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SUMMARY 

The  theory  of  semi-similar  solutions  of  the  laminar  boundary  layer  equa- 
tions  is  applied  to  several  flows  in  which  the  boundary  layer  approaches  a 
three-dimensional  separation  line.  The  solutions  obtained  are  used  to  deduce 
the  nature  of  three-dimensional  separation. It is  shown  that  in  these  cases 
separation  is of the  "ordinary"  type. A solution  is  also  presented  for  a  case 
in  which  a  vortex  is  embedded  within  the  three-dimensional  boundary  layer. 

INTRODUCTION 

The  determination of the  aerodynamic  forces  and  moments  on  many  practical 
bodies  requires  the  prediction of the  location of boundary  layer  separation  on 
the  body.  When  the  boundary  layer  is  both  laminar  and  two-dimensional  this  is 
not  a  very  difficult  problem.  The  phenomenon  of  two-dimensional  separation  is 
well  understood  and  there  are  methods  available  which  can  be  used  to  predict 
the  flow  up to separation  and  the  location  of  separation  with  reasonable  accu- 
racy.  When  the  boundary  layer  is  three-dimensional  the  problem  of  predicting 
separation  is  considerably  more  difficult.  In  this  case  the  usual  methods  of 
calculation,  which  involve  such  assumptionsas  similarity,  small  perturbations 
or  yawed  infinite  cylinders,  offer  little  aid.  Furthermore,  there  are  still 
pressing  questions  as  to  the  nature of three-dimensional  separation. 

The  criterion  for  three-dimensional  laminar  boundary  layer  separation  is 
not  necessarily  the  same  as  that  for  two-dimensional  separation  (i.e.,  the 
vanishing of the  wall  shear  at  the  point of separation).  In  fact,  both  Maskell 
(ref. 1) and  Lighthill  (ref. 2) have  pointed  out  that  there  are two possible 
modes  of  separation  for  the  three-dimensional  boundary  layer.  In  one  case  the 
total  wall  shear  may  vanish  at  separation.  This  type  of  separation  has  been 
named  by  Maskell  "singular"  separation.  In  the  second  case  the  limiting  stream- 
lines,  or  streamlines  closest  to  the  solid  wall,  run  close  together  and  become 
tangent  to  the  line  of  separation  at  separation.  This type.of separation  has 
been  named  by  Maskell  "ordinary"  separation. 

The  number  of  three-dimensional  boundary  layer  calculations  which  have 
been  carried  out  up to the  vicinity  of  separation  is  quite  limited.  This  is 
true,  in  part  at  least,  because  of  the  added  mathematical  difficulty  arising 
from  the  addition of another  independent  variable  (the  third  spatial  coordinate) 
and  the  corresponding  dependent  variable  (the  third  velocity  component)  in  the 
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three-dimensional  problem.  Another  difficulty  which  has  served  to  limit  solu- 
tions  in  the  vicinity  of  separation  is  the  fact  that  flow  reversal  of  one  ve- 
locity  component  parallel  to  the  wall  often  occurs  near  separation. 

The  present  work  presents  an  investigation  of  several  three-dimensional 
boundary  layer  flows,  which  approach  separation,  with  the  objective  of  studying, 
in  some  detail,  the  nature  of  the  flow  in  the  vicinity  of  separation.  The 
method  employed  in  the  present  analysis  is  that  of  semi-similar  solutions. 
Mathematically  the  method  of  semi-similar  solutions  is a technique  by  which  the 
three  independent  variables  are  reduced  to  two  by  an  appropriate  scaling.  In 
cases  where  separation  occurs,  the  technique  has a more  important  physical  in- 
terpretation. It may  be  viewed  as a scaling  of  the  two  surface  coordinates  in 
such a way  that  separation  occurs  at a constant  value  of  the  new  scaled.surface 
coordinate  (although  the  value  of  the  new  scaled  coordinate  corresponding  to 
separation  is  not  known a p r i o r i ) .  This  property  is  extremely  helpful  in  de- 
termining,  from  the  solutions,  the  physical  characteristics  of  separation. 

Solutions  are  presented  for  two  cases  which  lead  to  three-dimensional  se- 
paration  of  the  ordinary  type.  In  one  of  these  cases  one  of  the  velocity  com- 
ponents  parallel  to  the  wall  becomes  negative  prior  to  separation.  Finally, a 
case  is  presented  in  which a vortex  is  embedded  within  the  three-dimensional 
boundary  layer. 

