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THE RELATIVE MERITS OF SEVERAL NUMERICAL TECHNIQUES FOR
SOLVING THE COMPRESSIBLE NAVIER-STOKES EQUATIONS

Terry L. Holst
Langley Research Center

SUMMARY

Four explicit finite-difference techniques designed to solve the time-
dependent, compressible Navier-Stokes equations have been compared. These
techniques are (1) MacCormack, (2) modified Du Fort-Frankel, (3) modified
hopscotch, and (4) Brailovskaya. The comparison was made numerically by
solving the quasi-one-dimensional Navier-Stokes equations for the flow in a
converging-diverging nozzle. Solutions with and without standing normal
shock waves were computed for unit Reynolds numbers (based on total condi-
tions) ranging from 45374 to 2269. The results indicate that all four
techniques are comparable in accuracy; however, the modified hopscotch scheme
is two to three times faster than the Brailovskaya and MacCormack schemes and
three to six times faster than the modified Du Fort-Frankel scheme.

INTRODUCTION

Recently, considerable interest has surfaced in the numerical solution
of the compressible Navier-Stokes equations (refs. 1-4). Explicit numerical
techniques have been used in most of these studies, especially those involving
shock waves. The Timited use of implicit methods is due to (1) coding com-
plexity associated with the Navier-Stokes equations, (2) limited success in
obtaining the large time steps as predicted by linear stability analysis, and
(3) Timited success in capturing shock waves. Another factor involved is the
apparent success of explicit methods over implicit methods for adapting to
the new fourth generation computers (STAR 100 and ILLIAC IV).

The purpose of the present study is to investigate the relative merits
of several explicit finite-difference techniques for solving the compressible,
time-dependent Navier-Stokes equations. Some of the important aspects
evaluated are (1) computational speed, (2) numerical accuracy, (3) computer
storage requirements, (4) Reynolds number limitations, and (5) effects of
artificial smoothing. The four numerical techniques investigated are (1)
modified hopscotch, (2) MacCormack, (3) modified Du Fort-Frankel, and (4)
Brailovskaya. Each of these methods has been used to solve a quasi-one-
dimensional converging-diverging nozzle problem. Solutions with and without
standing normal shock waves are presented for unit Reynolds numbers ranging
from 45374 to 2269.
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SYMBOLS

A nozzle cross-sectional area; mz

c speed of sound, m/sec

E total internal energy per unit volume, N-m/m3
M Mach number

p pressure, N/m2

R Reynolds number per unit length, ]
S smoothing term

t time, sec

T temperature, K

u velocity, m/sec

X distance along nozzle axis, m

At time increment, sec

Ax space increment, m

P density, kg/m3

Subscripts:

i space index ’

t total conditions

Superscript:

n time index

GOVERNING EQUATIONS AND TEST PROBLEM

The converging-diverging nozzle problem used in this study represents a
rigorous test case for the numerical techniques. The steady-state flow field
is initially subsonic, goes sonic at the throat, passes through a standing
normal shock wave in the diverging portijon of the nozzle, and exits the
nozzle with subsonic flow. Cases which do not contain a standing normal
shock wave are also computed. For these cases the flow field downstream of
the throat is supersonic. Different exit boundary conditions are required
for each of these cases and will be discussed in a subsequent section.
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The time-dependent, quasi-one-dimensional flow of a compressib1e,.
viscous fluid is governed by a set of three partial differential equat1qns
expressing the conservation of mass, momentum, and energy. These equations
in conservative form are as follows:

3 Y o3x T x (B ax) * H=0 (1)
where
P pu 00 0 0 0
9A
U=A|pulsF=n|pls |B=a O‘g'uO;C= ulsH=f P3| (2)
E+ 0
E (E+p)u 0 i-uu k T

The coefficients of viscosity (u) and thermal conductivity (k) are given by
Sutherland's viscosity law and a constant Prandt]l number assumption.

