L
View metadata, citation and similar papers at core.ac.uk brought to you by:: CORE

provided by NASA Technical Reports Server

EFFECTS OF MEAN FLOW ON DUCT MODE OPTIMUM SUPPRESSION RATES

Robert E. Kraft
General Electric Co.

William R. Wells
University of Cincinnati

SUMMARY

The nature of the solution to the convected acoustic wave equation and
associated boundary conditions for rectangular ducts containing uniform mean
flow is examined in terms of the complex mapping between the wall admittance
and characteristic mode eigenvalues. It is shown that the Cremer optimum sup-
pression criteria must be modified to account for the effects of flow below
certain critical values of the nondimensional frequency parameter of duct
height divided by sound wavelength. The implications of these results on the
design of low frequency suppressors is considered.

INTRODUCTION

The lining of duct walls with acoustic treatment is a standard practice in
the jet engine industry for obtaining suppression of turbomachine noise. The
design of this acoustic treatment depends upon a number of factors in addition
to acoustic performance, including weight, structural integrity, length re-
strictions, and ability to withstand severe environments. The design goal of
obtaining a maximum of suppression with a minimum of panelling requires a thor-
ough knowledge of the acoustic propagation phenomena in ducts in the presence
of complex sound sources and mean flow, among other effects. This paper is
aimed at increasing the understanding of a vital element in the prediction of
sound suppression in ducts with mean flow, the nature of the eigenvalue prob-
lTem.

In Reference 1 the general problem of the modal solution to acoustic wave
propagation in multi-segment ducts with mean flow has been considered. The
success of a modal analysis prediction program such as the one developed in
Reference 1 is strongly dependent upon the ability to obtain an accurate and
complete set of eigenvalues for each section of the duct. 1t is felt that
greater appreciation of the nature of the propagation process can be gained
through detailed examination of complex contour plots of the eigenvalue-admit-
tance relationship for particular cases. The basic theory and equations used
in this paper are presented in Reference 1.

A useful acoustic treatment design criteria which has been in use for a
number of years is the lTeast attenuated mode theory developed by Cremer (Ref~
erence 2). Although it is gradually being replaced by the more accurate
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multi-mode prediction procedures, it is still of practical value for prelimin-
ary designs and the evaluation of basic trends. The Cremer theory is based on
the location of branch points (or critical points) of the complex eigenvalue-
admittance mapping, and the consequences of this criteria, particularly for
Tow va;ues of the frequency parameter (ratio of duct height to sound wave-
length

n = H/A (1)

are examined. It is shown how the theory must be modified for very low n-val-
ues.

The results of this study are applied to the specific case of ducts with
rectangular cross section. The methods will find direct application to other
cross-sectional geometries with the proper generalization of the characteristic
duct modes.

SYMBOLS

¢ - speed of sound Zopt - wall impedance (optimum)
f - frequency B - wall admittance (dimensionless)
H = duct height ¥ - nondimensional duct eigenvalue
i - V=T Kk - axial propagation constant
k -~ wave number n = nondimensional frequency par-
Mo - mean flow Mach number ameter, Hf/c
n - exponent in boundary condition - sound wavelength
£ - time oy ~ ambient density of air

w - circular frequency, 2mf

RECTANGULAR DUCT MODAL SOLUTION

The method of separation of variables is applied to the convected acoustic
wave equation under the assumption of uniform mean flow and rectangular duct
geometry. In this study, consideration will be limited to duct treatment sec-
tions with the same treatment on opposite sides of the duct.

Substitution of the general solution of the differential equation into the
boundary condition leads to two different expressions

BKH = iy 1 - cosy (2)

k)" siny
(‘ -1y )

and
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-1 +
BKH - iy g 1 cosy (3)
_ K siny
(1-n %)

where B is the acoustic admittance at the wall, based on e—|wt time depen-
dence. These are complex, transcendental equations for the eigenvalue, 7.
Their solution leads to two distinct -sequences of eigenvalues, the symmetric
mode eigenvalues and the antisymmetric mode eigenvalues, respectively. For
simplicity, the two sequences can be combined into a single set of eigenvalues.

NATURE OF THE BOUNDARY CONDITIONS

The boundary condition expressions (2) and (3) must be solved by numer-
ical methods if the eigenvalues are desired for given admittances. The admit-
tance, however, can be isolated as a function of the eigenvalue, making it
susceptible for plotting contours of constant magnitude and phase of the quan-
tity BkH in the complex eigenvalue plane. The graphical representation of the
relationship between the admittance and the eigenvalue is considered in detail
in Reference 3, in which detailed contour plots are shown for a variety of con-
ditions. From these plots, it is possible to obtain the sequences of eigenval-
ues which determine the characteristic duct modes for a given wall admittance.