SYMBOLS 

coefficients  of 5 in  the  reduced  momentum  equation 
(eq. (7)) 

dimensionless  stream  functions 

scaling  function  for  the  z-coordinate 

characteristic  length  for  the  flow 

pressure 

characteristic  velocity  for  the  flow 

the x, y and z components  of  velocity,  respectively 

coordinate  directions  on  the  body  surface  (fig. 1) 

coordinate  direction  normal  to  body  surface 

scaled  z-coordinate 

kinematic  viscosity 

scaled x and y coordinate 



I 

P 

TW 

Subscripts 

6 

W 

dens i ty  

w a l l  shear 

conditions a t  t h e  "upper"  edge  of t h e  boundary  layer 

condition a t  t h e  body surface  (wal l )  

ANALYSIS 

The boundary layer  equations  for  steady,  incompressible  motion  in  three- 
dimensions  over a su r face   w i th   l a rge   r ad i i  of curvature are: 

u - + v - + ~ - - " L 1 + + "  aV av av a v  
ay a2 . 

2 

ax a Y  aZ 2 

The boundary  condi t ions  for   this  set of  equations are: 

Here x and y are orthogonal  Cartesian  coordinates  tangent  to  the body sur face  
and z is  the  coordinate   normal   to   this   surface  (Fig.   1) .  A s  noted earlier w e  
wish to   sca le   the   phys ica l   coord ina tes   x ,   y ,  and z i n t o  a new set of two scaled 
coordinates. The appropr ia te   sca l ing  is: q = z / g ( x , y ) f i ,  5 = <(x,y),  where 
g(x,y) and g(x,y) are a t  t h i s   p o i n t  unknown funct ions .   In   addi t ion ,  w e  def ine  
two dimensionless stream funct ions  F(<,q)  and  G(5,q) constructed s o  t h a t   t h e  
continuity  equation is i d e n t i c a l l y   s a t i s f i e d .  The v e l o c i t y  components wr i t t en  
i n  terms of these   func t ions  become: 

aF 
U = U 6 a r l  6 aq 

a G  v = v  - 

It is e a s i l y  shown, by d i r e c t   s u b s t i t u t i o n ,   t h a t   t h i s   c h o i c e   s a t i s f i e s   t h e  
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con t inu i ty   equa t ion .  Now i f  t h e   v e l o c i t y  components  given  by  equations (4) and 
t h e i r   d e r i v a t i v e s  are in t roduced   i n to  the x and y momentum equat ions  (2)  and (3), 
one   ob ta ins  the f o l l o w i n g   p a i r   o f   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s   i n   t h e  two 
v a r i a b l e s  rl and 5: 

F! 1 f + (A + B ) F  F"+ (C + D) G F" + A ( l  - F t 2 )  + 

G I  1 t + (C + D) G G" + (A + B) F G I '  + C ( l  - G t 2 )  + 

In   the  t ransformed  coordinate   system  the  boundary  condi t ions become: 

Here t h e   p r i m e s   d e n o t e   d i f f e r e n t i a t i o n   w i t h   r e s p e c t   t o  rl a n d   t h e   c o e f f i c i e n t s  
A, B y  C y  D ,  E ,  H,  I ,  J are func t ions   o f  x and y given  by: 

2 A = g *  - 
ax* 

agA2 B = u *  6 ax* 
2 c = g *  - 

aY" 

In   equa t ions  (71, we have  normalized u v6, g ,  x,  and y by   in t roducing   the   d i -  
mens ionless   var iab les :  6' 