Differencing Schemes

Several characteristics are common to each of the numerical schemes
evaluated in this study. They are all second-order-accurate (for the steady-
state solution) finite-difference techniques which solve the time-dependent
form of the governing equations in search of a final steady-state solution.
The methods are explicit, and hence, easily programmed. In particular, the
methods evaluated here have been chosen especially with regard to programming
simplicity for the Navier-Stokes equations.

Modified Hopscotch

The current version of hopscotch was first introduced in reference 5
where it was applied to the compressible Navier-Stokes equations for a shear
layer mixing problem. This modified hopscotch technique (applied to eq. (1))
js expressed in two sweeps given by

first sweep (i+n even)
n+l _ n At fen n At n n
Ui =Y - aax (Fm - Fi-]) "2 (Hm * ”1-1)

n n n n n,pNn n -
AX 2 AX 2 AX
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second sweep (i+n odd)

Un+1 = " At (Fn+1 Fn+]) _ At Hn+'l + Hn+1

i 7 P{ T 2ax \Vi+1 T Ti-l 2 i+1 i-1
n+l,,n n+1 n n,,n+1 n n+l (4)
RN 2 B S T T i 5 Y B Wl B
Ax 2 AX 2 AX

Gottlieb and Gustafsson (ref. 6) have investigated the stability of the
current version of hopscotch and have found it to be governed by the following

CFL condition:

—AMx (5)

Ata., <
CFL= Ty |+

In addition reference 6 found the viscous stability condition for the
modified hopscotch technique to be

u At

6
o (8x)% (6)

A
—

Gourlay (ref. 7) suggested a simplification to the standard two-sweep
hopscotch scheme which almost entirely removed the first sweep where equation
(3) is replaced by

n+1 -1

™t = oy _ f

; ; ; (i+n even) (7)

Numerical tests were performed with and without the use of equation (7)
yielding identical results. The use of equation (7) increases the speed of
the modified hopscotch technique by a factor of two without requiring
additional storage.

Modified Du Fort-Frankel

The current version of the Du Fort-Frankel scheme was introduced by
Gottleib and Gustafsson (ref. 8) as follows:

n n n n
ntl _ ,n-1 At (0 : n . 2at | Bier * B G - G
Ui =0 - & (FT+1 F1-1) 20t Hy + =55 2 AX
n,pn n _ .n (8)
% (5 G _ 2t w pn ( TARLIN T U?'1)
] | AX (Ax)2 i i i i
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where the last term is a stabilizing term. The value of w (stabilizing
coefficient) must be determined by numerical experiment. The stabilizer takes
the place of the time averaging appearing in the viscous terms of the standard
Du Fort-Frankel scheme. This simplifies the resulting numerical code,
especially for the Navier-Stokes equations in multiple dimensions.

In addition to equation (8) an additional dissipative term must be
added for stable operation

n_e n n n_ " n
5i =76 (U1+2 - AUyt BUp - AUy U1-2)

where the constant e 1is determined numerically.

(9)

MacCormack
The version of the two-step Lax-Wendroff scheme used in this study was
first introduced by MacCormack (ref. 9). Using the MacCormack technique to
difference equation (1) yields

predictor step

UHIT _ oy - At fpn Fy 4 At)gn. Eiil_;;jgi - g" EE_:_fgill - HMat
i i~ ax \Fie1 7 x| P T Bx i T X 2t (10)
ntl _ 1 ( n¥l_n At ntT _ n¥T\ _ At n+T
porrector step Ui =3 ( Ui +Ui " JAx (F1 F1_1 ) 2 Hi
RSP R . s R
At Bn+] C1‘+1 - G _ gnt] C1 - G an
2Ax i Ax i-1 Ax

where the overbar on the n superscript indicates a predicted value. The
stability requirement for this scheme is the CFL condition (eq. (5)). In
addition, a stability condition due to viscous effects is also present:

]JAt <

1
o (%)% 2 (12)

To surpress pointwise oscillations an artificial smoothing term can be
added to the right-hand side of equations (10) and (11) as follows:

predictor step

]pn - 20" + pQ_ |
= ¢, L (in, - a0+ ) (13)
Pi+1 * 25 * Py
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corrector sgy{___ IOH;T.- ZpE:T-+ DHITI
g i -] (u’.‘*1 - 2™yt ) (14)
1 X n+1 n+l n+l

Pi+] i

where C_ 1is an adjustable constant. In regions of smooth flow these terms
will be Xnegligib]e and will not influence the solution. In regions of point-
wise oscillations these terms will provide the effect of solution smoothing.

