
ARRANGEMENT OF VORTM LATTICES 

Fred R. DeJarnette 
North Carolina State University 

SUMMARY 

A new method is developed for solving the lifting-surface equation for 
thin wings. The solution requires the downwash equation to be in the form of 
Cauchy integrals which can be interpreted as a vortex lattice with the posi- 
tions of the vortices and control points dictated by the finite sum used to ap- 
proximate the integrals involved. Lan's continuous loading method is employed 
for the chordwise integral since it properly accounts for the leading-edge 
singularity, Cauchy singularity, and Kutta condition. Unlike Lan, the spanwise 
loading is also continuous and the Cauchy singularity in the spanwise integral 
is also properly accounted for by using the midpoint trapezoidal rule and the 
theory of Chebychev polynomials. This techd;- yields the exact classical so- 
lution to Prandtl's lifting-line equation. The solution to the lifting-surface 
equation for rectangular wings was found to compare well with other continuous 
loading methods, but with much smaller computational times, and it converges 
:aster than other vortex lattice methods. 

INTRODUCTION 

The vortex lattice method has proven to be a useful technique for calcula- 
ting the aerodynamic characteristics of complete configurations as well as 
wings. In the conventional vortex lattice method (VLM), the planform is di- 
vided into a number of elemental panels, and a horseshoe vortex is placed at 
the local quarter-chord of each panel. The boundary condition is satisfied at 
the local three-quarter chord of each elemental panel (called control points) 
by requiring the flow to be tangent to the surface there. The strengths of the 
horseshoe vortices are determined by solving the matrix equation formed from 
the tangent-flow boundary conditions. Then, the aerodynamic characteristics 
are calculated by summing the results from each elemental panel. A complete 
description of the conventional vortex lattice method is given by Margason and 
Lamar in reference 1. 

Although reasonable results are obtained by the conventional VLM, Lan (ref. 
2) listed the following deficiencies: 1) The method used to compute the in- 
duced drag implies that the leading-edge thrust is distributed over the chord 
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i n s t e a d  of being concentra ted at  t h e  l ead ing  edge. 2)  The pred ic ted  p r e s s u r e  
d i s t r i b u t i o n  is  no t  a c c u r a t e  n e a r  t h e  l ead ing  edge. 3) The convergence of so- 1 
l u t i o n s  is slow wi th  r e s p e c t  t o  t h e  number of panels  used. I n  a d d i t i o n ,  t h e  
Kutta cond i t ion  is  no t  e x p l i c i t l y  s a t i s f i e d .  Hough ( r e f .  3) found some i m -  
provemen!. by using a 1 / L  l a t t i c e  width i n s e t  a t  t h e  wing t i p s .  

L m  ( r e f .  2 )  developed an ingenious method f o r  t h i n ,  two-dimensional a i r -  - 
f o i l s  by us ing t h e  midpoint t r a p e z o i d a l  r u l e  and t h e  theory of Chebychev poly- I 

no:nials t o  reduce t h e  downwash i n t e g r a l  t o  a f i n i t e  sum. This method g ives  t h e  
exact  l i f t ,  p i t c h i n g  moment, leading-edge s ~ x t i o n ,  and p r e s s u r e  d i f f e r e n c e  a t  
a f i n i t e  number of p o i n t s ;  and t h e  Kutta cond i t ion  i s  s a t i s f i e d  a t  t h e  t r a i l i n g  
edge. A more d e t a i l e d  d e s c r i p t i o n  is  given below. Lan a l s o  developed a quasi-  
vor tex  l a t t i c e  method f o r  f i n i t e  wings by us ing h i s  two-dimensional method f o r  
t h e  continuous chordwise v o r t e x  d i s t r i b u t i o n  but  a s t epwise  cons tan t  vor tex  
d i s t r i b u t i o n  i n  t h e  spanwise d i r e c t i o n .  The r e s u l t s  showed an improvement over  
those  c a l c u l a t e d  by t h e  convent ional  v o r t e x  l a t t i c e  method. 