u6 
u6* = - U v6* = - U g R  

g * =  /I x * = -  X y* = Y 
R R 

I f  semi-similar s o l u t i o n s  are t o   e x i s t ,   t h e   c o e f f i c i e n t s  A,  B y  C ,  D ,  E ,  H, I, 
and J must  be  functions  of 5 alone.   There are f o u r   r e l a t i o n s  between  these 
e i g h t   c o e f f i c i e n t s ,   c o n s t r u c t e d   u s i n g   t h e   f a c t   t h a t  u6*, v6*, g* and 5 must be  
cont inuous  funct ions  of  x* and y* and thus ,   t he   s econd   de r iva t ives   o f   each  of 
t h e s e   f u n c t i o n s   w i t h   r e s p e c t   t o  x* and y* must be  independent  of  the  order  of 
d i f f e r e n t i a t i o n .  An a d d i t i o n a l   r e l a t i o n   b e t w e e n  u6* and v6* is  o b t a i n e d   i f   t h e  
component o f   vo r t i c i ty   no rma l   t o   t he   su r f ace   van i shes   ou t s ide   t he   boundary  
l aye r .   These   aux i l l a ry   equa t ions   t oge the r   w i th  a d i scuss ion  of t h e  method  of 
s o l v i n g   t h e   t o t a l   p r o b l e m  is  p r e s e n t e d   i n   r e f e r e n c e  3 .  Once t h e   e i g h t   c o e f f i -  
c i e n t s   i n   e q u a t i o n s  (5) and (6) are d e f i n e d   f o r  a g iven   problem,   the   so lu t ion  
of   equat ions (5) and (6)  i s  s t r a i g h t   f o r w a r d   u s i n g   a n   i m p l i c i t   f i n i t e   d i f f e r e n c e  
technique similar t o   t h a t   o f   B l o t t n e r   ( r e f .  4 ) .  I n  what  follows w e  w i l l  be  
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interested  in  the  angle  of  the  streamlines  relative to the  x  axis. In parti- 
cular we  will  be  interested  in  the  two  extremes of this  angle,  evaluated  in 
the  external  flow  and  at  the  wall  and  given  respectively  by: 

v6*  v v6* G " ( S , O )  tan f3 = - tan f3 = lim - = 6 U6* W u q m .  
W O  

In addition,  we  will  consider  the  total  wail  shear,  or  more  specifically,  the 
normalized  form  of  the  total  shear  given  respectively  by: 

Finally,  we  will  wish to consider  the  effects of the  pressure  gradient  in  the  x 
and  y  directions  given  respectively  by: 

2 
- ?.P = - A ( E )  - E ( < )  
pu2 ax 

SOLUTIONS FOR TWO  FLOWS LEADING TO  SEPARATION 

In  the  present  analysis we  will  assume  that H ( 5 )  = < and  that A ( 5 )  + 
2 B ( < )  = 1. These  assumptions  are  made t o  simplify  the  analysis  and  because 
they  correspond  to  the  scaling  usually  used  in  the  analysis  of  two-dimensional 
non-similar  boundary  layers. In addition,  consideration  will  be  limited to 
that  family of flows  in  which  the  external  velocity  components  may  be  written 
as  explicit  functions  of 5. A s  a  result of these  assumptions  one  obtains  the 
results g*2 ut = x* and 5 = x*/ (1 - ay*) . Specifically  we  will  consider  the 
velocity  distributions: 

2 

v$ (1 - O1y*I2 
= I +  a x *  4 i1 - -? (1 - x* ay*> 1 

It may  easily  be  shown  that  these  velocity  distributions  correspond  to  an  irro- 
tational  outer  flow  (i.e.  the  vertical  component of vorticity  vanishes).  Clear- 
ly  the  nature  of  the  external  flow  field  depends  on  the  sign of the  parameter a. 
Solutions  will  be  presented  for  typical  cases in which 01 is  negative  or  positive. 
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With these   ex te rna l   ve loc i ty   d i s t r ibu t ions   g iven ,  a l l  t h e   c o e f f i c i e n t s  A ( E ) ,  
B(<), C(C) ,  D ( C ) ,  E(E), H(<), I(5) and J(<), may b e   w r i t t e n   e x p l i c i t l y   i n  terms 
of 5. Equations  (5) and (6) then  form a p a i r  o f   coupled ,   th i rd   o rder ,   par t ia l  
d i f f e ren t i a l   equa t ions  which are similar i n  form to  the  t ransformed,  two- 
dimensional,  non-similar  boundary  layer  equation and may be  solved, as mention- 
ed earlier, us ing   an   impl ic i t   f in i te   d i f fe rence   t echnique .  

