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SUMMARY

A new method is developed for solving the lifting-surface equation for
thin wings. The solution requires the downwash equation to be in the form of
Cauchy integrals which can be interpreted as a vortex lattice with the posi-
tions of the vortices and control points dictated by the finite sum used to ap-
proximate the integrals involved. Lan's continuous loading method is employed
for the chordwise integral since it properly accounts for the leading-edge
singularity, Cauchy singularity, and Kutta condition, Unlike Lan, the spanwise
loading is also continuous and the Cauchy singularity in the spanwise integral
is also properly accounted for by using the midpoint trapezoidal rule and the
theory of Chebychev polynomials. This techuljme yields the exact classical so-
lution to Prandtl's lifting-line equation. The solution to the lifting-surface
equation for rectangular wings was found to compare well with other continuous
loading methods, but with much smaller computational times, and it converges
faster than other vortex lattice methods.

INTRODUCTION

The vortex lattice method has proven to be a useful technique for calcula-
ting the aerodynamic characteristics of complete configurations as well as
wings. In the conventional vortex latiice method (VLM), the planform is di-
vided into a number of elemental panels, and a horseshoe vortex is placed at
the local quarter-chord of each panel. The boundary condition is satisfied at
the local three-quarter chord of each elemental panel (called control points)
by requiring the flow to be tangent to the surface there. The strengths of the
horseshoe vortices are determined by solving the matrix equation formed from
the tangent-flow boundary conditions. Then, the aerodynamic characteristics
are calculated by summing the results from each elemental panel. A complete
description of the conventional vortex lattice method is given by Margason and
Lamar in reference 1.

Although reasonable results are obtained by the conventional VLM, Lan (ref.
2) listed the following deficiencies: 1) The method used to compute the in-
duced drag implies that the leading-edge thrust is distributed over the chord

* This research is supported by the U. S. Army Research Office, Research
Triangle Park, N. C., under Grant Number DAAG29-76-G~0045.
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instead of being concentrated at the leading edge. 2) The predicted pressure
distribution is not accurate near the leading edge. 3) The convergence of so-
lutions is slow with respect to the number of panels used. In addition, the
Kutta condition is not explicitly satisfied. Hough (ref. 3) found some im-
provement by using a 1/4 lattice width inset at the wing tips.

Lan (ref. 2) developed an ingenious method for thin, two-dimensional air-
foils by using the midpoint trapezoidal rule and the theory of Chebychev poly-
nomials to reduce the downwash integral to a finite sum. This method gives the
exact 1ift, pitching moment, leading-edge suction, and pressure difference at
a finite number of points; and the Kutta condition is satisfied at the trailing
edge. A more detailed description is given below. Ilan also developed a quasi-
vortex lattice method for finite wings by using his two-dimensional method for
the continuous chordwise vortex distribution but a stepwise constant vortex
distribution in the spanwise direction. The results showed an improvement over
those calculated by the conventional vortex lattice method.

This paper develops a new vortex lattice method which uses Lan's continu-
ous chordwise vortex distribution but, unlike Lan, a continuous spanwise vortex
distribution also. Although the vortex distributions are continuous, the
method is easily interpreted as a vortex lattice method in which the arrange~
ment of horseshoz vortices and control points are determined from the finite
sum used to approcxzimate the downwash integral of lifting-surface theory. 1In
order to understand the development of the present method, Lan's two-dimensional
theory is reviewed first, and then the present method is applied to Prandtl's
lifting-line theory before developing the method for lifting-surface theory.

SYMBOLS

A aspect ratio
b wing span
c wing chord
y sectional 1lift coefficient
<h sectional moment coefficient about leading edge
e sectional leading-edge thrust coefficient
CD far-field induced drag coefficient

i
CD near-field induced drag coefficient

ii
CL wing 1ift coefficient
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NLR

VLM

1ift-curve slope, per radian except when ncted otherwi.e

w? 3 pitching moment coefficient about leading edge

pitching-moment curve slope, per radian

leading~edge suction parameter

wing leading-edge thrust coefficient

far-field spanwise efficiency factor, CL2/CD m™A
i

near-field efficiency factor, CLZ/CD T A
ii

parameter defined by eq. (26)

number of trailing vortices over whole wing span
number of spanwise control points over whole span
summational integer

number of chordwise vortices and control points
National Aerospace Laboratory, Netherlands

wing planform area

vortex lattice method

freestream velocity

downwash velocity, referred to V, and positive upwards

chordwise cocrdinate measured from leading cdge in direction of V.