This paper develops a new v o r t e x  l a t t i c e  method which uses  Lan's  continu- 
ous chordwise v o r t e x  d i s t r i b u t i o n  b u t ,  u n l i k e  Lan, a continuous spanwise vor tex  
d i s t r i b u t i o n  a l s o .  Although t h e  v o r t e x  d i s t r i b u t i o n s  a r e  continuous,  t h e  
rcethod i s  e a s i l y  i n t e r p r e t e d  a s  a v o r t e x  l a t t i c e  method i n  which t h e  arrange- 
ment of horseshoe v o r t i c e s  and c o n t r o l  p o i n t s  a r e  determined from t h e  f i n i t e  
sum used t o  approxin~ate  t h e  downwash i n t e g r a l  of l i f t i n g - s u r f a c e  theory.  I n  
o rder  t o  understand t h e  development of t h e  p resen t  method, Lan's  two-dimensional 
theory is  reviewed f i r s t ,  and then  t h e  p resen t  method is  app l ied  t o  P r a n d t l ' s  
l i f t i n g - l i n e  theory before  developing t h e  method f o r  l i f t i n g - s u r f a c e  theory.  

a spec t  r a t i o  

wing span 

wing chord 

s e c t i o n a l  l i f t  c o e f f i c i e n t  

s e c t i o n a l  moment c o e f f i c i e n t  about l ead ing  edge 

s e c t i o n a l  leading-edge t h r u s t  c o e f f i c i e n t  

f a r - f i e l d  induced drag c o e f f i c i e n t  

near - f i e ld  induced drag c o e f f i c i e n t  

wing l i f t  c o e f f i c i e n t  
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lift-curve slope, per radian except when ncted otherwi.ie 

wi g pitching moment coefficient about leading edge 

pitching-moment curve slope, per radiac 

leading-edge suction parameter 

wing leading-edge thrust coefficient 

far-field spanwise efficiency 

near-field efficiency factor, 

parameter defined by eq. (26) 

factor, cLL/c 
D , 

number of trailing vortices over whole wing span 

number of spanwise control points over whole span 

summational integer 

number of chordwise vortices and control points 

National. Aerospace Laboratory, Netherlands 

wing planform area 

vortex lattice method 

freestream velocity 

downwash velocity, referred to VW and positive upwards 

chordwise coordinate measured from leading zdge in direction of VW 

sectional and wing aerodynamic center locations, respectively 

spanwise coordinate, positive to the right 

vertical coordinate of mean camber line 



a angle of attack 

Y nondimensional circulation per unit chord 

l- circulation 

AC difference between lower and upper pressure coefficients (AC = 2y) 
P P 

0 transformed chordwise coordinate, see eq. (2) 

@ transformed spanwise coordinate, see eq. (12) 

Svbscripts : 

i chordwise control point, see eq. (7) 

j spanwise control point, see eq. (15) 

k chordwise vortex position, see eq. (6) 

R spanwise trailing vortex position, see eq. (14) 

P evaluated at spanwise position 41 = pr/M 
P 

LAN'S TWO-DIMENSIONAL THEORY 

For thin airfoils, the downwash equation is 

The integral on the right side is of the Cauchy type. Transform the Y coordi- 
nate by 

x/c = (1 - cos 8 ) / 2  (2) 

and use the following result from airfoil theory (ref. 4) 

IT 

dOl 1 cos el - cos 0 = 0 (3) 

0 

to write eq. (1) as 



~ ( 0 ~ )  s i n  dB1 [y(0,) s i n  5 - y(0)  s i n  O]dB1 

i - L /  2n cos - cos 0 A] 2TT cos el - Cos €l 
( 4 )  

0 0 

Lan ( r e f .  2 )  used t h e  theory of Chebychev pol.ynomials t o  show t h a t  

N 
- N ~  f o r  i = 0 

1 f o r  i f 0,  N 
cos ek - cos  0  k=i i 

when t h e  v o r t e x  p o s i t i o n s  a r e  

and t h e  c o n t r o l  p o i n t s  a r e  loca ted  a t  

Then t h e  i n t e g r a l  i n  eq. (4) can be reduced t o  a f i n i t e  sum by us ing t h e  mid- 
po in t  t r a p e z o i d a l  r u l e  ( r e f .  5) and eq. (5) t o  o b t a i n  

N y s i n  Ok - yi s i n  0  
w '--- k i 
i 2TT * k=1 1 c o s e  -case 

k i 

N 
y(0)  s i n  0  , i = 0 

N yk s i n  0  
= - -  I I 2 N  k = l  C O S  Bk 

, i f  0 , N  (8) 

