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Abstract.

A binary flexure-torsion analysis has been made

to check theoretically a method for predicting flutter

which depends on plotting vectorially the amplitudes

of response relative to the exciting force and extracting

the relevant damping rate. The results of this calcu-
lation are given in the form of graphs both of the

vector plots themselves and of the estimated damping
_+_ _,_ fnrw_rd _need. The estimated damping

rates are compared with calculated values. The

method has the advantage that in a flightflutter test

damping can be estimated from continuous excitation
records: the method is an extension of the Kennedy

and Pancu technique used in ground resonance testing.

INTRODUCTION

The measurement of normal modes in a ground

resonance test needs an elaborate technique both to

ensure .that the modes are reasonably orthogonal,

and to ensure that no mode is missed. The presence

of structural damping presents one of the main dif-

ficulties. Kennedy and Pancu have suggested a method

of analysing therecordings taken by plotting vector-

ially the displacements relative to the exciting force.
Near circles are obtained for each resonance and

practical experience seems to show that this type of

plot considerably reduces the likelihood of missing a

resonance and also improves the accuracy of deter-

mining the resonant frequency. This in itself leads to

modes being measured which are a better approxi-
mation to the true normal modes than is usually

possible from amplitude plots alone. In addition the

structural damping can be estimated directly for each

resonance.

Because of its success in ground resonance

teststhe idea has arisen of adapting the technique for

flightflutter testing. It is hoped that from the flight

testunder continuous excitation the resonances might

be obtained in the same way as from a ground test.

with at the same time estimates ofthe overall damping

at each resonance frequency. Thus a graph of damping

rateagainst airspeed can be obtained from a continuous

excitationmethod of flightfluttertesting. In this way

itis hoped to obtain the best oftwo worlds; continuous

excitation allows more accurate analysis in ii_e p_ _-

ence of buffeting than is possible from a decaying

oscillation, and at the same time damping can be

plotted against airspeed; and damping gives a more

reliable warning of the approach to flutter than does

amplitude response. Near the flutter speed, however,

the analysis has to deal with adifferent type of equili-

brium than in a ground resonance test, because the

aerodynamic forces are powerful and do not represent

a conservative system. In order to see whether this

leads to any difficulty in application, a simple flexure-

torsion binary example has been worked out in the

present paper and analysed by the Kennedy-Pancu

method at various forward speeds up to the flutter

speed. The dampings are obtained and plotted against

airspeed and the results are found to agree well with

calculated dampings. Some low speed wind-tunnel tests

carried out by Bristol Aircraft Limited show that the

method can give results with a high degree of repeat-

ability, even in the presence of buffeting.

THEORY OF THE METHOD

The basis of the theory is outlined I'ere for
convenience.
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One Degree of Freedom

The equation of motion for one degree of freedom

can be written in the form:-

_" ÷ e(1 + _q = _,_t (I)

for a generalized exciting force Fe _t ,

where a is an inertia coefficient

e is an elastic coefficient

q is a generalized co-ordinate

g is the phase angle of the restoring force (the

damping coefficient).

The steady solution will be motion of the form e __t,

so we substitute q = q e __t

Equation (1) now becomes:-

[-_2a + e(1 + _)]_ o F (2)

We let % be the natural frequency of the one degree
2 e

of freedom, i.e., % : -- and we obtain:-
a

(3)

where Y,_ : ff-_-_
2

(JO

For the purpose of vector plotting _ is written the

form:-

: qr + _'C]7,
(4)

For any exciting frequency, _, the quantities qr

and qi can now be calculated and plotted on an Argand
diagram to give the response vector at that frequency

relative to the exciting force; i.e., F is taken to lie

along the real axis.