We c o n s i d e r   f i r s t   t h e  case i n  which c1 is negat ive .   Solu t ions   for   th i s  
family  of  flows  have  been  obtained  for  several  values  of a.  The r e s u l t s   f o r  
c1 = -0.5 are t y p i c a l  and are presented  in   Figure 2. I n   t h i s   p a r t i c u l a r  case the 
p re s su re   g rad ien t   i n   t he  x d i r e c t i o n  is  negat ive   for  0 5 5 < 0.5 ,   pos i t ive   for  
0.5 < 5 < 0.51 and negat ive   for  5 > 0.51   whi le   the   p ressure   g rad ien t   in   the  y 
d i r e c t i o n  is  p o s i t i v e   f o r  0 I 5 < 0.5,   negative  for  0.5 < 5 < 0.51 and p o s i t i v e  
f o r  5 > 0.51. 

I n   t h i s   c a s e ,  as i n  a l l  o thers   p resented   here in ,   the   in tegra t ion  of  equa- 
t ions  (5)  and (6) starts a t  5 = 0, where similar so lu t ions  are obtained, and 
proceeds i n   t h e  5 d i r ec t ion   w i th   an   i t e r a t ion  on t h e   v e l o c i t y   p r o f i l e  a t  each 5 
s t a t i o n .  A t  some downstream s t a t i o n   t h e  number of i t e r a t i o n s   r e q u i r e d   t o  ob- 
t a i n  convergence starts t o  grow with  each  succeeding  s ta t ion  unt i l ,  a t  one sta- 
tion,  convergence  cannot  be  obtained i n  a reasonable number of i t e r a t i o n s .  
This  behavior is taken, by ana logy   wi th   f in i te   d i f fe rence   ca lcu la t ion  of t h e  
two-dimensional  boundary l aye r ,  as an  indication  of  approaching a point  of  sin- 
gu lar   behavior ,   in   the  boundary layer   equat ions,   associated  with  separat ion.  
With c1 = -0.50 a so lu t ion  is  obtained a t  0.510  with  convergence a t  each  point 
i n   t h e   v e l o c i t y   p r o f i l e   i n   1 0   i t e r a t i o n s .  A t  5 = 0.511  convergence  cannot  be 
obtained  in   120  i terat ions.   Separat ion i s  assumed to   occur ,   then ,   in   the   v ic in-  
i t y  of 5 = 0.511. 

Figure 2 presents   the   resu l t s   ob ta ined   wi th  a = -0.50 f o r   t h e   a n g l e  of t he  
s t r eaml ines   i n   t he   f r ee  stream, 66, the   angle   of   the   l imit ing  s t reamlines ,  
and the  normalized  normal w a l l  shear ~ f .  The normalized w a l l  shear i s  very 
large  near  5 = 0 ( i n   t h e  l i m i t  as 5 +- 0,  T$ -f because  of  the  normalization) 
but  decreases  with  increasing 5. A s  5 approaches  0.511, -rf does  not  approach 
z e r o ,   i n   f a c t ,  a t  5 = 0.510 T$ = 0.878. C lea r ly   t hen ,   s epa ra t ion   i n   t h i s   ca se  
i s  not a "singular"  type  separation as defined by Maskell. Now i f   s epa ra t ion  
occurs a t  a value of 5 denoted by tsepy  then  the  equation  for  the  separation 
l i n e  is given by a rearrangement  of  the  definit ion of 5, i .e.  

'W' 

and the   s lope  of t h e   s e p a r a t i o n   l i n e  is: 

'sep 

Thus, i f   o rd inary   separa t ion   occurs ,   the   angle   o f   the   l imi t ing   s t reaml ines  a t  
t h e  w a l l ,  &, should  approach  the  angle   of   the   separat ion  l ine BSe , as separa- 
t i o n  is approached. In   the  present   case  with Ssep taken  to  be  0.5f1,   the  value 
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of & a t  5 
This  value 
separa t ion  

= 0.510 is 1.3184  which is v e r y   c l o s e   t o   t h e   v a l u e  Bse of  1.3206. 
of Bsep is  also  noted  on  Figure 2. Clear ly  & approacRes Bsep as 
is  approached ver i fy ing   the   concept  of  "ordinary"  separation. 