N - 1 i m  y(8)  s i n  0  , i = N 

However, 

l i m  y (0 )  s i n  0  = 4 CS 
0-4 

where C is t h e  leading-edge s u c t i o n  parameter and s i n c e  t h e  Kutta cond i t ion  re-  
q u i r e s  ?hat  y (n)  = 0, 

l i m  y ( 0 )  s i n  0 = 0 
8-m 

Unlike t h e  conventional vor tex  l a t t i c e  method, t h e  Cauchy s i n g u l a r i t y ,  
leading-edge square-root s i n g u l a r i t y  and t h e  Kutta cond i t ion  a r e  p roper ly  ac- 
counted f o r  i n  t h i s  method. Equation (8) can be solved wi th  i # 0 t o  o b t a i n  



t h e  N va lues  of y and then t h e  leading-edge s u c t i o n  parameter can be  computed 
k  ' 

by using eq. (8) wi th  i = 0 ( c o n t r o l  p o i n t  a t  t h e  l ead ing  edge).  Figure  1 il- 
l u s t r a t e s  t h e  p o s i t i o n s  of t h e  v o r t i c e s  and c o n t r o l  p o i n t s  by t h e  " semic i rc le  
method" f o r  N = 2 .  With only  one v o r t e x  (N = I ) ,  t h e  exac t  l i f t  and leading-  
edge s u c t i o n  a r e  ob ta ined ,  and t h e  Kutta cond i t ion  is s a t i s f i e d .  With two o r  
more v o r t i c e s  t h e  exact  p i t c h i n g  moment is  obtained i n  a d d i t i o n  t o  t h e  above 
p r o p e r t i e s  and t h e  c a l c u l a t e d  va lues  of yk a r e  exac t .  It can be shown t h a t  t h e  
remarkable accuracy of t h i s  method i s  due t o  eq. ( 5 ) ,  which is  s i m i l a r  t o  t h e  
i n t e g r a l  r e s u l t  given by eq. (3) and used i n  exac t  t h i n  a i r f o i l  theory.  

PRkWTL ' S LIFTING-LINE THEORY 

Before a t t a c k i n g  t h e  l i f t i n g - s u r f a c e  equat ion,  t h e  p resen t  method w i l l  be 
developed f o r  P r a n d t l f s  l i f t i n g - l i n e  equat ion t o  compare t h e  spsnwise l i f t  d i s -  
t r i b u t i o n  wi th  t h e  c l a s s i c a l  s o l u t i o n  ( r e f .  4 ) .  The l i f t i n g - l i n e  equat ion i s  
given by r e f .  6 ,  

This equat ion a l s o  has  a  Ceuchy i n t e g r a l  on t h e  r i g h t  s i d e ,  and thus  Lan's  
a i r f o i l  technique is  a p p l i c a b l e .  Transform t h 2  spanwise coord ina te  by 

and r e p l a c e  t h e  downwash i n t e g r a l  i n  eq. (11) wi th  t h e  midpoint t r apezo ida l -  
r u l e  summation t o  g e t  

This equat ion r e p r e s e n t s  t h e  downwash due t o  M t r a i l i n g  v o r t i c e s  of s t r e n g t h  
-(dT/dml) II (TIM) loca ted  a t  

with c o n t r o l  p o i n t s  loca ted  a t  



1 Now t h e  convent ional  v o r t e x  l a t t i c e  arrmgement  is  shown i n  f i g u r e  2*, whereas 
t h e  p resen t  arrangement i s  shown i n  f i g u r e  3. Note i n  p a r t i c u l a r  t h a t  t h e  t i p  
v o r t i c e s  extend t o  t h e  wing t i p  i n  t h e  convent ional  method, whereas eq. (14) 
determines them t o  be i n s e t  ( see  f i g .  3 ) ,  which agrees  wi th  Hough's r e s u l t s  
( r e f .  3) . 