Substituting Equation (4) in Equation (3)and

equating real and imaginary parts leads to:-

awo[qr( I _ _2) _ qzg] = F (5)

and

aWo [qrg + q_ (l - _)] = 0
(6)

32

Hence

and

qF

F I - _2

2 _2) 2a% (i - + g

(7)

F -g (B)q_ :-- [ ]
2 2

a% (i - _2) + g

As _ is varied the locus of points (qr,qi) is a smooth
curve obtained by eliminating Y_ from these two equa-
tions:-

2

qr F

2 2

% aWo%g

+ i (9)

or

qr + q2 + ( )qz = 0
2

This is the equation of a circle with its diameter lying

on the negative imaginary axis andpassing throughthe

origin (see Figure 1).

The Position of Resonance

Resonance occurs when _ = 1 andfrom Equation

(7) qr=0, i.e., the vector OC on Figure 1 represents
the amplitude at resonance. We can obtain a relation

between the rate of change of frequency along the curve

at resonance and the damping g, so that if the curve
itself is obtained from measurements on a structure

of unknown damping, the damping can be estimated.

Consider the point D in Figure 1 when the fre-

quency is% ÷ _,. At D

qr : ta_- (il)
% 2

0

_e÷$1

_L

_o

Figure 1. Vector Diagram for One Degree of

Freedom -- Hysteresis Damping



_2

i - coD

g

from E.iuations (7) and (8).

(12)

Hence

g :-- C2 *--) cot-- (13)
co o o) 0 2

bw

It can be seen from Equation (13) that if _ is

small, equal angles will be subtended by equal fre-

quency increments on either side of the resonance.

In the particular case when _ = 2-we have:-
2

and when o :
2

Hence

2

_v44,2

2

COO

2

m/3_2

%, = !-g =--
2

6) o

(14)

and

2g = --
2

% (15)

2

Comparing this with equation (1)

dq=eigq

and substituting q = _ e i_vt

(18)

Hence

_ = _e_ (19)

_d
: (2o)

¢

c c

But d = 2 -_c "/'_ where _'c is the fraction of critical

damping: -

Hence

co

: 2_--- IT; (21)
0 C

d
so that at resonance ¢ = 2_ : _ (22)

C

It should be noted that if the damping is of the

form given by Equation (17) the locus of points (qr,

qi) is no longer a circle; the steady solution will be

motion of the form e zcvt, and substitutingq ='_ ¢ z_t the

equation becomes:-

(- aJ + d,w + e)_ = Y

Proceeding as before we obtain:-

(23)

Whence

2 2

g : __ (16)
2

_A + cod
and

F I - _2
qr =_

2

aoJo (l - _) _ + _o_ _

(24)

2w o

It is common practice in this country to express the

damping as a percentage of the critical damping. As

long as the damping is small, g canbe directly related

to the percentage of critical damping which is derived

from the concept of velocity damping: i.e., the ap-

propriate differential equation is:-

a_ + d_ ÷ e¢ _ ye'_t (17)

q_ _-- (25)
2

a% (i - _2;2 . cj_2

so that the two systems represented by
Here _ =_e

Equations (1) and (23) will have the same properties

at resonance if g =_. The vector q defined by Equa-

tions (24) and (25) now describes a quartic curve
/

point{ F--'-7 , 0) when _ =0 and finish-starting at the
\ aO9 0 }

ing at the origin when co--,-_ ; any other branches are

for unreal frequencies. In practice for small values
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of g the curve is indistinguishable from a circle ex-

cept at low frequencies; this is shown in Figure 2 where

the circle of Equations (7) and (8)is compared with

the quartic of Equations (24) and (25).

a_.e 0"_)_ = r-_'t
a _ , cL$-_e_ =rq ''t ---

Figure 2. Vector Diagram for One Degree of

Freedom -- Comparison Between Hysteresis

and Velocity Damping

Two Degrees of Freedom

Kennedy and Pancu suggest that with N degrees

of freedom there will be N near circles. For any

particular resonance, the best circle is put through

the points and the resonance is given by the minimum
b_o

, where s represents distance along the curve. If
<s,s

equal increments of c_ are taken the greatest change

of phase gives the resonance. The damping (g) can

then be extracted as for one degree of freedom.