Next we consider a case i n  which a is pos i t i ve .  Again s o l u t i o n s   f o r   t h i s  
family  of  flows  have  been  obtained  for several values  of a ;  t h e   r e s u l t s   f o r  
a = 0.5 are t y p i c a l  and are presented   in   F igure   3 .   In   th i s   case   bo th   the   p res -  
su re   g rad ien t   i n   t he  x d i r e c t i o n  and t h e   p r e s s u r e   g r a d i e n t   i n   t h e  y d i r e c t i o n  
are negat ive   for  0 5 5 < 0.5  and p o s i t i v e   f o r  5 > 0.5. The magnitude  of t h e  
p re s su re   g rad ien t   i n   t he  y d i r e c t i o n  i s  considerably smaller than  the  magnitude 
of t h e   p r e s s u r e   g r a d i e n t   i n   t h e  x d i r ec t ion .  

With a = 0.5 a so lu t ion  is  obtained a t  5 = 0.603 i n  39 i t e r a t i o n s ,  a t  5 = 
0.604 i n  43 i t e r a t i o n s  and a t  5 = 0.605 i n  68 i t e r a t i o n s .  Convergence  cannot 
be  obtained a t  5 = 0.606 izl- 1 2 0  i te ra t ions .   Separa t ion  is assumed to   occur ,  
t h e n ,   i n   t h e   v i c i n i t y  of 5 = 0.606. 

I n   t h i s   c a s e   t h e   t o t a l  w a l l  shear T$ decreases  (from  an  infinite  value a t  
5 = 0) with  increasing 5 u n t i l  it passes  through  zero a t  approximately 5 = 0.596. 
With f u r t h e r   i n c r e a s e   i n  5, TG becomes more negative and a t  5 = 0.605 has   t he  
value ~6 = -0.0332. The t o t a l  w a l l  shear is negat ive  because  the x component 
of ve loc i ty  is  reversed beyond 5 = 0.596. The x component of ve loc i ty  is re- 
versed  because  of  the  strong  posit ive  pressure  gradient  (adverse  pressure  gradi-  
en t )  which a c t s  beyond 5 = 0.5. It should  be  noted  that   in   this  work, as i n  
re ference   3 ,   so lu t ions  are obtained  in   regions  where  one  or   the  other   veloci ty  
components are reversed  without   any  hint   of   an  instabi l i ty .   This   point  w i l l  be 
discussed later.  

The w a l l  shear,   al though small, i s  not  zero a t  separa t ion .   Thus ,   th i s  
case  does  not  represent a ' lsingular ' l   type  separation. A s  noted  previously,   i f  
s e p a r a t i o n   i n   t h i s  case is  "ordinary"  the  angle  of  the  l imiting  streamlines a t  
t h e  w a l l  should  approach  the  angle of t h e   s e p a r a t i o n   l i n e  as separa t ion  i s  ap- 
proached.  That t h i s  i s  t h e  case, is  shown i n   F i g u r e  3.  Both the   angle  of t h e  
l imit ing  s t reamlines ,  &, and the   angle  of the   s t reaml ines   in   the   f rees t ream,  
66, are r / 2  a t  5 = 0. A s  5 increases  Bg dec reases ,   f a i r ly   r ap id ly  a t  f i r s t  and 
then more slowly. The angle & d e c r e a s e s   r a p i d l y   i n i t i a l l y  and then  increases  
rap id ly  so t h a t  it approaches  the  value Bsep (noted  on  Figure  3) as separa t ion  
i s  approached.  Thus, the  separat ion  involved  here  i s  an  "ordinary"  separation. 

INTEGRATION I N T O  REGIONS OF REVERSE FLOW 

I n   t h e  example jus t   cons idered   the  x component of v e l o c i t y   n e a r   t h e  w a l l  
changed d i rec t ions   near   separa t ion .  Thus, i t  w a s  necessa ry   t o   i n t eg ra t e   t he  
boundary layer   equat ions  into a region of reverse flow t o   o b t a i n   t h e   s o l u t i o n .  
Unt i l   qu i te   recent ly   the   "convent iona l  wisdom" w a s  t h a t   i n t e g r a t i o n  of t h e  
boundary layer   equat ions  into  regions  of   reverse   f low  lead  to   numerical   insta-  
b i l i t y  problems s ince ,   i n   r eg ions  of reverse  flow,  the  problem w a s  ill posed. 
In   t he   p re sen t   ca se   i n t eg ra t ion   i n to   r eg ions  of  reverse  flow  apparently  poses 
no problem.  Since the  next   solut ion  to   be  presented  involves   ra ther   extensive 
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regions  of  reverse  flow,  it  is  necessary  to  determine  under  what  circumstances 
integration  into  regions  of  reverse  flow  is  permissible. 