Since (dl'/dgl) i s  needed i n  eq. (13), it is  convenient t o  r e p r e s e n t  t h e  
c i r c u l a t i o n  by ~ultl!opp's i n t e r p o l a t i o n  formula 

where 

Equation (16) f ;  S a s d  on t h e  fol lowing o r thogona l i ty  p roper ty  ( r e f .  7) 

S u b s t i t u t e  eq. (16) i n t o  eq. (13) and then  t h e  downwash becomes 

1 
M M-1 M - l s i n n $  n c o s n $  

w " -  R 
2 I- cos rnP - cos 4 (19) 

j v M b R-1 p = l  n = l  R j 

However, t h i s  r e s u l t  can be s i m p l i f i e d  by us ing eq. (5) t o  d e r i v e  t h e  important 
summation below 

M cos n'gR T s i n  n, - - j 
LL I cos , - cos @ ~ = l  R j s i n  $ 

j 

This equat ion i s  s i m i l a r  t o  t h e  fol lowing i n t e g r a l  r e s u l t  used i n  t h i n  a i r f o i l  
and l i f t i n g - l i n e  ana lyses  ( r e f .  4 )  

71 
cos n, 

1 d'l n s i n  n$ - \ cos - cos 4 s i n  4 
0 

When eq. (20) is  used i n  eq. (19) ,  t h e  downwash reduces t o  

* I n  some conventional techniques  t h e  spanwise l eng th  of each v o r t e x  i s  uniform, 
but it  is  repor ted t o  have l i t t l e  e f f e c t  on t h e  r e s u l t s .  

307 



F i n a l l y ,  s u b s t i t u t e  eq. (22) f o r  t h e  downwash i n  eq. (11) and apply  t h e  r e s u l t -  
i n g  equat ion a t  t h e  spanwise l o c a t i o n s  mj(j  = 1, ..., M-1) t o  o b t a i n  a  matr ix  
equat ion f o r  t h e  (M-1) va lues  of r . Then, t h e  l i f t ,  p i t c h i n g  moment, and in- 
duced drag can be c a l c u l a t e d  by re$ucing t h e  spanwise i n t e g r a l s  t o  a  f i n i t e  sum 
through t h e  midpoint t r a p e z o i d a l  r u l e .  However, t h e  midpoint t r a p e z o i d a l  r u l e  
g ives  e x a c t l y  t h e  same r e s u l t  f o r  t h e  spanwise i n t e g r a l s  a s  t h e  i n t e g r a l  i t s e l f  
when eq. (16) is  used f o r  r .  To prove t h i s  a s s e r t i o n ,  consider  t h e  spanwise 
i n t e g r a l  f o r  t h e  l i f t .  Using eq.  ( l 6 ) ,  t h e  exact  i n t e g r a l  r e s u l t  i s  

b/2  

I IT M- 1 C v - = -  
L cob b  T ~ Y  = 1 r P s i n  3 P 

p = l  -b/2 

whereas t h e  midpoint t r a p e z o i d a l  r u l e  g i v e s  

which is t h e  same a s  t h e  exact  i n t e g r a l  r e s u l t  above. I n  ob ta in ing  t h i s  last 
r e s u l t ,  t h e  fol lowing o r thogona l i ty  proper ty  was app l ied  

The i n t e g r a l s  f o r  t h e  induced drag a r e  handled i n  a  s i m i l a r  f ash ion .  

The remarkable f e a t u r e  of t h e  p resen t  method i s  t h a t  t h e  r e s u l t s  a r e  iden- 
t i c a l  t o  t h e  c l a s s i c a l  s o l u t i o n  of P r a n d t l ' s  l i f t i n g - l i n e  equat ion when a  
f i n i t e  number c f  terms i.s used i n  t h e  Four ie r  s e r i e s  f c r  I' ( r e f .  4 ) .  The suc- 
cess  of t h e  p resen t  method is  a t t r i b u t e d  t o  t h e  l o c a t i o n  of t h e  spanwise vor- 
t i c e s  and c o n t r o l  p o i n t s ,  t h e  summational r e s u l t  of eq. (20) ,  and t h e  accuracy 
of t h e  midpoint t r a p e z o i d a l  r u l e  f o r  t h e  spanwise i n t e g r a l s .  

Figure 4 i l l u s t r a t e s  t h e  convergence of t h i s  method compared wi th  t h e  con- 
v e n t i o n a l  VLM f o r  C h  of r e c t a n g u l a r  and e l l i p t i c a l  planforms wi th  an  aspec t  
r a t i o  of 2n. P r a n d t l ' s  l l f t i n g - l i n e  theory r e q u i r e s  t r a i l i n g  v o r t i c e s  and 
spanwise c o n t r o l  p o i n t s ,  but  no chordwise c o n t r o l  p o i n t s  a r e  needed because t h e  
theory assumes t h e  downwash is cons tan t  i n  t h e  chordwise d i r e c t i o n .  Therefore ,  I 