sectional and wing aerodynamic center locations, respectively

spanwise coordinate, positive to the right

vertical coordinate of mean camber line
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o angle of attack

Y nondimensional circulation per unit chord

T circulation

ACp difference between lower and upper pressure coefficients (ACp = 2Y)
8 transformed chordwise coordinate, see eq. (2)

¢ transformed spanwise coordinate, see eq. (12)

Subscripts:

i chordwise control point, see eq. (7)

j spanwise control point, see eq. (15)

k chordwise vortex position, see eq. (6)

L spanwise trailling vortex position, see eq. (14)

p evaluated at spanwise position ¢p = pT/M

LAN'S TWO-DIMENSIONAL THEORY

For thin airfoils, the downwash equation is

[od
i 2m X, - X
(o]

The integral on the right side is of the Cauchy type.
nate by

x/c = (1 - cos 6)/2

and use the following result from airfoil theory (ref.

T

do
et
o

cos 81 - cos 6

to write eq. (1) as
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S i

—— . - ' m—— Y _ﬁ“ .,‘

m m
. 1 Y(el) sin 61 del o1 [Y(Gl) sin 61 - v(8) sin e]del “
i 2m cos 61 ~ cos O 27 cos 61 - cos 8
o o
Lan (ref. 2) used the theory of Chebychev polynomials to show that
N —N2 for 1 =20
1 -
kZ1 cos §, - cos 8, - 0 for 140, N )
=1 )
N° for 1i =N
when the vortex positions are
- 2k - D7 =
Gk = N , k=1, ..., N (6)
and the control points are located at
im .
ei =x » 1= 0, 1, ..., N (7)

Then the integral in eq. (4) can be reduced to a finite sum by using the mid-
point trapezoidal rule (ref. 5) and eq. (5) to obtain

’ _ 1 Iil Yksinek-YisinGi
i 21 N k=1 cos ek ~ cos Gi
,
—%]imyw)sﬁlﬁ , 1=0
8-+0
1 g Yie sin ek
= o & ~ 0 , 1#0, N (8)
2N k=1 O Bk cos 6i ﬁ X
> 1im y(8) sin 8 , i =N
6-»m
\
However,

lim v(8) sin 86 = 4 C
8-+0

] )

where C_, is the leading-edge suction parameter and since the Kutta condition re-
quires that y(m) = 0,

1im v(8) sin 6 = 0 (10)
8-

Unlike the conventional vortex lattice method, the Cauchy singularity,
leading-edge square-root singularity and the Kutta condition are properly ac-
counted for in this method. Equation (8) can be solved with i # 0 to obtain
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the N values of Y, , and then the leading-edge suction parameter can be computed
by using eq. (8) with i = 0 (control point at the leading edge). Figure 1 il-
lustrates the positions of the vortices and control points by the "semicircle
method" for N = 2. With only one vortex (N = 1), the exact 1lift and leading-
edge suction are obtained, and the Kutta condition is satisfied. With two or
more vortices the exact pitching moment is obtained in addition to the above
properties and the calculated values of Yy are exact. It can be shown that the
remarkable accuracy of this method is due to eq. (5), which is similar to the
integral result given by eq. (3) and used in exact thin airfoil theory.

PRANDTL'S LIFTING-LINE THEORY

Before attacking the lifting-surface equation, the present method will be
developed for Prandtl's lifting-line equation to compare the spanwise 1lift dis-
tribution with the classical solution (ref. 4). The lifting-line equation is
given by ref. 6,

b/2 dy
F=7V cla-—— ar "L (11)
® am v dy;, (v - yy)
=b/2
This equation also has a Cauchy integral on the right side, and thus Lan's
airfoil technique is applicable. Transform the spanwise coordinate by
b
y = - 5 cos ¢ (12)
and replace the downwash integral in eq. (11) with the midpoint trapezoidal-
rule summation to get
b/2 (dl'/d¢,)
a1 J ar Y Eg’z‘ Iy 1%
j 4m v y dy1 (yj - yl) 4m V_ M b goq cos ¢2 - cos ¢j

This equation represents the downwash due to M trailing vortices of strength
—(dT/d¢1)Q (m/M) located at

- (28 - D7

b o RS (14)
with control points located at
T .
¢)j=JbT y o i=1, s, M-1 (15)
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Now the conventional vortex lattice arrangement is shown in figure 2*, whereas
the present arrangement is shown in figure 3. Note in particular that the tip
vortices extend to the wing tip in the conventional method, whereas eq. (14)
determines them to be inset (see fig. 3), which agrees with Hough's results
(ref., 3).

