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SUMMARY

The propagation of sound in a converging-diverging duct containing a quasi-
one-dimensional steady flow with a high subsonic throat Mach number is studied.
The behavior of linearized acoustic theory at the throat of the duct is shown
to be singular. This singularity implies that linearized acoustic theory is
invalid. The explicit singular behavior is determined and is used to sketch
the development (by the method of matched asymptotic expansions) of a non-
linear theory for sound propagation in a sonic throat region.

1. INTRODUCTION

Observations of a correlation between axial Mach number and attenuation of
sound radiated upstream from so-called sonic engine inlets have recently focus-
ed attention on the acoustic behavior of variable-geometry ducts (refs. 1 and
2). For, high-subsonic flows in these ducts, non-linear transonic effects be-
come of major interest. In the linear case, a fully three-dimensional theory
presents formidable computational difficulties, and a study of possible non-
linear effects is, of course, even more complicated. Thus, it is natural, in
undertaking such an effort, to restrict attention initially to a quasi-one
dimensional model: the simplest case likely to lead to results of some prac-
tical interest. Many earlier authors have studied linear quasi-one dimensional
duct acoustics (see refs. 2-6, for example), but, in general, these studies
have not been concerned with either the behavior or the validity of the lin-~
erized solution as the axial Mach number approaches unity.

The present paper presents some results of an ongoing analytical study of
quasi-one dimensional acoustics in converging-diverging ducts with high-subsonic
throat Mach numbers. The problem is inherently nonlinear, much like steady
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transonic flow theory, but the nonlinear behavior occurs only in a narrow re-
gion surrounding the throat section. Linearized theory yields a singular solu-
tion in this region, and the current study is employing the method of matched
asymptotic expansions to determine the proper solution. However, in order to
apply any asymptotic method to correct a solution which is not uniformly wvalid,
it is necessary to know in detail the singular behavior of the defective solu~
tion.

Thus, it is the major purpose of this paper to study the nature of the
singularity of linearized theory at a sonic throat. To correct the defect
using asymptotic methods requires an intricate analysis; the problem depends
crucially on two small parameters, and the nonlinear correction to the defect
in linearized theory involves a distinguished limit for small values of these
parameters. The results obtained here are necessary preliminaries in this
analysis. However, they also are of independent interest and do not appear to
have been discussed previously.

The analysis presented in sections 3 and 4 naturally suggests that lin-
earization is inappropriate in a small region near the throat of the duct. The
detailed results concerning the singular behavior of the linear solution lead
to an appropriate stretching of the space variable and a corresponding inner
expansion of the dependent variables which does not suffer a singularity at the
throat. In the final section of this work the equations describing this immer
nonlinear theory are presented, although the details of the expansion process
are omitted for brevity. The solution of- these nonlinear equations is the
subject of current research and will appear in subsequent publications.

2. FORMULATION AND ACOUSTIC PERTURBATION

We consider the propagation of sound in a variable area duct carrying a
homentropic inviscid ideal gas flow. The acoustic wavelength is assumed suffi-
cently large, and the area variation sufficiently slow, that the field can be
described by the equations of quasi-one dimensional gas dynamics (ref. 7):

- ce e e i
e, *tup +ou +ou(A/A) =0
- 2.1
c U, + uu_ + (1/p) P =0
ﬁ/EY = constant = B

In equations (2.1) p, p, and u are the total fluid pressure, density, and axial
velocity, and A(x) is the duct cross sectional area. The dimensionless inde-
pendent variables x and t are measured in units of L and L/cg respectively,
where L is a characteristic length associated with the area variation, and cg
is the stagnation value of sound speed in the gas. The geometry of the problem
i§ as indicated in figure 1 where the origin of x corresponds to a throat:

A’ (0)=0.
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If the velocity and density in the basic steady flow in the duct are de-
noted by U(x) and R(x) respectively, then from (2.1),

UR' + RU' + RUA'/A) = 0 , and UU' + yBRY"2R' = 0 (2.2)

where the energy relation in equations (2.1) has been used to eliminate the
pressure from the system. We intend to seek solutions to the system (2.1) which
are small perturbations about the steady values U and R, and it is convenient at
the outset to define dimensionless variables u(x,t) and ¢ (x,t) according to

u(x,t) = U(x)[Hulx,t)] , and D(x,t) = R(x)[1+p (x,t)] (2.3)

Substituting (2.3) into (2.1) and employing the steady relations (2.2) yields
the system of equations on u and p in the form

G, + M[ (I+wp_+(+p)u ] = 0 o
2.