It is shown in Reference 3 that the boundaries separating eigenvalue re-
gions for different modes in the eigenvalue plane are branch cuts of the ad-
mittance-eigenvalue contour mapping. One point on the branch cut is a branch
point, or critical point, of the mapping, at which the eigenvalues for two ad-
jacent modes coalesce, giving a double-value. By considering plots of lines
of constant attenuation superimposed on the eigenvalue-admittance mapping, it
has been shown by Cremer (Reference 2), and is illustrated in Reference 3, that
adjacent modes, in particular the first and second modes, attain nearly the
same attenuation rate at the branch point. Cremer proposed the choice of the
admittance at the branch point of the first mode as a design criteria which
optimizes suppression for the least attenuated mode.

For symmetric modes in the duct with the same liner on both sides, at Mach
0.0, the optimum admittance for the least attenuated mode is (in polar form)

BkH

(5.28,-38.7°) . (L)

wt

. . . +1i . . . .
Transforming this to an impedance (e l convention) design criteria, we get

Zopt

5C = (0.93 - 0.74i)n (5)

875



Although useful for preliminary design, the attenuation rate
of a single mode or even a pair of modes is not sufficient to predict attenua-
tion or to design optimum treatment for finite length ducts with .arbitrary
sources at higher n-values. In these cases, the impedance must be chosen to
maximize suppression for a particular combination of modes, and may turn out to
be nowhere near the classical Cremer optimum.

The assumption of uniform mean flow requires that a physically unrealistic
slip-flow condition must be postulated to occur at the wall surface. It can be
shown that the surface flow convection effect leads to an anomaly in the boun-
dary conditions, such that two different conditions can be obtained depending
on whether continuity of particle displacement or continuity of particle velo~
city is assumed to hold at the wall. Based on the analysis of Reference 4, the
current most widely accepted condition is that of particle displacement con-
tinuity. For this reason, and since it causes the more drastic effect of the
two conditions, particle displacement continuity is assumed in this study. The
most fortuitous choice of these conditions for any given flow, frequency, or
duct height is yet to be resolved.

The effect of flow on the modal maps is to cause a distortion of the BkH
magnitude and phase contours from the Mach 0.0 case. Since the propagation
constant K is a function of kH as well as vy, the eigenvalue relationships can
no longer be made independent of kH, and a separate mapping must be made at
each Mach number and value of n (S|nce n = kH/2m).

A branch point of the mapping of the complex function BkH on the complex
Y-plane is the point at which the derivative of BkH with respect to Y is zero.
Equation (2) was used to determine the location of the branch point for arbi-
trary values of kH and mean flow Mach number. The desired value of ¥ is the
root which corresponds to the branch point between first and second modal re-
gions for each case. These roots were extracted using a simple Newton-Raphson
iteration scheme. The branch points for the Mach 0.0 case were used as initial
values to provide accuracy in the fourth decimal place.

When the values of the eigenvalue at the branch points are determined, the
optimum admittance (or impedance) can be found from Equation (2) and the op-
timum suppression rate can be found from the axial propagation constant. Fig-
ures 1 and 2 show the dependence of the optimum specific resistance R and react-
ance X, respectively, on n with Mach number My as a parameter. The impedance
components have been divided by the n-value, which makes the Mach 0.0 curve a_
straight line with zero slope, that is, independent of n. Figure 3 shows the
optimum attenuation rate for each of the impedances as a function of n.

The optimum suppression rates appear to be independent of Mach number for
n-values higher than about 2, but diverge from the Mach 0.0 case below n = 2,
as the region of high suppression rates is entered. Higher optimum attenua-
tions can be obtained for propagation against the flow for these low n values
than for propagation with the flow.

In the low 1 regions, the optimum resistance undergoes a rather bizarre
behavior. For a given Mach number, there is an n-value below which the optimum
resistance tends to negative values. A negative resistance, or active, liner
is one which tends to generate energy, as opposed to a passive, positive resis-
tance liner which can only absorb energy. At first sight, this phenomenon
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appears to be physically unreasonable, possibly indicating a basic flaw in the
theory.

