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Abstract

Planning of flightfluttertesting and interpreta-
tion of results require reliable information about

the ground vibration behavior of the aircraft. Con-

ventional GVS techniques are unsatisfactory in that

internal damping and closeness of frequencies lead

to sensitivity of the measured frequencies and modes

to the ._pecificexcitation points used.

Infact,there isno unique definitionof resonance

of a multi-degree-of-freedom structure having in-

ternal damping. Following suggestions by DeVries,

a method of measuring separately the in-phase and

quadrature components of the vibration response,

designed by APL, has been developed and applied.

Both analysis and test results show immediately a

much improved definition of mode shapes and fre-
quencies.

The approach has been further developed. It

allows to measure damping in the different natural

modes, and to determine the exact shape of the nor-

mal modes, i.e., to eliminate the coupling effect due

to structural damping. It is expected to be used in
flight flutter testing also.

INTRODUC TION

The present paper presents a methodfor accur-

ately determining the vibration characteristics of com-

plex structures from test data obtained during a
Ground Vibration Survey using only simple excitation

techniques. The accurate measurement of the vibra-

tion characteristics of an aircraft during a Ground

Vibration Survey is necessary for the planning of
flight flutter tests. These data provide the first check

of the predicted flutter behavior by establishing the
accuracy of the calculated vibration modes and reso-

nant frequencies of the aircraft and are used for the

interpretation of the flightfluttertest results.

In the past, two methods have been used to

determine the vibration behavior of complex struc-
tures but neither is satisfactory. The first method

measures the response to excitation at several _oints

on the structure. Since the response of the Structure
using this method is a combination of all the struc-

tural modes, it, is unsatisfactory in that the mode

shapes and resonant frequencies depend on the ex-

citation points selected. The other method uses a

multiple Shaker system to separate the structural

modes with excitation techniques. Because a large

number of exciting points are required and the in-

dividual exciting forces must be adjusted for each

mode, this method is undesirable since it is extreme-

ly time consuming. When the structure being tested
has resonant frequencies close together, the diffi-

culties are magnified and a mode may be obscured and

lost. The need for a simple technique which permits

the accurate determination of the resonant frequen-

cies, mode shapes, and modal damping coefficients

without utilizing complicated methods of excitation
has been evident.

Our approach is to measure quantities which
decrease the effects of modal interaction and to

analytically separate the modes of vibration from the

measured data. Hence, the vibration characteristics

can be accurately determined with simple methods of
excitation.

The components of response in-phase and 90 °
out-of-phase with the exciting force are used to de-

termine the resonant frequencies and damping coeffi-
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cients. Our analytical method separates the structural
modes of vibration from the component of response

90 ° out-of-phase with the exciting force when the
structural damping is small. Figure 1 illustrates the

components of response and their relation to the

exciting force. The total response is defined as the
structural displacement per unit force. The total

response can be resolved into a vector component
in-phase with the force, the in-phase response, and
the vector component 90 ° out-of-phase with the force,

the quadrature response. The representation of the
vibration response in this manner was suggested by
DeVries. (1) Kennedy and Pancu, (2) in a later paper
utilized vector response to determine modal proper-

ties from polar plots. Theoretical calculations of
Veubeke (3) indicated that the quadrature response
determined more accurately the modes of vibrationof
a uniform beam excited at a single point. A device
which enables us to measure separately the in-phase

and quadrature response, a Component Analyzer,
was developed by Kearns of John Hopkins Applied

Physics Laboratory. (4) The results of their inves-
tigations are used as the basis of our method and its
application to actual structures.

The problem that concerns us and our method
of solution are illustrated in Figure 2. This graph

presents the frequency response at a particular point

of a two degree of freedom system with resonant fre-

quencies close together. This example has been
selected to illustrate the problem which occurs often

in complex structures. The solid line represents the
total response which is the quantity generally meas-
ured. The quadrature response of the systemis shown

by the dashed-dot line and can be measured with the
Component Analyzer. The dashed lines represent the
quadrature response in each of the modes andthe peak
values when taken at a number of locations define the

mode shapes of the system. The negative quadra-
ture response in the second mode is causedby a mode

between the point of excitation and the point we are
considering. If we comparethe totalresponsewith the
quadrature response, it can be seen that the quadra-
ture response determines more accurately the reso-
nant frequencies and mode shapes of the system. In

fact, only one resonant frequency is apparent from
the total response. Finally, we can analytically

separate the quadrature response at each resonant
frequency into the response of the resonant mode and
the response of the non-resonant mode. Therefore,
we can accurately determine the mode shapes.