Because this method appears to be the best way
of estimating damping in ground resonance tests, it

has been suggested that it might well be extended to

the estimation of damping in a flight flutter test, where

continuous excitation is being employed. The method

may be difficult when the dampings are high at medium

flight speeds, but should improve againfor low damping

near the flutter speed. The difference between the

flight condition near the flutter speed and the ground
condition, where the damping is low in each case, is

that in flight there will be large asymmetric couplings

arising from the aerodynamic forces. It was decided

to see how important these were in practice by calcu-

lating the response of a simple binary example at

various speeds up to the flutter speed.

BINARY EXAMPLE

Basic Data:

Geometry

For simplicity a 2-dimensional rigid wing, re-

strained by springs in vertical translation and pitch
was considered. The two degrees of freedom are:

Vertical translation: z = cql (representing wing
flexure)

Pitch: _ = q2 (representing wing
torsion)

in general z = cql + xq2

The axis of pitch is at the half chord.

The axis of centre of gravity is at the half chord.

Since the modes are uncoupled at zero flight speed

they are normal modes and the frequency ratio is

_%:%_: : 0.4676:1.

Structural damping at a value of g = 0.02 is

assumed to be present in each degree of freedom. It

is assumed that displacements to be recorded in flight

tests are linear displacements at the half chord,

quarter chord and leading edge and the angle of pitch.

Thus the first and last of these 'pickups' give meas-

urements proportional to the generalized co-ordinates

ql and q2 respectively. Finally it is assumed that

the excitation is linear vertical excitation applied at
the quarter chord.

Wing Flutter

The aerodynamic derivatives are'assumed to be

constant both with the frequency parameter and for-

ward speed, i.e., any Mach number effect is neglected.

The equations for free oscillation can be written
in the form:-

-14.0492 + 1.9_ _'u_7. + (1 * O.O2_)y o O.Ppb:,_ * p.2r*S :

- .4RUM -0.n908S + 0.24vp_ - .565v '_"

+.20 (i + O.OSzJyo

: o (20)
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where V c = flutter speed

COg

V c

g

gc

Eaz

YO = _
2 _

PVcSC

c is the wing chord

s is the wing span

The equations were solved for Yo with v = 1 (cor-

responding to the critical flutter speed), and gave

Yo = 2.92 and y = 0.666.

From a knowledge of Yo it is possible to relate

any known Ell (the spring restraint against vertical
translation) to an actual flutter speed (Vc) , knowing
the dimensions. Here, however, we are only interested
in the relative speeds, i.e., v, the fraction of V c.

Response Calculations

With the excitation at the quarter chord and

after the substitution for Yo = 2.92, Equation (26)
becomes:-

-,%

To'i
o_e o.8ts

0.77_ 0"9

0.75_ \\_ , o._S

, "</i'_ _-- i'_ --_-

0-'; / \\ / "_
0-57, \ / J _,

o,Z ',

0.41; I0-45 o. 43"75

!
J -2.0

Figure 3. Vector Diagram for Binary Example:

v = 0.75, displacement 1

(-14.04Y _ + 2.92) + (l.98vv + 0.0594)_ 2.2"tv 2 + O._SvvZ

- .4Pvw_ (-.9908_ _ - 0.585v 2 + 0.q4894

+ (O.94vy * 0. 0189.98) _

-0.25

q
(27)

where F is an arbitrary force level. For simplicity
F is taken to be unity in the calculation which follows.
Values of v = 0, 0.25, 0.5, 0.75, 0.9 and 1.0 were

chosen, and in each Case ql and q2 were calculated
for a set of increments in vo. Assuming perfect

accuracy of recording the measurements taken in flight
from the four 'pickups' (half chord, quarter chord,

leading edge, pitching angle) would be ql, ql-1/4q2 ,

ql-1/2q2' q2"

These quantities were plottedvectorially andthe

frequencies and rates of decay were estimated from

the near circles; a typical example is shown in Figure

3 for pickup 1 at 3/4 of the flutter speed.