To investigate  this  problem we  note  that  equations (5) and ( 6 )  may  be  re- 
written  in  the  form: 

G"' + aZl F" + a22 G' + a32 - aG ' 
- a42 

Here  again  primes  denote  differentiation  with  respect  to q. The  exact  form  of 
the  ai ' s  in  equations (10) and (11) may  be  determined  by  comparison  with  equa- 
tions 35) and ( 6 ) ;  it  is  only  important  to  note  that a 4 1  = "42  = HF' + IG'.  If 
F' and  G' are  treated  as  independent  variables,  equations (10) and (11) closely 
resemble  the  one-dimensional  heat  conduction  equation. A s  in  the  mathematical 
solution  of  the  heat  conduction  equation,  the  problem  is  well  posed  only  if  the 
coefficient a41 is  positive. If a41 is  positive,  equations (10) and (11) are 
parabolic  and  solutions  are  possible  if  appropriate  boundary  and  initial  condi- 
tions  are  prescribed.  If a41 becomes  negative  for  any  portion of the  flow 
field,  equations (10) and (11) are  parabolic  equations of the  mixed  type  and 
additional  information  is  needed  in  order  to  obtain  a  solution  to  these  equa- 
tions.  Since a41 = a42 = HF' + IG', it  is  clear  that  this  coefficient  may  be 
positive  even  when  one  of  the  velocities  is  negative.  For  example,  if  the  x 
component.of  velocity  is  negative  near  the  wall  then  in  this  region F' < 0 ,  but 
a41 will  be  positive  provided  the  product  IG'  is  positive  and  greater  than  the 
absolute  value  of  the  product HT'. For  this  reason,  solutions  to  equations (5) 
and ( 6 )  may  be  obtained  without  any  numerical  instability  problems  even  when 
one  of  the  velocity  components  is  reversed. 

AN EMBEDDED VORTEX 

We  now  consider  a  third  case  in  which  the  solution  represents  physically  a 
three-dimensional  boundary  layer  with  an  embedded  vortex.  It  is  assumed,  as 
before,  that A(<)  + 2B(<)  = 1, H(<)  = < and  that  the  velocity  components  are 
functions  of  the  scaled  variable < (i.e.  u6 = u6(<),  and  v6 = vg(<)). These as- 
sumptions  lead  to  the  relations  g*2  u8 = x*  and < = x*/(l - ay*). In  addition 
we  assume I(<) = 5. This  assumption  yields  a  relation  between  ug  and  v*,  name- 
ly  u$(<) = a<v$.  It  should  be  noted  that  for  this  flow  the  component o f! vor- 
ticity  normal to the  wall  does  not  vanish  outside  the  boundary  layer.  Thus, 
this  inviscid  flow  will  represent  some  type  of  sheared  flow  (rotational  flow). 
Finally,  the  y  component of velocity  at  the  upper  edge of the  boundary  layer  is 
taken  to  be: 

v * = 1 -  
6 Y(S - 5 t 2 / 3  + 8E3/9) 

This  form  is  chosen so that  the  normalized  y  component  of  velocity  is  unity  at < = 0 ,  has  a  minimum  at 5 = 0.5 and  a  maximum  at < = 0.75. This  leads to a 
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pres su re   g rad ien t   i n   t he  x d i r e c t i o n  which is  favorable   for  a l l  5 i n   t h e   r a n g e  
0 S 5 S 1 but a p re s su re   g rad ien t   i n   t he  y d i r e c t i o n  which is posit ive  (adverse) 
f o r  0 S 5 S 0.5,   negative  (favorable)  for  0.5 < 5 < 0.75  and posi t ive  (adverse)  
f o r  5 > 0.75. 