Brailovskaya
The two-step finite-difference scheme introduced by Brailovskaya in 1965

(ref. 10) is second-order accurate in space and first-order accurate in time.
Using this technique to difference equation (1) yields

predictor step

Ui Y K (F1+1 - F1-1) - At H -

15
n n n n n n n n
coat [Biwn By [ Gy -G} By Y By 05 -Gy
AX 2 AX 2 AX
corrector step

ntl _ ,n At [n¥T n+i n

Ui = U - A (F1+] - Fioq)- At H, 6)
16

n n n n n n n n
cont (B P B [ Char - G B B (G - Gy
AX 2 AX 2 AX

The viscous terms in the predictor step are identical with the viscous terms
in the corrector step and, therefore, need to be computed only once per time
step. This feature reduces the required amount of computer time. The sta-
bility requirement for the Brailovskaya scheme is the usual CFL condition

(eq. (5)). An additional viscous stability condition is required and is given
by equation (12). The artificial smoothing applied to the MacCormack scheme
(egs. (13) and (14)) was also applied to the Brailovskaya scheme.

Boundary Conditions

The boundary conditions described in this section were used for each
numerical method. Three boundary conditions at both the inflow and outflow
boundaries must be specified. At the subsonic inflow total pressure and total
temperature were specified and held fixed. The third inflow boundary condition
was obtained by requiring a zero gradient on static pressure.
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At the outflow boundary (i = N) for the supersonic case the boundary
conditions were

n_ .n n _ n
L R S

n 1
PN-1 (17)

At the outflow boundary for the normal shock wave case the flow is sub-
sonic; consequently, the boundary conditions are modified as follows

n _ n_.n n_ n 18
PN = Pexit, UN T UN-1 0 PN T PN-T (18)
where Pexit is specified and held fixed. Obtaining accurate results with such

simple boundary conditions is made possible by adding constant area duct seg-
ments at the inflow and outflow stations of the nozzle.

These boundary conditions when applied to the modified Du Fort-Frankel
code resulted in unstable oscillations at the boundaries. These oscillations
were eliminated by two different methods. The first method was to apply
second-order damping given by

n_ e n _ ,n n
3 7 T6 ( Uier - 205 # ”1-1) (19)
at i =2 for the inflow and i = N -1 for the outflow.

The second method of removing the oscillations consisted of replacing the
original boundary conditions with a new set given by

P, = const, T, = const, p? = pg_] (20)
n _ n-] n_ n-1 n _ n-1l )

PN T PN-T s Uy T UNCY e PN TP (21)
n _ uh o= un—1 n_ n-1 (22)
PN = Pexit, UN T Un-1c PN T PN-1

where equations (20) and (21) were used for the no shock wave case and
equations (20) and (22) for the normal shock wave case. For shock-free flow
solutions the second method of removing the oscillations produced the best
results and are presented in the next section. For the normal shock wave
case, both methods produced similar results.
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DISCUSSION OF RESULTS

Shock-Free Solution

The initial condition solution for the isentropic calculation was
-established by first computing the inflow and outflow endpoints from one-
dimensional isentropic theory. Then linear distributions for all the flow
variables were computed between the endpoints.

Table I summarizes the computing statistics of all the results presented.
The results of the isentropic (shock free) calculation are presented in figure
1. Included are Mach number, pressure, and temperature distributions along
the nozzle axis for all four numerical techniques. Overall the agreement is
very good. In particular, all four numerically predicted values of pressure
at the throat lie within 0.5 percent of the theoretical value. The largest
disagreement occurs at the outflow where theory predicts an exit Mach number
of 1.925. The numerically predicted exit Mach numbers are below this and Tie
between 1.907 and 1.920.