t h e  c o n t r o l  p o i n t s  a r e  placed on , ~ l e  "bound" vor tex  f o r  both  methods. I n  t h i s  
way, t h e  accuracy of t h e  spanwise v o r t e x  arrangement can be t e s t e d  without t h e  
in f luence  of t h e  l o c a t i o n  of chordwise c o n t r o l  p o i n t s .  Figure  4  shows t h a t  t h e  



conventional VLM converges slowly and C L ~  does not appear to approach the cor- 
rect limit when the curve is extrapolated to an infinite number of trailing 
vortices, M*(l/M+O), On the other hand, the present method converges very 
quickly and approaches the correct limit. As in the classical solutions, only 
one horseshoe vortex (M=2) is needed to obtain the exact Cb for the elliptical 
planform in Prandtl's lifting-line theory. Figure 5 illustrates the effect of 
the nunber of trailing vortices on the spanwise efficiency factor used in the 
induced drag. Here again, the co~~ventional VLM converges slowly and does not 
appear to approach the correct limit, whereas the present method converges 
quickly and approaches the correct limit. 

LIFTING -SURFACE THEORY 

For simplicity, the present method is developed here for rectangular wings. 
The downwash equation from lifting-surface theory is usually given by one of 
the two following integrals (ref. 6) 

Equation (23) contains the Mangler-type integral, and therefore, is not suitable 
for the present method. Equation (24), however, contains Cauchy-type integrals 
and is therefore in the form to apply a combination of Lan's two-dimensional 
method for the chordwise integration and the lifting-line method developed above 
for the spanwise integration. Note that the integrand of eq. (24) represents 
the downwash at (x,y) due to half of a horseshoe vortex as shown below. 



With y = -b cos $12 and xbc = (1 - cos 8)/2, replace both integrals in eq. (24) 
with the midpoint trapezoidal-rule sum to get 

where 

2 
J(cr s ok - cos oil2 + A (COS m, - cos mi) 2 

Kifk, 5 1 + cos ek - COS 8 i 
The control points are located at 

in 8, = , i = 1 . N (chordwise) 

and 

- - ,  j - 1 ,  m j  M . . . , M-1 (spanwise) 
and the "joint" in the horseshoe vortices are located at 

8 = 
k 

(2k - , k = 1 . . . , N (chordwise) 2N 

and 

(21 - 1)n 
$, = 2M , R = 1, . . . , M (spanwise) 

# 

where Yp,k 'epresents the unknown circulations per unit chord at 8k and mp = ~TT/M. 
Substitute eq. (31) into eq. (25) to obtain the final f ~ r n  of the downwash as 

- TTC M N M-1 M-1 n sin n@ cos n$R Ki sin Ok 
C W = -  2 yp,k (cos @& - cos (32) 

"j 2bM N R=l k=l p-1 n= 1 
I 
I 
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The positions of the horseshoe vortices and the control points are illustrated 
in figure 6 by the "semicircle method" for two chordwise vortices (N=2) and 
four trailing vortices (M=4). As in eq. (16), represent the spanwise variation 
of yk(@), at the chordwise position ek, by Multhopp's interpolation formula, 

M-1 M- 1 
'Y,($> = M 1 Y ~ , ~  sin n$ sin n$ 

~'1 n=l P 



The tangent-flow boundary condition f o r  t h i n  wings requi res  t h a t  

e 

where zc(x,y) is the  shape of the  mean camber l i n e .  The N(M-1) val.t~es of yp,k 
a r e  ca lcu la ted  by solving t h e  matrix equation formed by applying r.q. (32) f o r  
i # 0 a t  the  chordwise and spanwise cont ro l  po in ts  given by eqs. (27) and (28). 
Then a f t e r  yp,k is ca lcu la ted ,  the  (M-1) leading-edge suc t ion  parameters 
CSj can be computed by successively applying eq. (32) with i - 0 (cont ro l  point 
a t  the  leading edge) a t  t h e  spanwise pos i t ions  j = 1, ..., M-1. Regardless of 
t he  number (N) of chordwise vo r t i ce s  used, t he re  is always a can t ro l  point  a t  
t he  t r a i l i n g  edge which s a t i s f i e s  t h e  Kutta condi t ion,  and another con t ro l  point  
a t  t he  leading edge which gives  t h e  leading-edge suc t ion  parameter, i f  desired.  