Results are presented  in   Figures  4 and 5 f o r   t h e   c a s e  a = 0.5 and f o r  sev- 
eral values of y. The v a r i a t i o n  of the   l imi t ing   s t reaml ine   angle ,  eW, with 5 
is  shown in   F igu re  4 f o r  y = 1.0,  2.0 and 2..5. For y = 1.0, & decreases  with 
increasing 5. For y = 2.0, & decreases   to  a value of approximately  zero a t  
5 2 0.3,   increases beyond t h i s   p o i n t   t o  a value of  approximately  0.75 a t  
5 z 0.75 and then  decreases  slowly.  For y = 2.5, & decreases  and  reaches a 
minimum value of -0.96 and then  increases  again  reaching a maximum a t  approxi- 
mately 5 = 0.8. The v a r i a t i o n  of & with 5 f o r  y = 3.0 i s  similar t o   t h a t   f o r  
y = 2.5  but i s  not shown. For y = 3.25,  3.5  and 4 (a lso  not  shown) ordinary 
separation  occurs.  The v e l o c i t y   p r o f i l e s   f o r   t h e  v component of ve loc i ty  are 
shown in   F igure   5 .   These   ve loc i ty   p rof i les  are presented   for   the  case a = 0.5, 
y = 3.0. The y component of ve loc i ty  i s  reversed  between 5 = 0.12  and 5 = 0.53. 
This is  also  the  region  where  the  angle   of   the   l imit ing  s t reamlines  is  negative. 
Taken together ,   Figures  4 and 5 present a c l e a r   p i c t u r e  of a vor tex  embedded 
deep  within  the  three-dimensional  boundary  layer.  For 5 < 0.12  and 5 > 0.53 
both  the .x and y components  of ve loc i ty  are p o s i t i v e  everywhere  and the  f low 
proceeds down stream i n  a normal  fashion. Between 5 = 0.12 and 5 = 0.53  both 
the  x and y components of ve loc i ty  are p o s i t i v e   i n   t h e   o u t e r   p o r t i o n  of t h e  
boundary layer   bu t   near   the  w a l l  t h e  x component of ve loc i ty  is pos i t i ve   wh i l e  
t h e  y component is reversed   (nega t ive) .   This   resu l t s   in  a sp i ra l ing   f low  near  
t h e  w a l l  or  an embedded vortex.  

From the   r e su l t s   p re sen ted   fo r   t he  w a l l  shear,  i t  is c l e a r   t h a t   f o r  y 5 2.0 
such a vortex  does  not   exis t   ( there  i s  no f low  reversa l   near   the   wal l ) .  A s  y 
is  increased beyond 2.0 a vor tex  is formed, a vor tex  which i n c r e a s e s   i n   s i z e  as 
the  pressure  gradient  becomes more severe (y is  inc reased )   un t i l   t he   p re s su re  
gradient becomes suf f ic ien t ly   severe   tha t   separa t ion   occurs .  

Such a flow,  with  an embedded vor tex ,  may a t  f i r s t   appea r   s t r ange .  Such 
embedded v o r t i c i t i e s  do,  however,  occur i n  aerodynamics. The c l a s s i c a l  example 
occurs   in   the   case  of  supersonic  flow  past a cone a t  moderate  angle of a t t a c k .  
Moore ( r e f .  5) w a s  appa ren t ly   t he   f i r s t   t o   r ecogn ize   t he   na tu re  of  such  an em- 
bedded vortex.  

CONCLUDING REMARKS 

The theory  of semi-similar solut ions  has   been  used  to   invest igate  several 
three-dimensional  laminar  boundary  layer  flows  which  approach a separa t ion   l ine .  
The use of semi-similar  solutions makes i t  p o s s i b l e   t o   i n v e s t i g a t e   t h e   n a t u r e  
of t h e  boundary l a y e r  as separa t ion  is  approached. When separa t ion   occur red   in  
the  cases  considered  the  three-dimensional  separation w a s  of the  "ordinary" 
t y p e   i n  which t h e   l i m i t i n g   o r  "wal l"  s t reamlines   run  c lose  together  and  approach 
a t a n g e n t   t o   t h e   s e p a r a t i o n   l i n e .   I n  one case   cons idered , i t  is  shown t h a t  as 
the   p re s su re   g rad ien t  becomes  more severe, a vor tex  is formed w i t h i n   t h e  bound- 
a ry   l aye r .   I f   t he   p re s su re   g rad ien t  becomes s u f f i c i e n t l y   l a r g e   t h e  boundary 
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l aye r   s epa ra t e s .  The s e p a r a t i o n   i n   t h i s  case is  again  an  "ordinary"  type  sep- 
a r a t i o n .  
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Figure 1.- Coordinate  system  for  three-dimensional  boundary  layer  analysis.  
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Figure 2.- Freestream  s t reamline  angle ,   l imit ing streamline 
angle ,  and t o t a l  w a l l  shea r   fo r  c1 '= -0.5. 
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