The maximum error (ERR) versus the central processor unit time (CPU time)
is presented in figure 2 where

Esy
ERR = T2 — ! (23)
Py AY/Ater

The CPU time required for computing initial conditions and solution input/
output has been subtracted from the CPY time displayed in figure 2. The

curves have been continued until the maximum error dropped below 0.001

although the actual calculations were carried to 0.0001 accuracy. For the test
problem the modified hopscotch technique is clearly the fastest of the four
techniques tested, being 2.2 times faster than Brailovskaya, 2.5 times faster
than MacCormack, and 4.0 times faster than modified Du Fort-Frankel.

Normal Shock Wave Solution

The initial conditions for the cases with a standing normal shock wave
were obtained from one-dimensional isentropic theory. The initial solution
was entirely subsonic with the standard expansion in the converging portion in
the nozzle, the sonic condition at the throat, and subsonic compression in the
diverging portion of the nozzle. This condition was chosen because the use of
initial conditions with supersonic outflows caused difficulties when the out-
flow pressure was specified.

Mach number and pressure distributions are presented in figures 3 and 4.
A standing normal shock wave with a pressure ratio of approximately 3.7 has
been captured by all four methods at i = 38. The shock wave is spread over
two to three grid points with minimal overshoots and no undershoots. The
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Reynolds number was not low enough for any significant viscous effects to
appear. The grid Reynolds numbers (pu Ax/n) were between 10 and 20. 1In
general the agreement is quite good between the four techniques.

Both the MacCormack and Brajlovskaya results were computed with artifi-
cial smoothing added; however, the smoothing was not required for a stable
solution. Instead, it was used to improve the characteristics of the captured
shock by reducing the overshoot and undershoot oscillations.

Again the modified hopscotch technique is the fastest of the four methods
tested (see table I, case 2) being 1.7 times faster than Brailovskaya, 1.8
times faster than MacCormack, and 3.9 times faster than modified Du Fort-Frankel.

Reynolds Number Effects

Three of the techniques (modified hopscotch, MacCormack, and Brailovskaya)
have viscous stability conditions and therefore, should exhibit smailer time
steps and longer CPU times for lower Reynolds numbers. Two test cases were
computed with Tower Reynolds numbers by decreasing the total pressure (see
table I, cases 3 and 4). Mach number distributions for these two cases are
‘shown in figures 5 and 6. The effect of the reduced Reynolds number is
clearly evident. In figure 5 (R = 11345 m-1) the shock wave is spread across
five to six grid points, and in figure 6 (R = 2269 m=1) the solution is so
smeared by the physical viscosity that a shock wave cannot be recognized. The
,%rid Reynolds numbers are between 2 and 5 for case 3 and between 0.5 and 1.0
for case 4.

The shock position predicted by the modified Du Fort-Frankel technique
for case 3 (see fig. 5) is in slight disagreement with the shock position pre-
dicted by the other three methods. This is due to the different outflow
boundary conditions used by the modified Du Fort-Frankel technique (see egs.
(19) - (22)). The effect is to alter the value of exit pressure and thus,
change the shock position. The modified Du Fort-Frankel scheme failed to
converge for case 4.

As expected, the viscous stability condition was more restrictive and
therefore dominated the low Reynolds number calculations, especially case 4.
Modified hopscotch seemed to have a slightly more severe viscous stability
condition than MacCormack or Brailovskaya, but, possibly due to the added
physical viscosity, actually reached a converged solution sooner in physical
time. For instance, in case 3, modified hopscotch was 2.8 times faster than
Brailovskaya, 3.2 times faster than MacCormack, and 6.2 times faster than
modified Du Fort-Frankel.