G%ut + M(l+u)ux+(l/M)(l+p)Y—2pX+(M'/G)[(l+u)2—(l+p)Y—l] =0

In equations (2.4), M(x) is the flow Mach number U(x)/c(x), c(x) is the speed
of sound in the steady flow (c2=yBRY~1l), and

GG = (e /o) =1+ (-DM?/2 2.5)

the latter expression following from the Bernoulli relation implied by the sec-
ond of equations (2.2). Equations (2.4) are equivalent to those used by Cheng
and Crocco in reference 3.

We introduce a small dimensionless parameter §, which measures the strength
of the source of sound in the duct, and is assumed given from the boundary con-
ditions associated with the system (2.1). Then u(x,t)=u(x,t;8), p(x,t)=(x,t;8)
which we assume to have expansions for §<<1 of the form

u = Su(x,t) + ... . p = 6r(x,t) + ... (2.6)

Substituting (2.6) into (2.4) and neglecting all but first-order terms we obtain
the linearized acoustic equations:
1
G’r, + M(r_+u_ ) =0
t X 'x 2.7)

G%“t + M+ (1/M)r +0f' /6)[2u- (y-1)r] = 0

Equations (2.7), subject to appropriate boundary conditions, generally must
be solved numerically because of their variable coefficients. It is the purpose
of the present work to amalyze the behavior of solutions to (2.7) in the vicin-
ity of the throat of the duct when the throat Mach number M(0) is close to unity.
It is well known that the system (2.7) is singular at any point where M(x)=1.
This can be seen most simply by subtracting the two equations; the resulting
equation has no uy term, and the coefficient of ry becomes (Mz—l)/M, which
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vanishes as M»1. This can only occur at x=0 for the duct of Fig. 1. The sin-
gularity at x=0 implies that, in general, the acoustic quantities r and u will
be singular when the flow is sonic there. Thus, as we shall see in what follows,
r and 1 generally become arbitrarily large near x=0 as M(0) approaches unity,
thereby violating the assumptions made in deriving (2.7) that u, u_, r, and ry
all remain bounded. X

As a result of the singular behavior of the system (2.7) for high subsonic
Mach numbers in the throat region, linearized acoustic theory is inadequate to
describe sound propagation in the duct; we must re-formulate the perturbation
scheme to take into account nonlinear terms in the system (2.4) which were neg-
lected in (2.7). However, in order to make progress in this direction it is
necessary to know precisely the nature of the singular behavior of the solutions
# and r to (2.7). This behavior has been recognized, but never resolved, in
previous treatments of the system (2.7) (refs. 4,5). 1In section 4 of this paper
we construct an analytical general solution for the linear system (2.7) which
displays explicitly the nature of its solutions at x=0 when M(0) is near unity.
Before constructing this solution, however, we must discuss the behavior as
M(0)+1 of the solutions to the steady flow equations (2.2) in some detail in
the following section.

3. BASIC STEADY FLOW

As we have seen, the acoustic equations of motion are singular at x=0 when
M(0)=1l. It is useful, therefore, to introduce a parameter e¢=1-M(0) into our
discussion and to comnsider both the basic steady flow quantities and the acous-
tic quantities as functions of £; i.e., U)=U(x;e), n{x,t)=u(x,t;e), and so on.
The parameter € can be considered as having been introduced through the un-
stated boundary conditions on the steady flow.

The elementary equations of quasi-one dimensional flow (2.2) are discussed
in detail in numerous texts; for example, a particularly comprehensive treat-
ment is given by Crocco (ref. 8). It is straightforward to-express any of the
fluid quantities in terms of the duct area A(x) or, equivalently, in terms of
the Mach number M(x;e). However, the behavior of M explicitly as a function of
x and € does not, to our knowledge, appear in the literature, and it is the pur-
pose of the present section to determine this.