In the body of this paper we will:

1) Review the significance of the in-phase and
quadrature responses.

2) Present our method for analytically sepa-
rating the modes of vibration from the quad-

rature response.

3) Describe the Component Analyzer which we
usedand the results of some of our labora-

tory tests.

4) Discuss the application of the Component

Analyzer to flight flutter testing.
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Figure 1. Definition of In-Phase and Quadrature Response
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Figure 2. Theoretical Response of Two-Degree-of-Freedom System with Resonant Frequencies Close Together

SIGNIFICANCE OF TI-IE IN-PHASE

AND QUADRATURE RESPONSE

First we will review the significance of in-phase
and quadrature response for a single degree of freedom

system. Then we will consider more degrees of

freedom. When the structural damping is small,

we can represent the forced response of a single

degree of freedom system by equation (1) of Figure 3

where R is the total response at any frequency,

R* is the total response at resonance, g is the struc-

tural damping coefficient, _ is the exciting frequen-

cy, and _}¢ is the resonant frequency. The real and
imaginary terms are the in-phase and quadrature

response, respectively. The frequency variations of

the total, in-phase, and quadrature responses are also

shown in Figure 3. Note that the shape of each curve

is completely determined by the resonant frequency

and damping coefficient. We can use the frequencies

at which the in-phase response peaks _, and %,

to determine the structural damping coefficient from
equation (2). For this single degree of freedom sys-
tem, resonance is defined by maximum total response

and a 90 ° phase relationship between the total re-

sponse and exciting force. This is indicated by equal

peak values of the total and quadrature responses

with zero in-phase response.

If there is more than one degreeof freedom, the

response of the structure will be the sum of the re-

sponses in each of the modes. This implies that each

mode will retain the response characteristics of a

single degree of freedom. However, we can no longer
define resonance of the system by a 90 ° phase relation-

ship between the total response and the exciting force

or by the maximum total response. The peaks of the

quadrature response will determine the resonant fre-

quency and response of each mode more accurately

than the total response since the quadrature response

of each mode peaks more sharply and the quadrature

response contributions of non-resonant modes are
smaller. Although the non-resonant modes effect the
in-phase response more tban the quadrature response,
we can still use equation (2) to determine the damping
if we select a point such that the response is pre-

dominantly that of the mode of interest. Damping can
be determined by this method under conditions where

the decay of the total response fails to give valid re-
sults. Although the mode shape which we obtain from

the quadrature response will be more accurate than
that of the total response, it will be necessary to
separate the quadrature response into the response
of each mode when the structure has resonant fre-

quencies close together.

85



THEORETICALRESPONSE OF A SINGLE DEGREE OF FREEDOM SYSTEM
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Figure 3. Theoretical Response of a Single Degree of Freedom System with
Structural Damping

ANALYTICAL SEPARATION OF MODES

Our method of analytically separating the modes
of vibration from the quadrature response, is pre-

sented below. We will refer again to Figure 2 to ex-

plain our method of analytical separation as appliedto

the two degrees of freedom system. The modal re-

sponses are indicated by the dashed lines and define

the mode shapes of the structure. First, we will ob-

tain the resonant frequencies of the modes from the

peaks of the quadrature response. The damping co-
efficient for each mode will be obtained from the

peaks of the in-phase response. Having determined

these parameters, the shape of the quadrature re-

sponse curves for each of the modes will be complete-
ly determined as we have pointed out in equation (1).