The Tack of a viscous stability Timit for modified Du Fort-Frankel could
not be fully tested due to its failure to converge for case 4. The reduced
time step ratio exhibited by modified Du Fort-Frankel for all cases is due to
the artificial dissipation which must be added for stable operation. Hence,
even if modified Du Fort-Frankel is not restricted by a viscous stability
condition, it must pay the price of a reduced time step for another reason,
regardless of Reynolds number.
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Artificial Smoothing

Artificial smoothing has been used in this study on three of the four
methods tested (MacCormack, Brailovskaya, and Du Fort-Frankel). To investi-
gate the effect of smoothing, a series of Mach number distributions for three
different values of Cy (smoothing constant) are presented in figure 7. The
three curves correspond to no smoothing (Cy = 0.0), moderate smoothing (Cy =
0.2), and massive smoothing (Cx = 1.0). Al1 three curves were computed by
the same numerical technique (Brailovskaya) and at the same flow conditions
(R = 45374 m-1 and Pexit/Pt = 0.7). Enlargements of the Mach number profiles
around the standing normal shock wave are presented in figure 7. The no.
smoothing case spreads the shock wave across three grid points and exhibits
pre-shock oscillations. The moderate smoothing case, likewise, spreads the
shock over three grid points, almost identically matching the no smoothing
shock, but without pre-shock oscillations. The massive smoothing case spreads
the shock over four or five grid points and effectively causes a position
shift in the shock wave. A1l three profiles away from the shock are in good
agreement regardless of how much smoothing is applied. Therefore, it is
clear that artificial smoothing in a Timited amount has helped the quality
of the solution.

CONCLUDING REMARKS

The modified hopscotch technique was superior in speed for all cases
tested, being 1.7 to 2.8 times faster than the Brailovskaya technique, 1.8 to
3.2 times faster than the MacCormack technique, and 3.9 to 6.2 times faster
than the modified Du Fort-Frankel technique.

A11 methods tested were comparable in accuracy for the cases tested,
with or without shock waves.

The modified hopscotch scheme seemed to have a slightly more severe
viscous stability condition than the MacCormack or Brailovskaya schemes.
However, for the viscous stability restricted cases, solutions computed by
the modified hopscotch technique actually reached steady state sooner in
physical time than any of the other techniques tested.
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Table I.,~ Summary of results.

— I
Case 1 Case 2 Case 3 Case 4
Isentropic Supersonic Normal Shock Normal Shock Normal Shock
R =45374 R =45374 R =11345 R =2269
Pexit/Py- 7 Pexit/Pr=- 7 Pexit/Py- 7
A Physical CPU | At Physical CPU | ay Physical CPU | ot~ Physical cPU|
At n Time Time | At n Time Time |at N Time Timei at.. N Time Time
CFL {psec) (sec) CFL (psec) (sec) | CFL (usec) (sec)|  CFL {msec)  (sec)
MacCormack {] 1.0 | 345 [ 143 [ 58 | .9 (338 | 140 | 53| .9 |[546 | 223 |85 | .5 896 | 217 | 14.0
Modified | 9 | 395 ) 147 | 22 | 1.0 | 565 | 26 | 3.0 | .8 | 514 | 188 |27 | .3 | 193] 175 | 6.2
Hopscotch
Brailovskaya |[ 1.1 | 334 [ 152 | 52 |11 | 323|161 |52 | 1.O | 485 | 222 | 7.5 | .4 | 1110 221 | 17.6
Modified T
Du Fort- || -5 | 88 | 177 |10.7 | .5 | 990 | 216 | 11.8| .4 | 1350] 243 |16.9
frankel
A Modified Hopscotch
<& Brailovskaya
[ Modified Du Fort-Frankel @=10, €=.6)
© MacCormack
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Figure 1.- Shock-free calculation.
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Figure 3.- Mach number distribution (case 2).
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Figure 4.- Pressure ratio distribution (case 2).
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Figure 5.- Mach number distribution (case 3).
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Figure 6.~ Mach number distribution (case 4).
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Figure 7.—- Effect of artificial smoothing.
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