Since (dF/d¢1) is needed in eq. (13), it is convenient to represent the
circulation by Mult&opp's interpolation formula

M-1 M-1

T () = % }] T ] sin n¢_sin n¢ (16)
p=1 P p=1 P
where
- Lﬂ = -
o =% » P=L .Ml (17)

Equation (16) is basel on the following orthogonality property (ref. 7)

T
Y for P=13
M-1
= ] sin n¢_ sin np, = (18)
M a1 P i 0 for p#j

Substitute eq. (16) into eq. (13) and then the downwash becomes

M M-1 M-1 sin n¢p n cos n¢l

1
W, = = ————— z Z T z (19)
J vm M2 b 2=1 p=l p n=1 cos ¢2 - COS ¢j

However, this result can be simplified by using eq. (5) to derive the important
summation below

™ ? cos ncb2 ) T sin n¢j
M =1 COS ¢2 -~ cos ¢j sin ¢

(20)
3

This equation is similar to the following integral result used in thin airfoil
and lifting-line analyses (ref. 4)

Ll
J cos ndJl dcbl _ T sin n¢ (21)

cos ¢l -cos ¢  sin ¢
0

When eq. (20) is used in eq. (19), the downwash reduces to

* In some conventional techniques the spanwise length of each vortex is uniform,
but it is reported to have little effect on the results.
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M-1 M-1 sin nd_ n sin nd
N S P ]
LV ) T (22)
J (<) p-_-l p n=1

sin ¢,
¢J

Finally, substitute eq. (22) for the downwash in eq. (11) and apply the result-
ing equation at the spanwise locations ¢;(j = 1, ..., M-1) to obtain a matrix
equation for the (M-1) values of I'_. Then, the 1ift, pitching moment, and in-
duced drag can be calculated by regucing the spanwise integrals to a finite sum
through the midpoint trapezoidal rule. However, the midpoint trapezoidal rule
gives exactly the same result for the spanwise integrals as the integral itself
when eq. (16) is used for I'w To prove this assertion, consider the spanwise
integral for the 1ift. Using eq. (16), the exact integral result is

b/2

o
<
o'l
[

Z
b

- M-1
Tdy = % Zl Fp sin ¢p
-b/2 P

whereas the midpoint trapezoidal rule gives

b/2 M M-1 M-1 - M-

1
2 J 21 )
= My == )} ] T ] sin n¢_ sin nd, sin ¢, = } T zin ¢

which is the same as the exact integral result above. In obtaining this last
vesult, the following orthogonality property was applied

ST
rh
o
H
=]
n
-

M

i) . . _
v L sin n¢2 sin ¢2 =
0 for n#1

The integrals for the induced drag are handled in a similar fashion.

The remarkable feature of the present method is that the results are iden-
tical to the classical solution of Prandtl's lifting-line equation when a
finite number cf terms is used in the Fourier series for T (ref. 4). The suc-
cess of the present method is attributed to the location of the spanwise vor-
tices and control points, the summational result of eq. (20), and the accuracy
of the midpoint trapezoidal rule for the spanwise integrals.

Figure 4 illustrates the convergence of this method compared with the con-
ventional VLM for Cr, of rectangular and elliptical planforms with an aspect
ratio of 2m. Prandtl's lifting-line theory requires trailing vortices and
spanwise control points, but no chordwise control points are needed because the
theory assumes the downwash is constant in the chordwise direction. Therefore,
the control points are placed on .ae "bound" vortex for both methods. 1In this
way, the accuracy of the spanwise vortex arrangement can be tested without the
influence of the location of chordwise control points. Figure 4 shows that the
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conventional VLM converges slowly and Cj, does not appear to approach the cor-
rect limit when the curve 1s extrapolated to an infinite number of trailing
vortices, M+~ (1/M+0). On the other hand, the present method converges very
quickly and approaches the correct limit. As in the classical solutions, only
one horseshoe vortex (M=2) is needed to obtain the exact Cy_ for the elliptical
planform in Prandtl's lifting-line theory. TFigure 5 illustrates the effect of
the number of trailing vortices on the spanwise efficiency factor used in the
induced drag. Here again, the couventional VLM converges slowly and does not
appear to approach the correct limit, whereas the present method converges
quickly and approaches the correct limit.

