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APPLICATION OF THE VORTEX-LATTICE TECHNIQUE TO THE ANALYSIS OF ]
THIN WINGS WITH VORTEX SEPARATION AND THICK MULTI-ELEMENT WINGS | *
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Charles W. Smith and Ishwar C. Bhateley
Fort Worth Division of General Dynamics

SUMMARY

Two techniques for extending the range of applicability of
the basic vortex-lattice method are discussed. The first tech-
nique improves the computation of aerodynamic forces on thin,
low-aspect-ratio wings of arbitrary planforms at subsonic Mach
numbers by including the effects of leading-edge and tip vortex
separation, characteristic of this type wing, through use of the
well-known suction-analogy method of E. C. Polhamus. Comparisons
with experimental data for a variety of planforms are presented.

The second technique consists of the use of the vortex-
lattice method to predict pressure distributions over thick multi-

r element wings (wings with leading- and trailing-edge devices). '
A method of laying out the lattice is described which gives g
accurate pressures on the top and part of the bottom surface of '
the wing. Limited comparisons between the result predicted by
this method, the conventional lattice arrangement method, experi-
mental data, and 2-D potential flow analysis techniques are
presented.

INTRODUCTION

Vortex-lattice methods are known to give reasonable results
for thin wings of moderate to high aspect ratio. However, use of
these methods to predict the aerodynamic forces on low-aspect-
ratio wings has not been practical due to the significant vortex
1ift generated by these wings. The analysis and prediction of the
nonlinearities associated with the vortex 1lift has received con-
siderable attention in the literature for many years. Methods of
solution based on complex mathematical models have generally
failed. However, within the past several years, E. C. Polhamus
of the NASA Langley Research Center has proposed and verified
through comparison with experimental data an analytical method
for sharp-leading-edge wings of zero taper ratio (reference 1). The
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method is based on a leading-edge suction analogy proposed by
Polhamus in reference 2. Extension of the suction analogy to
plane rectangular rings has been accomplished by J. E. Lamar in
reference 3. A method for calculating the 1ift, drag, and
pitching moment of cambered, sharp-edged wings of arbitrary plan-
form is presented here as a logical extension of the suction-
analogy concept. A vortex-lattice program is utilized to provide
the potential-flow force coefficients required by the suction-
analogy concept and to provide the foundation for development of
a computer procedure which incorporates the methods developed.

The accurate calculation of pressure distributions near the
leading edge of thick multi-element wings is of considerable
interest to the aerodynamicist. Vortex-lattice methods using the
conventional vortex-lattice arrangement of distributing the vor-
ticity on the camber surface yield pressure coefficients which
approach infinity at the leading edge due to the singularity at
the leading edge. An alternate method of laying out the lattice
is described which circumvents this difficulty and gives reason-
able predictions for the pressures on the top surface and a part
of the bottom surface of wings.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The
measurements and calculations were made in U.S. Customary Units.

AR aspect ratio

c mean aerodynamic chord, cm (in.)

CA axial-force coefficient

Cpy, drag-due-to-1lift coefficient

CL total 1lift coefficient (CLp + Cyy)

CLp zero-suction potential-flow lift coefficient
CLy vortex-1lift coefficient

Cm total pitching-moment coefficient

Cmp zero-suction potential-flow pitching-moment

coefficient for half-span wing
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Xm

Xn

normal-force coefficient

potential-flow normal-force coefficient for half-
span wing

pressure coefficient

potential-flow leading-edge suction coefficient
for half-span wing

potential-flow leading-edge thrust coefficient for
half-span wing

notential-flow side-force coefficient for half-
span wing

potential-flow side-force-coefficient contribution
from streamwise members of the vortex lattice for
half-span wing

nozzle momentum coefficient
potential-flow normal-force slope

potential-flow constant used in pitching-moment
calculation

vortex-lift constant

leading-edge vortex-lift constant used in 1lift
calculation

leading-edge vortex-1lift constant used in pitching-
moment calculations

tip vortex-1lift constant used in lift calculations

tip vortex-1lift constant used in pitching-moment
calculations

Mach number

pitching-moment arm for tip vortex-1lift contribu-
tions, cm (in.)

pitching-moment arm for leading-edge vortex-lift
contributions, cm (in.)
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x/c nondimensionalized chordwise location
Zn pitching-moment arm for leading-edge suction force,
em (in.)
o angle of attack, degrees
A planform taper ratio
A leading-edge sweep angle, degrees
) slope of the mean line perpendicular to the

planform leading edge, degrees

THEORETICAL DEVELOPMENT FOR THIN WINGS

The Polhamus Suction Analogy

The General Dynamics vortex-lattice method has been modi-
fied to incorporate the calculation of vortex separation effects.