The sec t iona l  and wing aerodynamic c h a r a c t e r i s t i c s  may now be  ca lcu la ted  
by using the  midpoint t rapezoida l  r u l e  t o  reduce t h e  i n t e g r a l s  t o  f i n i t e  sums, 
a s  shown below ( for  rectangular  wings) 

51 
N 

(Cm)p 
= - y ( ) xl dxl = - - 

2 P 1  1 Y ~ , ~  ( 1  - cos Ok) s i n  Ok 
C 

0 
2N k = l  

b/2 
II 

M-1 
% =  c m c 2  dy/Sc p=1 1 (cmlp s i n  4 p 

-b/2 



The spanwise loading can be made coniri~uous by eq. (31), and the chordwise 
Lading can also be made cortinuous by fitting CS and yj,k to the chordwise 
loading functions for thin airfoil theory (ref. 4 3 .  

RESULTS FOR RECTANGULAR WINGS 

For one horseshoe vortex and one control point (N=l, W2), the present 
method yields 

These results give the correct limit as 4 0 ,  but just as Lan found for airfoils, 
at least two chordwise vortices are needed to get an accurate pitching moment. 

Table 1 gives a detailed comparison cf the results of the present method 
with those of several other methods f o r  a flat A a 2 rectangular wing. The 
methods chosen for cornpartson are the cantinuous loading method of the National 
Aerospace Laboratory of the Netherlands (mR) presented in ref. 8, Lan's quasi- 
vortex lattice method (ref. 2), the conventional vortex lattice method of 
Margason and Lamar (ref. l), and Wagner's continuous loading method (see ref. 2). 
In the NLR method (M-1) spanwise loading functions are applied but 8M spanwise 
integration points are used. 'rherefore, :he results from this method are used 
as a base for comparison purposes. Table 1 shows that the present method yields 
more accurate overall aerodynamic characteristics than either the conventional 
VLM or Lan's quasi-vortex lattices. This table also shows that the spanwise 
variation of the sectional lift coefficient compares withia four significant 
figures to those of the NLR method. The spanwise variation of the sectional 
aerodynamic center also compares well except near the wing tip. When the number 
of chordwise vortices was increased from N = 4 to N = 6 in the present method, 
these differences decreased considerably. Figure 7 compares the present method 
with the NLR method for the chordwise loading at midspan on this same A = 2 
wing. Again, the results compare quite well. 

The computational time required for the results in Table 1 was 22 minutes 
for the NLR method on a CDC 3300 computer; Lan's method required one dnute on 



the Honeywell 635 computer; Wagner's method used about three ~inutes: and 
the present method required less than ten seconds on an IBM 376,'165. Therefore, 
the present method is as economical as the VL,M for the same number of vortices, 
but it is generally more economical when one considers that a smaller number of 
vortices can be used to achieve the same accuracy as the VLV. 

L 

The effect of the vortex lattice arrangement on the con-qergenca of the 
lift-curve slope is presentzd in figure 8 and compared with the conventional 
VLM for flat rectangular wings with A = 2, 4.5, and 7. This figurr illustrates 
again the slow convergence of t.he conventional VLM and the rapid convergence of 

4 the present method. For all three wings, the present method gives good ac- 
curacy with only two chordwise vortices, but more spanwise vortic~s are needed 
for the A = 7 wing ( d l 2  " 10) than the A = 4.5 wing (~/2 = 5) or A = 2 wing 
(M/2 - 2). Results for the pitching moment, aerodynamic center location, and 
induced drag were found to converge even faster than the lift-curve slope, 
therefore they are not presented. 

The Prandtl-Glauert rule can be easily applied to the present method to 
include subsonic compressibility effects. 

APPLICATIONS TO OTHER CONFIGURAIIONS 

Flaps and ailerons may be added tc the wing by using an approach somewhat 
similar to that of Lan (ref. 2). For the chordwise integration, the interval 
from the leading edge of the wing to the flap leading edge is transformed into 
[O,n] by the "semicircle method", and the interval from the flap lead~ng edge 
to the trailing edge is also mapped into [O,*rr] by another "semicircle". The 
same technique can also be applied in the spanwise direction. 

Application of the present method to tapered and/or swept wings requires 
additional considerations. Care must be exercised so that the chordwise vortex 
and control points at one spanwise location match those at another spanwise 
position in order to evaluate the Cauchy jntegral properly. These configura- 
tions are presently being studied along with non-planar wings. 