The problem now is to find the modal amplitudes which

when added together will give the measured quadra-

ture response. At each resonant frequency, we will
equate the sum of the quadrature responses ineach of

the modes to the total quadrature response. Two

simultaneous equations will be obtained which can be

solved for the peak amplitude of eachofthe modal re-

sponses. Figure 4 shows the equations which we ob-

tain for this two degree of freedom system. RQ1 is

the measured quadrature response at the resonant

frequency of the first mode, IRQ2 is the measured

EQUATIONS FOR MODAL RESPONSESFOP.
TWO-DEGP`EE-OF-FP`EEDOMSYSTEM

tz I- +t_

RQz:P._I_ f(,._z._'+, + P._tD=tdN2 W"_NZl)

Figure 4. Equations for Modal Responses for

Two-Degree-of-Freedom System
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quadrature response at the resonant frequency of the
second mode. RI* and R2* are the maximum modal

responses in each of the modes which determine the
mode shapes of the system. These are found from

the solution of the equations. Effectively, the equa-

tions eliminate the response of the non-resonant modes

caused by the structural damping.

The extension of our method of separation to

more degrees of freedom can easily be seen. For n

degrees of freedom, there will be n simultaneous

equations which can be solvent for the n modal re-

sponses. The ease of application of our analytical

method can be seen by expressing the equations in

matrix form.

where {Re) is the column matrix of the meas-
ured quadrature response at each

resonant frequency.

[A] is a square matrix determined by

the modal damping coefficients and

the resonant frequencies.

(R'} is a column matrix of modal re-

sponses.

Transposing, we write the equation in the de-

sired form:

{R'} = [_]-I{R 0}

Our analytical method is easily applied since the
inverted matrix, [a]-I, is the same for all locations.
Hence, the modal responses at all locations can be

found by a simple matrix multiplication once the
[4]-1 matrix has been determined. It will be noted

that only the test data normally required is used for

the application of our analytical method; that is, the

resonant frequencies, the mode shapes at each res-

onant frequency and the modal damping coefficients.

COMPONENT ANALYZER

We now proceed with the third point of the dis-

cussion, the description of the Component Analyzer
and the results of some of our laboratory tests. To

apply our method to the tests which we performed, we
used a Component Analyzer which measures separate-

ly the in-phase and quadrature response. Figure 5 is

block diagram of our Component Analyzer. It con-

sists of an undamped strain gage accelerometer

powered by the exciting force signal. Our Component

Analyzer differs from that of Kearns inthatthe actual

exciting force signal is used where Kearns used the

current of an electro-magnetic shaker. This modifi-

cation was necessary since the inertia and spring

force of the shaker armature can cause large phase

shifts between the armature current and the force

applied to the structure particularly at resonance.
The accelerometer was undamped to eliminate phase

shifts in the transducer. When the in-phase response

<
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Figure 5. Component Analyzer
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is measured, the force signal, F o SIN _ t isampli-
fled and applied to the accelerometer. The acceler-

ometer multiplies the force signal and the acceleration,

A SIN (_ ÷ 9) with the steady component of the out-

put, 1//2 A o F o COS _ being proportional to the in-
phase response. The oscillatory parts of the signal
are filtered out and the steady signal recorded. In the

same manner, we obtain the quadrature response by

shifting the phase of the force signal 90 ° before

applying it to the accelerometer. Since the electrical

signal from the Component Analyzer is not oscillatory,
it can be applied to recording equipment such as an

x-y plotter or an array of vertical deflecting galvano-
meters providing immediate records of frequency

response and mode shape. The use of the accelero-
meter in this manner provides a measurement of the

response only at the frequency of excitation. (5) The

block diagram indicates the simplicity of the Com-
ponent Analyzer.

One parameter which can cause considerable
error in the Component Analyzer measurements is

the rate of change of excitation frequency, the sweep
rate. The effect of sweep onthe in-phase and quadra-

ture response is much greater than the effect on total

response. Figure 6 shows the effect of sweep rate on

the quadrature and in-phase velocity responses of a

typical single degree of freedom system. The dashed

lines representthe steady state response and the solid

lines represent the swept responses with increasing

frequency. Sweep causes a shift in the frequencies of

the peak responses, variation in amplitudes, and causes
oscillations in the response. These curves are based

on the theoretical results of Hok (6) which were ob-

tained for electrical circuits and agree qualitatively

with those observed during tests.