The basis for this modification to the vortex-lattice pro-
cedure is the Polhamus leading-edge suction analogy, which is
detailed in reference 2. Briefly, it is based on the postulate
that the normal force on the upper surface is the same for
attached vortex flow as the leading-edge suction force for
attached potential flow. The total lift of sharp-edged, pointed-
tip wings is given as

CL = C]_,p + Cg cos o (1)

where C1,, is the potential-flow lift and Cgs is the leading-edge

suction force. Polhamus writes the 1ift in terms of K-factors,

?ﬁ and Ky, which are functions of planform and Mach number only.
at is,

CL =Kp sina cos? a + KVLE sinza cos o (2)

where K, is, by definition, the normal-force slope given by
potent:ial-flow theory,
6 CNp

osina cos o (3)

Xp
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and KVLE is, by definition,
ocC
= S
Kvig = Bsinla ()

J. E. Lamar extended the Polhamus concept to rectangular

wings of low aspect ratio in work reported in reference 3. The
equation is

CL = CLp + Cg cosa + Cy cos o (5)

where Cy is twice the potential-flow side force for the half-wing.

In terms of K-factors,

CL =K, sina cos2a + (Ky

+ in2
LE KVTIP)sm o cos o

where, by definition,
dCy

Kvrrp © osinla (6)

and Kp and KVLE are given in equations (3) and (4).

Extension to Arbitrary
Flat-Plate Wings

The above equations have been extended (reference 4) to more
complex planforms. For a trapezoidal planform, the finite tip
effects are taken into account for defining the vortex-lift con-
tribution as

C
T
CLv = [cos A + Cy - Cr tan A] cos o 7)

The above formulation recognizes that part of the total wing side
force acts on the swept leading edge as part of the leading-edge
suction vector (CT/cos A ), and that the remainder (Cy - Cr tan A)
acts on the wing tip, as shown in figure 1(a).
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Generalization of the above result to wings of arbitrary
planform results in the following equation for the lift:

N N
Ci =C + C1n + Cy - Ct, tan A cos o (8)
L™ My cosAn Y n n

n=) n=1

The notation is illustrated in figure 1(b). In terms of K-factors,
the total 1ift is given by

CL = Kp sina cosza + (KVLE + KVTIP) sina cos a (9)
where N
8 Cr
Kypp = ——5— L (10)
dsinla =1 cosAp
and
5 N
KVTIP = — Cy - E CTn tan Ap (1)
0sin“a =1

The potential-flow in-plane force coefficients, Ct and Cy, are
those computed by any accurate lifting-surface theory. 1In this
application, they are obtained from a vortex-lattice procedure.
Compressibility effects are included through use of the Goethert
transformation.

The zero-leading-edge-suction drag due to 1lift for sharp-
edged, uncambered wings is defined by

CDL = Cp, tan « (12)

where Cy, is the total 1lift coefficient as given by equation (9).

Extension of the above formulations for the calculation of
1ift to the calculation of pitching moment logically follows.
As in the lift case, the pitching moment is comprised of potential-
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flow and vortex contributions. In general form, the resulting
equation is

N+1

N
Cn = Ca, + 2| D, (C1/e08 An) (xn) +Z 2 ey, | G | 13)

n=1 m=1 m

The notation is illustrated in figure 1(b). The potential-flow
moment, Cm,, is the moment resulting from the potential-flow
normal forces on each member of the lattice.

The moment resulting from the vortex 1lift is comprised of
a leading-edge and a tip component. To determine the leading-
edge contribution, the leading-edge vortex lift, as determined
by the suction analogy (CT,/cos Ap), is assumed to act precisely
at the leading edge of each chordwise strip. The moment is then
the sum of the products of these forces and the moment arms (xp).
defined as the distance from the midpoint of the leading edge of
each chordwise strip to the reference location. The leading-edge
force includes a portion of the side force (Ct, tan Ap). The
remainder of the side force, which is equal to the contribution
of the streamwise members of the vortex lattice, is noted as

2 ch\

for each spanwise strip. The sum of this remainder constitutes
the total tip vortex lift. Thus the tip-vortex-lift contribution
to the moment is the sum of the products of these forces and the
moment arms (xm), defined as the distance from the midpoint of
the tip of each spanwise strip to the reference location.