LIFTING-SURFACE THEORY

For simplicity, the present method is developed here for rectangular wings.
The downwash equation from lifting.surface theory is usually given by one of
the two following integrals (ref. 6)

y(xy, y,) (x - x;)
wix,y) = i%-} f 1 12 1+ 1 dx1 dy1 (23)

s 0 -y /(x - xl)2 + (y - y1)2

or

/ 2 7
x-x)"+ & -y,
1 ({3 1 1 1
wiy) = - o J J oy, G-yp | * G- dx; dyy
5

(24)

Equation (23) contains the Mangler-type integral, and therefore, is not suitable
for the present method. Equation (24), however, contains Cauchy-type integrals
and is therefore in the form to apply a combination of Lan's two-dimensional
method for the chordwise integration and the lifting-line method developed above
for the spanwise integration. Note that the integrand of eq. (24) represents
the downwash at (x,y) due to half of a horseshoe vortex as shown below.

)
(x,y)

Dy

.

dy1 dx1
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With y = -b cos ¢/2 and x/c = (1 - cos 6)/2, replace both integrais in eq. (24)
with the midpoint trapezoidal-rule sum to get

-2NCS » 1 =0

S B ST 00 B U1 St S B 25)
i,] LTMND 21 k=l 8¢1 (cos ¢2 - cos ¢j)
k,2 0 , 1#0
where
/[ 2 2 2
(ces 8, - cos 8,)° + A"(cos ¢, ~ cos 9,)
K, =1+ k 1 2 ] (26)
ijk? ~ cos B, - cos 0
k i
The control points are located at
im
61 =5 i=1, ..., N (chordwise) (27)
and
¢j = %% s J =1, ..., M-1 (spanwise) (28)
and the "joint" in the horseshoe vortices are located at
o, = Z DT =1, ..., N (chordwise) (29)
and
¢2 = Sg&fi—lll , =1, ..., M (spanwise) (30)

The positions of the horseshoe vortices and the control points are illustrated
in figure 6 by the "semicircle method" for two chordwise vortices (N=2) and
four trailing vortices (M=4). As in eq. (16), represent the spanwise variation
of yk(¢), at the chordwise position 0y, by Multhopp's interpolation formula,

2 M:l Mi 1
Y () == ) ¥ sin n¢_ sin né (31)
k M p=1 Pk n=1 P

where Y ,k "epresents the unknown circulations per unit chord at Bk and ¢p = pm/M,
Substitute eq. (31) into eq. (25) to obtain the final f.rm of the downwash as

-2NCS , 1 =0
- Te N M-1 M-1 n sin n¢P cos n¢Q Kijkl sin Gk j
vy 3 N 2 Z Z Yp k (cos ¢, - cos ¢,) + (32)
’ 2bM"N =1 k=1 p=1 *" n=1 L 3
0 , 140
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The tangent-flow boundary condition for thin wings requires that

[BZCJ
w = —— - (33)
1,3 ax 1,4

where z.(x,y) is the shape of the mean camber line. The N(M-1) values of Yp

are calculated by solving the matrix equation formed by applying eq. (32) for

i # 0 at the chordwise and spanwise control points given by eqs. (27) and (28).
Ther. after v, | is calculated, the (M-1) leading-edge suction parameters

Cgy can be computed by successively applying eq. (32) with 1 = 0 (control point
at” the leading edge) at the spanwise positions j = 1, ..., M~1. Regardless of
the number (N) of chordwise vortices used, there is always a control point at
the trailing edge which satisfies the Kutta condition, and another control point
at the leading edge which gives the leading-edge suction parameter, if desired.

