERR = 
max 

The CPU time required  for computing 
ou-kput has been subtracted from the 

the  central  processor u n i t  time (CPU time) 

init ial   conditions and solution i n p u t /  
cpu  time  displa.yed i n  figure 2. The 

curves have  been continued u n t i  1 the maximum er ror  dropped below 0.001 
although  the  actual  calculations were carried  to 0.0001 accuracy. For the t e s t  
problem the  modified  hopscotch  technique is   c lear ly   the  fas tes t  of  the four 
techniques  tested,  being 2.2 times f a s t e r  than  Brailovskaya,  2.5 times f a s t e r  
t h a n  MacCormack, and 4.0 times f a s t e r  than  modified Du Fort-Frankel. 

Normal  Shock  Wave S o l u t i o n  

The init ial   conditions for the  cases w i t h  a standlng normal shock wave 
were obtained from one-dimensional isentropic  theory. The i n i t i a l  s o l u t i o n  
was entirely  subsonic w i t h  the  standard  expansion i n  the converging  portion i n  
the  nozzle,  the  sonic  condition a t  the  throat, and subsonic compression i n  the 
diverging  portion  of  the  nozzle. This condition was chosen  because the use of 
init ial   conditions w i t h  supersonic  outflows caused d i f f i cu l t i e s  when the o u t -  
flow pressure was specified.  

Mach number  and pressure  distributions  are  presented i n  figures 3 and 4. 
A standing normal shock wave w i t h  a pressure  ratio o f  approximately 3.7 has 
been captured by al l   four  methods a t  i = 38. The shock wave is  spread  over 
two to  three g r i d  p o i n t s  w i t h  minimal overshoots and no undershoots. The 
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Reynolds number  was not low  enough fo r  any significant  viscous  effects  to 
appear. The g r i d  Reynolds numbers ( p u  A x h )  were between 10 and 20. In 
general  the agreement is qui te  good between the  four  techniques. 

Both the MacCormack and Brai 1 ovskaya resul ts  were computed w i t h  a r t i f i  - 
cia1 smoothing added; however, the smoothing was not  required  for a s tab le  
solution.  Instead, i t  was used t o  improve the  characteristics  of  the  captured 
shock by reducing  the  overshoot and undershoot osci l la t ions.  

Again the  modified  hopscotch  technique i s  the  fas tes t  of  the  four methods 
tested  (see  table I ,  case 2)  be ing  1.7  times f a s t e r  than  Brailovskaya, 1.8 
times f a s t e r  than MacCormack,  and 3.9 times f a s t e r  than  modified Du Fort-Frankel. 

Reynolds Number Effects 

Three  of the  techniques  (modified  hopscotch, MacCormack,  and Brailovskaya) 
have viscous stabil i ty  conditions and therefore,  should  exhibit  smaller time 
steps and longer CPU times fo r  lower Reynolds numbers. Two t e s t  cases were 
computed w i t h  lower Reynolds numbers by decreasing  the  total  pressure  (see 
table I ,  cases 3 and 4 ) .  Mach number distributions  for  these two cases  are 

j shown i n  figures 5 and 6. The e f fec t  of  the reduced Reynolds number is  
clearly  evident. In f igure 5 ( R  = 11345 m-1) the shock wave is spread  across 
f ive   to   s ix  g r i d  points, and i n  f igure 6 ( R  = 2269 m-1) the  solution  is  so 
smeared by the  physical  viscosity  that a shock wave cannot be recognized. The  

, g r i d  Reynolds numbers are  between 2 and 5 for  case 3 and  between 0.5 and 1 .O 
. for  case 4. 

The shock p o s i t i o n  predicted by the modified Du Fort-Frankel  technique 
for case 3 (see  f ig .  5) i s  i n  s l i gh t  disagreement w i t h  the shock position  pre- 
dicted by the  other  three methods. This i s  due t o  the  different  outflow 
boundary conditions used by the modified Du Fort-Frankel  technique  (see  eqs. 
(19)  - ( 2 2 ) ) .  The e f fec t  i s  to   a l te r   the  value o f  exit  pressure and thus, 
change the shock position. The modified Du Fort-Frankel scheme fa i led   to  
converge for case 4.  

As expected, the viscous stabil i ty  condition was  more r e s t r i c t ive  and 
therefore dominated the low Reynolds number calcul  atlions , especially  case 4. 
Modified hopscotch seemed to  have a s l igh t ly  more severe  viscous s t a b i l i t y  
condition than  MacCormack or  Brailovskaya, b u t ,  possibly due to  the added 
physical  viscosity,  actually reached a converged solution  sooner i n  physical 
time. For instance, i n  case 3, modified  hopscotch was 2 .8  times f a s t e r  t h a n  
Brailovskaya, 3.2 times f a s t e r  t h a n  MacCormack,  and 6.2 times f a s t e r  than 
modified Du Fort-Frankel. 