It must be kept in mind that the optimum impedance criteria to this point
has been based on the branch point criteria developed by Cremer. In the no-
flow or high n-value cases, this criteria is unambiguous, but for low n-values
it will be shown that the flow-induced distortion of the modal maps is so se-
vere as to cause significant changes in the nature of the problem. It will be
shown that, if one will admit the existence of active (negative resistance).
wall liners, two suppression criteria must be provided, one for passive liners
and one for active liners. The strange behavior is caused by the

1
< 2
(-n5)

factor in the particle displacement continuity boundary condition, when k/k
begins to get large in magnitude.

MODIFIED OPTIMUM CRITERIA FOR LOW n-VALUES

»

Choosing a Mach number of -0.4, modal maps of the lowest order symmetric
mode region were plotted for successively lower n-values, according to the
following list: )

Figure 4 n = 0.36
Figure 5 = 0.3
Figure 6 n = 0.15

Note in Figure 4 that the —909 phase lines have left the real and imagin-
ary y-axes and are converging on the branch point. The branch cut which de-
fines the region of passive impedance for the lowest order mode now consists of
just a short length of line of constant magnitude of BkH (IBkHI = 1.37), with
the rest of the cut being comprised of ¥90” phase lines: This n-value is just
above tge value for which the optimum impedance goes negative. In Figure 5,
the -90~ lines have passed through the branch point, which now has a phase of
less than -900, giving a negative resistance. The lowest order mode region has
become isolated from the second order mode region, and contains no branch point.
The optimum impedance for the lowest order mode is now defined as the point at
which the highest valued curve of constant attenuation touches the boundary of
the modal region.

At the branch point, a higher positive suppression is predicted than in
the modal region, in spite of the negative resistance. This implies that an
active liner would provide more suppression than a passive liner, if designed
with the branch point impedance components. This unexpected behavior may be
possibly understood in terms of the modal ''cut-off' phenomenon, for which modes
below their cut-off frequency decay exponentially in the duct. Apparently the
effects of cut-off are so strong that even an active impedance leads to strong
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decay in the presence of uniform flow.

At sufficiently low n, the modal regions reunite on the right-hand-side of
the real y axis, where a new branch point appears, as shown in Figure 6, pro-
viding a new optimum criteria. Figure 7 shows the revised optimum impedance
and suppression curves for Mach -0.4 and n = 2 where only passive liners are
allowed. The region between 0.20 < 1 < 0.36 is where the lowest order mode ex-
ists in isolation of the second mode. Note the substantial drop-off in optimum
attenuation below n = 0.36. Figure 8 shows the revised optimum resistance, re-
actance, and suppression curves for the Mach +0.4 case. Note the decrease in
suppression below n = 0.2.

CONCLUS IONS

The Cremer optimization theory for least attenuated modes has been modi-
fied to account for the effects of mean flow at low n-values. It is seen that
the branch point criteria no longer holds below certain critical n-values, and
the optimum passive liner impedance must be determined from the modal maps.
Revised optimum impedance and suppression curves have been presented for Mach
*0.4. In future studies, it would be useful to provide experimental verifica-
tion of the revised optimum criteria. In particular, investigation of the ac-

" tive liner concept might prove of practical value, if such a device can be
shown to exist. ’
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Figure 1.- Optimum resistance for lowest order mode as a function of n,
for various Mach numbers, based on Cremer optimum criteria.
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Figure 2.- Optimum reactance for lowest order mode as a function of 1,
for various Mach numbers, based on Cremer optimum criteria.
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Figure 3.- Optimum attenuation as a function of n for various Mach numbers
for lowest order mode, based on Cremer optimum criteria.
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Figure 4.~ Complex eigenvalue-admittance mapping for symmetric modes; Mach
-0.4; kH = 2.2619; (n = Q.36); Continuity of Particle Displacement.
Constant |BkH|, =---- Constant Phase (BkH).
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Figure 5.- Comblex eigenvalue-admittance mapping for symmetric modes; Mach
-0.4; kH = 1.885; (n = 0.3); Continuity of Particle Displacement.
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Figure 6.- Complex eigenvalue-admittance mapping for symmetric modes; Mach
-0.4; kH = 0.9425; (n = 0.15); Continuity of Particle Displacement.
Constant |BkH|, ----- Constant Phase (BkH).

881



_dg____ 40r
duct height "

P

_6 1 llllllll ~a [ I S M ]

.1 1 10
7

Figure 7.- Lowest order mode optimum suppression rate and impedances
as a function of n for passive liners, Mach -0.4.
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Figure 8.- Lowest order mode optimum suppression rates and impedances
as a function of n for passive liners, Mach +0.4.
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