The sectional and wing aerodynamic characteristics may now be calculated
by using the midpoint trapezoidal rule to reduce the integrals to finite sums,
as shown below (for rectangular wings)

2r_ y . N
(cg)p = E—Vi ey I Yp(xl) dx, = g kgl Yo,k sin 8, (34)
o
b/2 e
CL = J cy cdy/S = o zl (cz)p sin ¢p (35)
~b/2 P
2 T i N
(cm)p = - ;E-J Yp(xl) X, dx1 - iﬁ-kzl Y & (1 - cos ek) sin Bk (36)
o
b/2 ) . M-1
CM = J c d%/%c * M z (cm)p sin ¢p (37)
p=1
-b/2
(xac/C)p= - (cm/c,z)p (38)
Xac/c = - CM/CL (39)
CIZJ Mil Mil 2 il 2
C, = — n ' sin no ' sin ¢ (40)
Di TA n=1 p=1 P p. p=1 P P
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2
(), = 2m ch (61)
b/2 M-1
- :
Cp = J c, © d%/% * o jzl (Ct)j sin ¢j (42)
-b/2
C =C a-C (43)
D, L T

The spanwise loading can be made coniinuous by eq. (31), and the chordwise
loading can also be made cortinuous by fitting Cg, and Yi,k to the chordwise
loading functions for thin airfoil theory (ref. 4%.

RESULTS FOR RECTANGULAR WINGS

For one horseshoe vortex and one control point (N=1, M=2), the present
method yields

C = and C =

L D
@ g+ /14 A% 1

These results give the correct limit as A+), but just as Lan found for airfoils,
at least two chordwise vortices are needed to get an accurate pitching moment.

Table 1 gives a detailed comparison ¢f the results of the present method
with those of several other methods for a flat A = 2 rectangular wing. The
methods chosen for comparison are the continuous loading method of the National
Aerospace Laboratory of the Netherlands (NLR) presented in ref. 8, Lan's quasi-
vortex lattice method (ref. 2), the conventional vortex lattice method of
Margason and Lamar (ref. 1), and Wagner's continuous loading method (see ref. 2).
In the NLR method (M-1) spanwise loading functions are applied but 8M spanwise
integration points are used. Therefore, :he results from this method are used
as a base for comparison purposes. Table 1 shows that the present method yields
more accurate overall aerodynamic characteristics than either the conventional
VLM or Lan's quasi-vortex lattices. This table also shows that the spanwise
variation of the sectional 1lift coefficient compares withia four significant
figures to those of the NLR method. The spanwise variation of the sectional
aerodynamic center also compares well except near the wing tip. When the number
of chordwise vortices was increased from N = 4 to N = 6 in the present method,
these differences decreased considerably. Figure 7 compares the present method
with the NLR method for the chordwise loading at midspan on this same A = 2
wing. Again, the results compare quite well.

The computational time required for the results in Table 1 was 22 minutes
for the NLR method on a CDC 3300 computer; Lan's method required one .inute on
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the Honeywell 635 computer; Wagner's method used about three rinutes; and

the present method required less than ten seconds on an IBM 37G/165. Therefore,
the present method is as economical as the VLM for the same number of vortices,
but it 1s generally more economical when one considers that a smaller numbher of
vortices can be used to achieve the same accuracy as the VIM.

The effect of the vortex lattice arrangement on the convergenca of the
lift-curve slope i3 presentad in figure 8 and compared with the conventional
VLM for flat rectangular wings with A = 2, 4.5, and 7. This figura illustrates
again the slow convergence of the conventional VLM and the rapid convergence of
the present method. For all three wings, the present method gives good ac-
curacy with only two chordwise vortices, but more spanwise vortices are needed
for the A = 7 wing (M/2 = 10) than the A = 4.5 wing (M/2 = 5) or A = 2 wing
(M/2 = 2). Results for the pitching moment, aerodynamic center location, and
induced drag were found to converge even faster than the lift-curve slope,
therefore they are not presented.

The Prandtl-Glauert rule can be easily applied to the present method to
include subsonic compressil'ility effects.

APPLICATIONS TO OTHER CONFIGURATILONS

Flaps and ailerons may be added tc the wing by using an approach somewhat
similar to that of Lan (ref. 2). For the chordwise integration, the interval
from the leading edge of the wing to the flap leading edge is transformed into
[0,7] by the "semicircle method", and the interval from the flap leading edge
to the trailing edge is also mapped into [0,m] by another "semicircle". The
same technique can also be applied in the spanwise direction.

Application of the present method to tapered and/or swept wings requires
additional considerations. Care nust be exercised so that the chordwise vortex
and control points at one spanwise location match those at another spanwise
position in order to evaluate the Cauchy jintegral properly. These configura-
tions are presently being studied along with non-planar wings.