In terms of K-factors,

oC
2 (14)

(Kp)m = d8in a cos
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ey & —=—Y I xal) (15)
VLE'm © @sinZa he1 08 Ap

and
5 M N+1
Kyorr) =—Z ch (xn/3) (16)
rre’m osinla |l \ 45 2 o .

The total moment is given by

Ch = (Kp)m sin a cos a + [(KVLE)m + (KVTIP)m] sinza (17)

Extension to Cambered Wings

The basis for determining the force and moment coefficients
for thin, cambered planforms is the hypothesis that the total
suction force acts perpendicular to the slope of the mean line at
the leading edge. This is a logical extension to the suction-
analogy assumption that the suction force acts in the normal-
force direction for flat-plate planforms. Thus for cambered
planforms, contributions to both the normal force and the axial
force (in the suction direction) are realized from the total
suction force calculated by potential-flow theory.

The development that follows further assumes that the
leading-edge vortex is positioned above the wing surface all
along the wing span. Thus, extreme camber cases where the
leading-edge vortex can be shed below the wing surface at low
angle of attack and may even roll around the leading edge to the
upper surface at some spanwise location are not allowed.

The general equation for 1lift as resolved from the normal,
CN, and axial, CA, forces is

CL=CNcosa - CAsina (18)

2 REPRODUCIBILITY OF THE
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Consistent with the current nomenclature, the total 1ift for the
cambered planform (neglecting frictien drag) the. becomes

N N
CL = Cnp + E Cr,co8fn/cos Ap + Cy - E CTytan Ap Jcos o
n=1 n=1
N
+ E CTnsin¢n sin o (19)

n=1

The angle @ is equal to the slope of the mean line perpendicular
to the planform leading edge at the midpoint of the leading edge
of each chordwise strip. Note that CT is defined as a positive
force in the upstream direction.

Similarly, the tcutal drag due to 1ift (neglecting friction
drag) is given by

CDL = Cy sina + (CA)Suction°°s a (20)
or, for the cambered planform,
N N
Cp, = CNp + E Crcosfin/cos Ay + Cy - E CT tan Ay )sin a
n=1 n=1
N
- E CT,8infn | cos a (21)

n=1

The pitching moment is determined in much the same manner as
that described previously for the uncambered planform. An addi-
tional term is required to account for the moment contribution
of the suction-force component in the axial-force direction. The
moment arm, 2zp, for this force is the vertical distance from the
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reference to the midpoint of each chordwise segment. The re-
sulting equation is

N M N+1
Cp = cmp+ % Z(CTncosﬁn/cos Ag) (xn)+z z CYZ (xm)
n=1 m=1l \1 m

+2(CT sinfy) (2n) (22)
ny n

where Cmp is the potential-flow moment resulting from the
potentizg-flow normal forces only.

EVALUATION AND RESULTS FOR THIN WINGS

Verification of the aerodynamic coefficient calculations
for unca. hered planforms has been accomplished through comparison
with test data for delta, arrow, diamond, double-delta, rectangular,
and ogee wings. Cambered wing calculations have been compared
with data for a moderately cambered delta planform.

Flat-Plate Wings

Data from reference 5 for delta and clipped delta planforms
of taper ratio 0.0 and 0.4 are presented in figures 2 and 3.
Results of the current method generally agree quite well with the
data. However, the test data for the delta wing begin to depart
significantly from the predictions when vortex breakdown reaches
the wing trailing edge. Reference 6 reports that vortex break-
down occurs at 14 degrees angle of attack for the wing of figure 2.
The delta wing (figure 2) exhibits little effect of vortex lift
on the pitching moment. Apparently the leading-edge vortex lift
is approximately equally distributed about the reference axis,
which is at the quarter-chord of the mean aerodynamic chord. On
the clipped delta wing of figure 3, the vortex-lift contribution
to the moment becomes much more pronounced. The potential-flow
results, considered alone, actually predict a moment in the wrong
direction.
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Comparisons between the theoretical results and data from
reference 7 for an aspect-ratio-2.0 rectangular wing are presented
in figure 4. Even though the predicted total lift agrees well
with the data up to an angle of attack of 12 degrees, the data
depart from the predicted moment at 8 degrees. This is attributed
to the progression of the vortex across the planform as angle of
attack is increased.