CONCLUDING REMARKS 

A new method is developed for solving the lJfting-surface equation for 
thin, subsonic wings. The downwash equation is written as Cauchy-type inte- 
grals for the chordwise and spanwise directions. They can be interpreted as a 
1atti:e of horseshoe vortices and the positions of the vortices and control 
points are determined by the finite sum used to approximate the integrals. 
Lan's two-dimensional method is used for the chordwise integral since it pro- 
perly accounts f or the leading-edge singularity, Cauchy singularity, and the 
Kutta condition. For the spanwise integral, Multhopp Is interpolation formula is 
used in conjunction with the midpoint trapezoidal rule and the theory of 
Chebychev polynomials. This method properly accounts for the Cauchy singularity 



and yields the classical solution to Prandtl's lifting-line equation. The nu- 
merical method for evaluating the chordwide and spanwise integrals is much 
simpler and quicker than other continuous loading methods. 

i 

The chordwise and spanwise methods are combined '5 obtain a continuous 
loading solution to the lifting-surface equation. The algorithm for the rectan- 
gular wing gives results which compare well with other cc.ntinuous loading - 
methods, but with much smaller compctational times. In addition, it converges I 

faster and is more accurate than other vortex lattice methods. 

For rectangular wings, the vortex lattice arrangement dictated by the pre- 
sent method differs from the conventional VLM in that the chordwise positions 
of the vortices and control points do not follow the usual 114-314 rule. 
There is always a control point at the trailing edge, which allows the Kutta 
condition to be satisfied, and a control point at the leading edge which yields 
:he leading-edge suction parameter. The spanwise vortices determined by the 
present method are not uniformly spaced, and the tip vortices are inset from 
the actual wing tip. This vortex lattice arrangement gives better results than 
other VLM's for rectangular wings. Other wing planforms require additional 
considerations, and they are presently being investigated. 
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TABLE 1. RESULTS FOR RECTANGULAR PLANFORM 

Present  

1.2543 

1.2331 

1.1692 

1.0625 

0.9137 

0.7257 

0.5045 

0.2588 

Present  

W4, M=16 

Overal l  Values 

Values of cR/CL 

NLR 
( r e f . 8 )  

N=4, M=16 

Values of x / c  a s  

Lan VLM Wagner 
( r e f .  2) ( r e f .  1 )  from 

N=8, M=30 N=6, M=40 ref.  

Present  

0.2200 

0.2187 

0.2150 

0.2087 

0.1999 

0.1896 

0.1798 

0.1731 - 

NLR 

0.2199 

0.2187 

0.2149 

0.2085 

0.1996 

0.1886 

0.1773 

0.1685 



0 .I46 0.5 .854 1 

x/c = (1 - cos 0) /2  

- o Vortex Position: ek - (2k - 'In 
2N (k = 1, . . . ,  N) 

)( Control Points : B i  = $ (i = 1, . . . ,  N) 

Figure 1.- Lan's vortex arrangement for a i r f o i l s .  



)( denotes control 
points 

Figure 2.- Conventional arrangement of vortex lattice 
(illustrated for N = 1, M = 4). 





0 Conventional method, 
e l l i p t i c a l  planform 

A Conventional method, 
rectangular  planform 

0 Present  method, 
rectangular  planform 

M Number of t r a i l i n g  
v o r t i c e s  

I 
I 

\ exact  a n d  p r e s e n t  v a l u e  f o r  
e l l i p t i c a l  p l a n f o r m  

Figure 4.- Effect of number of trailing vortices on 
CLa from 

Prandtl's lifting-line theory, A = 2 ~ .  



0 Convehtional method 
elliptical wing 

A Conventional method 
rectangular wing 

0 Present method 
rectangular wing 

M Number of Trailing 

L a c ,  and Vortices 
present values for elliptical wing 

Figure  5.- Ef fec t  of number of t r a i l i n g  v o r t i c e s  on induced 
drag from P r a n d t l ' s  l i f t i n g - l i n e  theory,  A = 27r. 



t 

X = Cont ro l  P o i n t s  

Rectangular Wing f o r  

N = 2 , M = 4  

Figure 6.- Arrangement of vortex lattice for lifting-surface equation. 





Open Symbols - VLM ( re f .  1 )  

S o l i d  Symbols - P r e s e n t  Method 

Figure 8.- Effect of vortex-lattice arrangement for 
rectangular planfonns. 