CONCLUDING REMARKS

A new method is developed for solving the l*‘fting-surface equation for
thin, subsonic wings. The downwash equation is written as Cauchy-type inte-
grals for the chordwise and spanwise directions. They can be interpreted as a
lattice of horseshoe vortices and the positions of the vortices and control
points are determined by the finite sum used to approximate the integrals.

Lan's two-dimensional method is used for the chordwise integral since it pro-
perly accounts for the leading-edge singularity, Cauchy singularity, and the
Kutta condition. For the spanwise integral, Multhopp's interpolation formula is
used in conjunction with the midpoint trapezoidal rule and the theory of
Chebychev polynomials. This method properly accounts for the Cauchy singularity
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and yields the classical solution to Prandtl's lifting-line equation. The nu-
merical method for evaluating the chordwise and spanwise integrals is much {
simpler and quicker than other continuous loading methods.

The chordwise and spanwise methods are combined ‘. obtain a continuous
loading solution to the lifting-surface equation. The algorithm for the rectan-
gular wing gives results which compare well with other ccatinuous loading
methods, but with much smaller computational times. In addition, it converges
faster and is more accurate than other vortex lattice methods.

For rectangular wings, the vortex lattice arrangement dictated by the pre-
sent method differs from the conventional VLM in that the chordwise positions
of the vortices and control points do not follow the usual 1/4 - 3/4 rule.

There is always a control point at the trailing edge, which allows the Kutta
condition to be satisfied, and a control point at the leading edge which yields
the leading-edge suction parameter. The spanwise vortices determined by the
present method are not uniformly spaced, and the tip vortices are inset from
the actual wing tip. This vortex lattice arrangement gives better results than
other VIM's for rectangular wings. Other wing planforms require additiomal
considerations, and they are presently being investigated.
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TABLE 1. RESULTS FOR RECTANGULAR PLANFORM

A =2
NLR Lan VLM
Present | (rer. 8) | (ref. 2) | (ref. 1) | "agner
N=4, M=16 | N=4, M=16 |N=8, M=30 { N=6, M=40 | .o+ o
Overall Values

CL 2.4732 2.4744 2.4707 2.5239 2.4778
o

-CM 0.5187 0.5182 0.5173 0.5334 0.5180
a

Xac/C 0.2097 0.2094 0.2094 0.2113 0.2091

l/e 1.0007 1.0007 1.0050 1.0018 1.0005

l/enf 0.9951 1.0108 1.0022 0.9764 1.0172

Values of cz/CL Values of xac/c
2y/b Present NLR 2y/b Present NLR

0 1.2543 1.2543 0 0.2200 0.2199

0.1951 1.2331 1.2331 0.1951 0.2187 0.2187

0.3827 1.1692 1.1692 0.3827 | 0.2150 0.2149

0.5556 1.0625 1.0625 0.5556 0.2087 0.2085

0..071 0.9137 0.9137 0.7071 0.1999 0.1996

0.8315 0.7257 0.7257 0.8315 | 0.1896 0.1886

0.9239 | 0.5045 0.5044 0.9239 | 0.1798 0.1773

0.9808 | 0.2588 0.2587 0.9808 | 0.1731 0.1685
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. N=2
7 o 4
_ ) £
0 . 146 0.5 .854 1

x/c = (1 - cos 6)/2

0 Vortex Position: 0, = 125—%ﬁlll (k =1, ..., N)
X Control Points : 8, = ENI'- (1=1, ..., N)

Figure 1.- Lan's vortex arrangement for airfoils.
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Figure 2.- Conventional arrangement of vortex lattice
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(illustrated for
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1
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X = Spanwise Control Points Rectangular Wing for M = 4

Figure 3.- Arrangement of trailing vortices for Prandtl's
lifting-line equation.
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elliptical planform

A Conventional method,

0 Present method,

M Number of trailing
vortices

exact and present value for
elliptical planform

rectangular planform

rectangular planform

1/M

Figure 4.- Effect of number of trailing vortices on

Prandtl's lifting-line theory, A = 2m.
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Figure 5.- Effect of number of trailing vortices on induced
drag from Prandtl's lifting-line theory, A = 27.
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Figure 6.-
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X = Control Points
Rectangular Wing for

N=2,M=4

Arrangement of vortex lattice for lifting-surface equation.
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Open Symbols - VLM (ref. 1)

Solid Symbols - Present Method
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Figure 8.- Effect of vortex-lattice arrangement for
rectangular planforms.
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