Comparisons with reference 6 data for an 80-/65-degree double-
delta planform and an ogee planform are presented in figures 5
and 6. Excellent agreement with the 1ift and drag predictions
is apparent to the angle of attack fcr vortex breakdown. Good
agreement with the pitching moment is obtained at the lower
angles of attack, but the data break away from theory before the
angle of attack for vortex breakdown is reached. This could be
caused by a complex flow interaction resulting from the formation
of multiple leading-edge vortices on this type planform.

Figures 7 and 8 present test-to-theory comparisons for two
planforms (reference 3) which help investigate the ability of the
method to evaluate the effects of trailing-edge sweep. The lift
of the clipped arrow wing of figure 7 is predicted very well,
however the lift of the clipped diamond wing of figure 8 is
under-predicted. This is attributed to the induced lift effect
of the shed vo tex on the additional surface area aft of the
trailing edge of the diamond wing tip.

Test data from a model which employs spanwise blowing on
the wing upper surface (reference 8) is presented in figure 9 for
a 30-degree delta wing. Comparison with predictions illustrates
the potential of this method as a tool for estimating the bene-
fits which can be realized from vortex augmentation of this type.
The ability of the spanwise blowing to extend the leading-edge
vortex lift to higher angles of attack is most pronounced. Agree-
ment with the predicted lift-curve slope is apparent to angles
of attack much above the no-blowing vortex breakdown region.
There is a blowing-induced camber effect which is, of course, not
predicted by the theory.

Cambered Wings

The cambered-wing equations have been used to predict the
characteristics of a moderately cambered (Czi = 0.15) delta wing

for which reference 5 presents test data. The comparisons of
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1lift, drag, and moment shown in figure 10 indicate good agreement.
The reference 5 data for the same wing with an uncambered section
have been included in figure 10 to illustrate the method's ability
to predict the incremental camber effect accurately. It is also
noteworthy that the incremental vortex-lift contribution due to
camber is very small. Thus, at least for small or moderate
amounts of camber, the potential flow increment due to camber
gives a good approximation for the incremental effects of camber.

VORTEX-LATTICE ARRANGEMENT FOR THICK WINGS

Vortex-lattice methods are best suited for the analysis of
thin wings with sharp leading edges which can be approximated
by camber surfaces. The predicted results in general for this
type of wing show good agreement with experimental data. How-
ever, when the vortex-lattice method is directly applied to thick
wings (including multi-element wings) the calculated results do
not agree with experimental data.

A typical conventional vortex-lattice layout for multi-
element wings is shown in figure 11. Each wing element is re-
presented by a network of horseshoe vortices lying on the camber
surface and trailing behind the surface. As can be seer from this
figure a bound vortex lies along the leading edge of each com-
ponent of the multi-element system. This causes infirite
velocities to be generated at the leading edge which produce very
large negative pressure coefficients (unrealistic) at points in
the immediate vicinity of the leading edge. This phenomenon is
acceptable for thin sharp-leading-edge wings but fails to give
acceptable predictions for thick wings. For example, the loads
calculated for the F-111 wing in the high-1lift configuration at
angles of attack of 4 and 15 degrees are compared with experimental
data (reference 9) in figures 12(a) and 12(b), respectively. Large
discrepancies between experimental and theoretical loads are
evident near the leading edge of the wing and flaps.

A technique for laying out the lattice has been developed
at General Dynamics which greatly improves the pressure distri-
butions predicted by the vortex-lattice method for thick multi-
element wings. A typical example of this lattice is shown in
figure 13. Each element of the multi-element wing is represented
by a network of horseshoe vortices lying on and trailing behind
a surface which is composed of the top surface and part of the
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bottom surface, and wraps around the leading edge of the wing.

The surface on the bottom is extended downstream of the antici-
pated stagnation point. If the surface is extended to the
trailing edge the problem becomes singular and meaningless results
are obtained. No large differences in predicted pressures have
been noted for variations in the extent of the vortex sheet on

the lower surface.