The lack o f  a viscous s t a b i l i t y  limit fo r  modified Du Fort-Frankel  could 
not be ful ly   tes ted due t o  i t s  fa i lure  t o  converge for  case 4. The reduced 
time step  ratio  exhibited by modified Du Fort-Frankel fo r   a l l   c a ses   i s  due to  
the  ar t i f ic ia l   d iss ipat ion which must be  added for  stable  operation. Hence, 
even if modified Du Fort-Frankel i s  not  restricted by a viscous s t a b i l i t y  
condition, i t  must pay the  price of a reduced  time step  for  another  reason, 
regardless o f  Reynolds number. 
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Arti fi cia1  Smoothing 

A r t i f i c i a l  smoothing  has  been  used i n  t h i s   s t u d y  on th ree  of t h e   f o u r  
methods t e s t e d  (MacCormack, Brai  lovskaya,  and Du For t -Frankel  ) . To i n v e s t i -  
gate  the  effect  of  smoothing, a ser ies  o f  Mach number d i s t r i b u t i o n s  f.or t h r e e  
d i f f e r e n t   v a l u e s '   o f  C, (smoothing  constant)   are  presented i n  f i g u r e  7. The 
three  curves  correspond t o  no  smoothing (C, = O.O), moderate  smoothing (C, = 
O . Z ) ,  and  massive  smoothing (C, = 1 .O). All t h ree  curve's  were  computed  by 
the  same numerical   technique  (Brai lovskaya)  and  at   the same f l ow   cond i t i ons  
(R = 45374 m-1 and peXit/pt = 0.7).  Enlargements o f   t h e  Mach. number p r o f i l e s  
around  the  standing  normal  shock wave are  presented i n  f i g u r e  7. The no 
smoothing  case  spreads  the  shock wave ac ross   t h ree   g r i d   po fn ts  and e x h i b i t s  
p re-shock   osc i l la t ions .  The moderate  smoothing  case,  l ikewise,  spreads  the 
shock  over   three  gr id   po ints ,   a lmost   ident ica l ly   match ing  the  no  smooth ing 
shock, b u t   w i t h o u t   p r e - s h o c k   o s c i l l a t i o n s .  The massive  smoothing  case  spreads 
the  s h o c k   o v e r   f o u r   o r   f i v e   g r i d   p o i n t s  and e f f e c t i v e l y  causes a p o s i t i o n  
s h i f t   i n   t h e  shock wave. All t h r e e   p r o f i l e s  away f rom  the  shock  are i n  good 
agreement  regardless o f  Row nuch  smoothing i s  appl ied.  Therefore, i t  i s  
c l e a r   t h a t   a r t i f i c i a l  smoothing i n  a l i m i t e d  amount  has he lped   t he   qua l i t y  
o f  t h e   s o l u t i o n .  

CONCLUDING REMARKS 

The modif ied  hopscotch  technique was super io r  i n  speed f o r   a l l  cases 
tested,   be ing  1 .7  to   2 .8  t imes  faster   than  the  Bra i lovskaya  technique,   1 .8  to  
3.2 t imes  fas te r   than  the  MacCormack technique,  and 3.9 t o  6.2 t imes   f as te r  
than  the  modif ied Du For t -Frankel   technique.  

All methods tes ted  were  comparable i n  accuracy  for  the  cases  tested, 
w i t h   o r   w i t h o u t  shock  waves. 

The modif ied  hopscotch scheme  seemed t o  have a s J i g h t l y  more severe 
viscous s t a b i l i t y   c o n d i t i o n   t h a n   t h e  MacCormack o r   B ra i l ovskaya  schemes. 
However, f o r   t h e   v i s c o u s   s t a b i l i t y   r e s t r i c t e d  cases,  solut ions computed by 
the  modif ied  hopscotch  technique  actual ly  reached  steady  state  sooner i n  
physical   t ime  than any o f   the   o ther   techn iques   tes ted .  
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Table 1,- Summary of r e s u l t s .  

I sentropic  Supersonic  Normal  Shock 

Du For t -  

A Modified  Hopscotch 
0 Brailovskaya 
I3 Modified Du Fort-Frankel @=IO, t = . 6 )  
0 MacCormack 
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Figure  1.- Shock-free  calculat ion.  
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- Modified  Hopscotch 
Brailovskaya 

....... Modified Du Fort-Frankel (LJ=~O, t=. 6) 
---- MacCormack 

R =45374 .016 
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x s ._..._ . .. . . .. . : . .  . .  . .  . .  
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O O  
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Figure 2.- Convergence rate comparison. 

A Modified  Hopscotch 
0 Brailovskaya (C =. 08) 
0 Modified Du FOX-Frankel (w-10, E-. 6) 
0 MacCormack (Cx=. 08) 
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Grid index, i 
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Figure 3.- Mach number d i s t r i b u t i o n  (case 2).  
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h Modified  Hopscotch 
0 Brailovskaya (Cx=. 0 8 )  

Modified Du Fort-Frankel 0.10, C=. 6) 
0 MacCormack (Cx=. 0 8 )  

R -45374 Pexit/Pt=. 7 

L 
aa 
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a 
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1 . 4 -  
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. 2  - 

Ik 20  24 28 32 36 40  44 48 
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Figure  4 . -  P r e s s u r e   r a t i o   d i s t r i b u t i o n  (case 2 ) -  

2-ol 
h Modified  Hopscotch 
0 Brailovskaya (Cx=. 08) 
D Modified Du Fort-Frankel (0=10, C=. 6) 
0 MacCormack (Cx=. 08) 

R ~ 1 1 3 4 5  Pexit/Pt=. 7 

Grid Index, i 

Figure  5.- Mach number d i s t r i b u t i o n  (case 3 ) .  
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Figure 6 . -  Mach  number distribution  (case 4 ) .  
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Figure 7 . -  Effect   of   art i f ic ial  smoothing. 

1481 