We begin with the well-known relation implied by equation (2.2),

M'= -MGA'/(1-M%)A (3.1)

which becomes, after integration,
a5 (x) [1+(y-1)M% (0) /2] = M5 (0) [1+(y-1)M? (x) /2] (3.2)
where, in equation (3.2) we have defined,

A(x)/AQ0) = a(x), s = 2(y-1)/(y+l) (3.3
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Figure 2 shows a sketch of typical integral curves of equation (3.1) assuming
A''(0)#0. We are interested in a curve such as AB in figure 2, for which M re-
mains less than unity for all x. Since 1-M(0)=e¢ is assumed small it is natural
to seek an expansion of M(x;e) in the form

M(xse) = My(x) + M () + €2M2(x) ... L (3.4)

where M;(0)=1. Substituting (3.4) into (3.2) and equating like powers of £ we
find that Mp(x) must satisfy

(r+1a®MS /2 = T+ /2 (3.5)
while Mj (x)=0, -and
M, (x) = - 2M[L+ (1342 /217 () (-4 %) | (3.6)

Obviously, as can also be inferred from the integral curves of figure 2, the
expansion (3.4) is not uniformly valid near x=0: the third term is as large as
the first whenever 1-Mp(x) is as small as €.

It remains to find Mo (x)=M(x;0) in terms of x; i.e., to solve equation
(3.5).  We express a(x) as a power series

a(x) =1 + ax2 + ...

where we assume a=A''(0)/2A(0)#0. Then MO(x)'cén be determined after some
algebra in the form:

My(x) =1 “t+Da/2) x| + ... (3.7)

Thus, the leading term of M(x;c) behaves as a piecewise linear function of x
near the throat so long as a#0. If a=0 we find.that My(x) is smooth at x=0,
but this case will not be discussed further in this paper.

4. SINGULARITY OF THE ACOUSTIC SOLUTION

We shall now analyze the acoustic equations (2.7) in order to exhibit ex—
plicitly the singular behavior of their solutions in the vicinity of the throat
as M(0) approaches unity. Since the steady flow depends on the parameter
g=1-M(0), the coefficients in the acoustic equations and hence the acoustic
quantities u and r are functions of €. For e<<1 we look for solutions of the
acoustic equations in the form

r=r0(x,t)+€rl(x,t)f cee u=u0(x,t)+eu1(x,t)+ v (4.1)

Inserting equation (4.1) into equation (2.7) and using expansion (3.4) for the
coefficients, we get, after neglecting higher order terms,
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5 -
G0 ro + MO(rO +u0w) = 0

t X X (4.2)
1
=2 ! - — ==
Gy uot + Mguy + A/MPT, +M'/6) Quy-(v-1ry) = 0
be X
We recall that My(x) is any Mach number distribution which yields a sonic velo-
city at the throat and a subsonic velocity throughout the remainder of the duct.

These equations are singular at x=0 since My(0)=1 *, This is most directly
seen by subtracting the two equations.

Analytical solutions of the system (4.2) cannot be found for arbitrary
Mgp(x) and arbitrary time dependence. However for harmonic time dependence the
system can be reduced to a system of ordinary differential equations with a
singular point at x=0 and no other singular points within the duct. - The nature
of this singular point will determine the singular behavior in the time harmon-
ic acoustic quantities. Explicit analytical results concerning the exact
nature of the singular point and the dependence on Mg(x) or Ugp(x) can be found
by use of series solution methods for linear ordinary differential equations.
We do not present the general results of this analysis in the current paper.
Instead, we shall illustrste the singular behavior of a general solution of the
system (4.2) corresponding to a specific steady flow. We assume that the time
dependence is harmonic and that the steady velocity distribution is given by a
piecewise linear function of x:

Uy () = c*(1-K|x|) |x| < (1/K) (4.3)
where c¥* is the critical sound speed and K is a positive constant. This velo-
city distribution corresponds to a reasonably shaped duct with A'(0)=0 and
A''(0)#0. Equation (3.7) leads us to observe that for any duct with A'(0)=0
and A'' (0)#0, Up(x) will be given by equation (4.3) for x sufficiently close to
the throat. Thus results of this section will be generally applicable to the
throat region of many ducts of practical interest. The Mach number distribu-
tion associated with equation (4.3) is

5

M G = A-K|xDIr+1)/2 - (-1) AK|x])?/21 (4.4)

A general solution of the system (4.2) with Mg(x) given by equation (4.4)
can be constructed by judicious use of an analytical solution found by Crocco

and Cheng (ref. 3). In effect, they obtained a genmeral solution to the system
(4.2) with

r@(x,t) = ry(x)exp (iQt) , uo(x,t) = 1y (X)exp (i0t) (4.5)
where Q = BK(2/7+1)li and

Uy (x) = c*(4Kx) , - (1/K)<x (4.6)

*They are also singular since My' has a jump discontinuity at x=0. This does
not affect the dominant singular behavior in the solution and would not be pre-
sent if we had chosen A'' (0)=0.
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Their treatment involves introduction of the new independent variable z=(1+Kx)2.
Inserting equations (4.5) and’(4.6) into the system (4.2) and introducing z and
o(2)=rg(x(z)), v(z)=ug(x(z)) we obtain, after elimination of v(z),

z(1-2z)d20/dz2-2[1+iB/ (y+1) 1z do/dz - [1B(2+iB)/2(y+1)]o=0 4.7

and
v(z) = [(y-1+iB)o-(y+1) (1-z) do/dz]/(2+iB) (4.8)

Equation (4.7) is a hypergeometric equation with complex coefficients. Two
linearly independent solutions are

0,=F(a,b,d;1~z) and 0,=(1-2)""IF(-b,-a,2-d;1-2) | (4.9)
where

d =2+ 2iB/(y+l) , atbtl =d , ab = iB(2+iB) /2 (y+1) (4.10)
and F is the standard hypergeometric function (ref. 9).

Since the velocity distribution used by Cheng and that in equation (4.3)
are identical for x<0, equation (4.9) provides a general .solution to our prob-
lem for x<0. Of course, Cheng's solution for x>0 corresponds to a supersonic
steady flow and is not relevant to our discussion. In order to obtain a solu-
tion when Ug(x) is given by equation (4.3) for x>0 we observe that the acoustic
equations in this case reduce to equations (4.7) and (4.8) if B is replaced by
~B. Thus we have found a general solution to the acoustic equation correspond-
ing to Ug(x) given by equation (4.3) for both x<0 and x>0.

The singularity at x=0 can be found explicitly by examining the solutions
031 and 0y of equation (4.9) and the corresponding functions when B is replaced
by -B. Clearly oj is analytic at z=1(x=0) and the singular behavior is due to
02. The leading term in 09 for z near unity is given by

oz~(1—z)1“dF(a,b,d;0) = [cos(qtn(1-z))F i sin(qin(l-2z))1/(1-2) (4.11)

where q=28/(y+1l) and the - and + signs hold for x<0 and x>0, respectively (ref.
9). For general acoustic boundary conditions both oy and 09 appear in the
acoustic solution, and the amplitudes of the acoustic quantities will approach
infinity as x~1 when x*0. TIn addition their phases have an oscillatory dis-
continuity at x=0. Figure 3 shows an example typical of the behavior of the
acoustic quantities (pressure, in this case) for small e. The rapid rise in
the viecinity of the throat is indicative of the developing singularity in the
linearized acoustic quantities as ¢»0. For the typical case shown a pressure
wave of magnitude unity was incident from the left on a converging-diverging
section situated in an otherwise uniform duct.

Since any duct with a tnroat at which A''(0)#0 will have a locally (near

x=0) piecewise linear steady velocity distribution, the acoustic quantities in
such a duct will have the singular behavior given in equation (4.11). 1In this
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circumstance the linear theory governing expansion (2.6) fails for any nonzero
§, no matter how small. Nonlinear effects become appreciable in the throat
region. In the next section, an approach is outlined which applies the method
of matched asymptotic expansions to study the nonlinear effect in the region
near the throat.