A large-aspect-ratio, unswept, untapered wing having the same
section as the F-111 wing section at BL 289 was analyzed using
this wrapped lattice arrangement. The pressure distributions cal-
culated at the centerline of this wing are shown in figures 14(a)
and 14(b) for angles of attack of 4 and 12 degrees, respectively.
The chordwise distribution of the vortex lines is also shown in
these figures. Since the pressures at the centerline of a large-
aspect-ratio wing are compatible with two-dimensional flow
results they are compared with two-dimensional experimental data
(reference 10) and two-dimensional theoretical results (reference
11) in these figures. The predictions show good agreement with
both the experimental and theoretical results. The two-dimensional
theoretical pressure distributions shown were obtained with a
much denser chordwise distribution of points. A better prediction
should be obtained with the vortex-lattice method if a denser
chordwise portioning of the lattice is employed.

CONCLUDING REMARKS

A method has been formulated for determining the 1ift, zero-
leading-edge-suction drag due to 1lift, and pitching moment of
thin, sharp-edged, low-aspect-ratio wings with camber. This
method utilizes a vortex-lattice procedure modified to include
vortex-1lift induced effects by including an extension of the
Polhamus suction-analogy concept. Good agreement with experiment
is obtained for simple highly swept planforms below the angle of
attack at which vortex breakdown reaches the trailing edge of the
wing and at somewhat lower angles of attack for wings with more
complex flow patterns, such as double-delta and ogee planforms.

The method shows promise as a tool for evaluation of the
potential of vortex augmentation systems.

To obtain more accurate predictions for {he more complex
planforms, it is necessary to include the effects of the
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progression of the vortices away from the leading edge and tip
of the planform and to include the vortex interactions on plan-
forms which emanate multiple leading-edge vortices.

A method has also been developed for laying out the vortex
lattice for thick multi-element wings which gives accurate
pressure predictions on the top and part of the bottom surface
of the wing. Comparison with experimental data and other
theoretical methods substantiates the accuracy of the results.
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m=1
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(a) Trapezoidal. (b) General.

Figure 1.- Potential-flow force coefficients from the
vortex-lattice procedure.
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Figure 2.- Longitudinal aerodynamic characteristics
of a delta wing with A = 63°,




M=0.60
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Figure 3.- Longitudinal aerodynamic characteristics of a
clipped delta wing with A = 63° and X = 0.4.
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Figure 4.- Longitudinal aerodynamic characteristics of a
rectangular wing with AR = 2.0.
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o TEST DATA, FLAT PLATE (REF. 6!
--=POTENTIAL
— POTENTIAL + VORTEX

1.6 " 5
VORTEX BREAKDOWN

1.2 AT TRAILING\ -
EDGE (REF. 6,/°°, o %
CL ® o
L 000
o

}.

[+]
0 -1 -.2
a, DEG Cm

Figure 5.- Longitudinal aerodynamic characteristics of a
double-delta wing with A = 80°/65°.
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Figure 6.- Longitudinal aerodynamic characteristics of
an ogee wing with AR = 1.7,
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Figure 7.- Longitudinal aerodynamic characteris .ics of a
clipped arrow wing with A = 63°,
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Figure 8.~ Longitudinal aerodynamic characteristics of a
clipped diamond wing with A = 639,
i
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TEST DATA, FLAT PLATE (REF. 8)
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Figure 9.- Longitudinal aerodynamic characteristics of a
delta wing with A = 30° and spanwise blowing.
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Figure 10.- Effect of camber on the longitudinal aerodynamic
characteristics of a delta wing with A = 639,
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Figure 1l.- Conventional vortex-lattice arrangement
n a thick multi-element wing.
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F-111 HIGH-LIFT SYSTEM AT Bl 286.5
At 6P
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(b) o = 15°.

Figure 12.~ Conventional vortex-lattice results compared with
experimental pressure data on a thick multi-element wing.
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Figure 13.~ Wrapped vortex-lattice arrangement on a

thick multi-element wing.
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F-111 HIGH-LIFT SYSTEM AT BL 289
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Figure 14.- Wrapped vortex-lattice results compared with
experimental pressure data on a thick multi-element

wing.