EXPERIMENTAL RESULTS FROM TESTS

Although we have used this technique for Ground
Vibration Tests of the YP6M, we will confine our dis-
cussion to results obtained from laboratory tests. We
will describe the results we obtained from tests on a

two degree of freedom system with resonant frequen-

cies close together. The system on which our tests
were conducted is shown in Figure 7, a rigid beam

mounted on rubber vibration isolators at the approx-

imate radius of gyration. The resonant frequenciesof

the beam on the isolators, rigid translation and pitch

about the center, were close together. We applied

excitation at a single point slightly off the center of

the beam. The total, in-phase, and quadrature re-

sponse at each end and the center of the beam were
measured. The first mode at 16.9 cps is the trans-

lation mode. The mode shape determined from the

total response is indicated by the solid line. The mode

shape obtained from the quadrature response is shown

by the dashed-dot line and the mode shape obtained
from the analytical separation of the modes by the

dashed line. The translation mode shapes obtained
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Figure 6. Effect of Sweep Rate on In-Phase and Quadrature Velocity Responses
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with the various techniques are practically the same.
The slight pitch in the mode shapes was caused by a
lack of symmetry in the beam and mounts, that is, the
beam was no_ uni_urm _tnd _h_ muu._-_ w_*-_ ,uL equal-
ly stiff. However, the mode shapes obtained for the
pitch mode at 18.6 cps are substantially different.
Since the excitation was applied near the mode of the
pitch mode, the response in the translation mode was
sufficiently large to distort the pitch mode. It is
barely recognizable from the total response but be-
gins to take form when determined from the quadra-
ture response. The mode shape which we obtain from
our method of analytical separation agrees almost
exactly with the predicted mode shape (a straight line
through the center of the beam).

If we compare the quadrature andtotal responses
in the pitch mode at the end of the beam farthest away
from the shaker, we see that the total response does
not indicate the node line but the quadrature response
does. Figure 8 shows the measured quadrature and
total responses at this point. We have already demon-
strated the improvement in mode shape• Now let us
consider the resonant frequencies indicated by the
measurements. The frequency of the translation mode
indicated by the quadrature response differs only
slightly from the actual frequency of 16.9 cps. The
total response, however, indicates a resonant fre-
quency of 17.15 cps, a shift of 1/4 cps. The resonant
frequency of the pitch mode indicated by the quadra-
ture response is 18.65 cps a shift of only .05 of a cps.
The resonant frequency of the pitch mode is not appar-

ent from the total response. Figure 2 which was dis-
cussed before shows the theoretical response at this
point• The measured and theoretical responses are in
ve, y close agreement I,_ .............. _f th_
damping coefficients obtained from the in-phase re-
sponse agree within 5 percent with those measured
from the decay of the total response.

APPLICATION TO FLIGHT FLUTTER TESTING

The fourth and last point of the paper, the appli-
cation of the Component Analyzer to flight flutter test-
ing, will now be presented., The Component Analyzer
has one intrinsic property which makes it particular-
ly suited to flight flutter testing with stnusoidal exci-
tation. The Component Analyzer measures only the
component of response at the excitation frequency
either in-phase or 90 ° out-of-phase with the exciting
force. Therefore, the response caused by atmospheric
turbulence, which has been a problem in the past,
will have a substantially decreased effect on the re-
sponse measured with the Component Analyzer• A
procedure which might be suggested is to use the Com-
ponent Analyzer with the usual sweep technique of
excitation• This procedure, however, has an unde-
sirable feature since a very slow sweep rate would be
required to obtain accurate measurements, as we have
pointed out earlier. A technique which would elim-
inate the undesirable feature would be to slave the
exciter frequency to the resonant frequency of the
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mode which we want to investigate. The variation of

the quadrature response with aircraft velocity will be
observed; an increase in this response amplitude with
increasing flight speed will indicate approachto flutter.

In the procedure just discussed, each mode has

to be investigated separately. A possible extensionof

this technique is to investigate several modes simul-

taneously. One exciter and one Component Analyzer

for each mode has to be provided. Since each Com-

ponent Analyzer responds only to its specific excita-

tion, several modes may be investigated simultaneous-

ly.

CONCLUSION

The results of our tests indicate an immediate

marked improvement in the determination of the
vibration characteristics without the use of com-

plicated methods of excitation. Analytical separation

of the quadrature responses oI the several structural

modes yields a further improvement when the struc-

ture has resonant frequencies close together.

A procedure for extending the present technique

to flight flutter testing has also been suggested. This

procedure would decrease the effects of atmospheric

turbulence; it might also be possible tG eliminate the

errors caused by a finite sweep rate.
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