5. NONLINEAR PERTURBATION EQUATIONS

In this section we set forth in summary the theory describing sound propa-
gation near the throat as M(0)>l. We regard the expansion indicated by equa-
tions (2.3) and (2.6) as an outer expansion valid as 60 for fixed values of x,
t, and e; i.e.,

Ux:;e)[1 + Sulx,t:e) + ... ]

u(x,t3e,8)
(.1)

p(x,t;e,68) = R(x;e)[1 + 6r(x,tze) + ... ]

From the details of the previous section we know that in general u and r become
arbitiarily large in the limit as x and e¢ approach zero, being expected to grow
as x -+.

_ Therefore we introduce an inner variable X=[ (y+1)/21%(x/e) and assume that
u and p behave asymptotically as e>0 with X, t fixed as:

X, t;e)

Ui(X;e)[l+€ui(X,t) + ...]
_ ~ (5.2)

p

s1x,t3e) = REGe) [1rert (X, 6) + ... 1

where ¢ is assumed to be a function of § which vanishes as 6+0 and is to be
determined by asymptotic matching of (5.2) with (5.1). 1In addition we expand
the steady flow quantities in the form:

Ui(X;e)=Ué(X)+eUi(X)+..., Ri(X;a)=Rg(X)+€Ri(X)+... (5.3)

Equations (5.3) could be combined directly with (5.2) as one inner expansion,
but we find that it simplifies the considerable algebra involved to retain the
dimensionless perturbations p and r and to multiply the separate expansions as
indicated in equation (5.2).

The steady flow quantities in equation (5.3) are known if the correspond-.
ing expansion of the Mach number is known. We assume an expansion for M of the
same form as (5.3), substitute this expansion into equation (3.1), transform to
the inner variable X, and solve the successive differential equations which
result. After matching with the outer expansion (3.4) we find

M(x;e) = Mi(x;e) =1-¢ (l+aX2)lﬁ + ... (5.4)

where a=A"'(0)/2A(0) as before. Using (5.4) we find the coefficients in the
expansions (5.3) by use of the steady flow relations between M and U or R.
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Next we carry out the same process on system (2.4) using u=epl+ ...,
p=erl+..., and substituting equation (5.4) in the coefficients. This yields
the system of inner equations satisfied by ul and r? in the form:

n + [+ (1+aX%) ] My = _@(___2__%_ (ztn) =0
(1+aXx™) (5.5)

tx =0

where in equations (5.5) we have defined
z= G-y)(WHr)/4  and n = (y+1) (u-rh)/4

; Equations (5.5) are the nonlinear equations which, to first order in ¢,
govern sound propagation through a throat as the Mach number there approaches
unity. The lengthy details of solving the system will not be presented here.
However, .certain important conclusions can be made at this stage. The quanti-
ties n and ¢ are related to the Riemann invariants of system (2.4), n represent-
ing the upstream and ¢ the downstream propagating portions of the solution to
(2.4). Considerations of asymptotic matching between expansions (5.1) and (5.2)
lead to the conclusion that, to first order in €, T actually vanishes. Thus,

as is often argued from physical considerations, the lowest order nonlinear
effect of the sonic throat is on the upstream propagating waves alone.

A final observation which we make here is that matching comnsiderations
indicate that, in the distinguished limit implied by the inner expansion (5.2),
e is to be taken equal to §%. Hence we conclude that, given an acoustic source
strength &, nonlinear effects on sound arise for throat Mach numbers as far
away from unity as 6%. This would explain why marked sonic throat effects are
observed experimentally for throat Mach numbers as low as 0.75-0.8.
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Figure 1.- Sketch of typical duct geometry.

Figure 2.- Typical steady flow integral curves. Curve AB
is described by equations (3.4) and (5.4).
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Figure 3.- Typical behavior of linearized pressure magnitude
for high subsonic throat Mach numbers.
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