Comments on Figures

The change in character of each vector diagram
as the forward speed is increased is indicated in Fig-

ures 4 to 7. Consider first Figure 4 for displacement

1, i.e. the displacement of the first pickup (see above)

which gives a direct measure of the first co-ordinate

in the calculation. At zero speed the co-ordinates are

normal co-ordinates so that the vector diagram re-

sults in a single pure circle with a resonance fre-

quency given by _o = 0.456. As speed is increased the

size of the circle reduces (the same scale has been

kept throughout each of Figures 4 to 7, although of

course different scales were used to estimate fre-

quency rates of decay in practice) and a small sec-

ondary circle starts to appear near the origin. This

second circle occurs at the frequency of the pitching

mode which is now beginning to couple slightlywith

the bending mode due to the presence of the aero-

dynamic forces. The new circle continues to increase

in size until at a speed of nine tenths of the flutter

speed it is the greater of the two. The last diagram

in this series is drawn for the flutterspeed itselfat
which one of the circles must have increased indefi-

nitely in size. This is in fact the new circle cor-

responding to the higher frequency.
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Figure 5. Vector Diagram for Binary Example: Displacement 2, Varying Speed
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Vector Diagram for Binary Example:

-Lr= o._j "U'= 1.0
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5

Displacement 3, Varying Speed
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Figure 7. Vector Diagram for Binary Example: Displacement 4, Varying Speed

Figure 5 gives the diagrams for displacement 2,

the quarter chord, which shows two circles even at
zero speed; neither of these circles are perfect al-
though the error is not detectable on the scale shown.
Both circles reduce with increasing airspeed for a time
and the smaller (corresponding to the higher fre-

quency) changes its position relative to the origin.

Ultimately, as before, the higher frequency circle
increases in size to an indefinite extent at the flutter

speed. Similar sequences are shown for the other

pickups in Figures 6 and 7, although in the last figure

the hi_her frpn._ney..... circle ."cmaln-,o the l_-geL-

throughout.

Estimation of Damping in Flight and Conclusion

As outlined in paragraph 2 we estimate the

damping _c from the circles. Near each resonance

suitable equal increments in frequency are chosen,

and these are marked on the curves of Figure 3. The

actual resonance is picked out from the figures by

using a pair of dividers to get the maximum phase

change, In this example there was never any difficulty
in putting a circle through the points (a typical circle

is shown in Figure 3) and the damping was estimated

from convenient increments of frequency as can be
seen from the construction on Figure 3.

The damping as obtained from each pickup was
then plotted against forward speed, and the results are

shown in Figure 8. Since our example is completely
specified mathematically, the dampings can also be

calculated exactly. In Figures 9 and 10 the calculated
roots are plotted and compared with the estimates
from each of the four 'pickups'. Figure 9A, shows the

change in frequency of the lower frequency with for-

ward speed and Figure 9B, shows the change in damp-

ing: Figures 10A and B give the corresponding re-

sults for the higher frequency root, which is the one

that leads to flutter at v = 1.0. The agreement in

I0

o{

0'4

0._

0 0-25

Figure 8. Damping Estimates from the Vector

Diagrams Against For_vard Speed
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Figure 9. Comparison Between Estimates of Damping
and Frequency, and Exact Calculation,

Bending Mode
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Figure 10. Comparison Between Estimates of Damping

and Frequency, and Exact Calculation,
Torsion Mode

general between the different estimaes andthe calcu-

lated values is very good. The only serious error in

the lower frequency root is obtained from the rota-

tional 'pickup'; this seems to give the wrong trend of
frequency with speed when the damping exceeds 10%of

critical -- a condition which would in any case be

unimportant in practice. For the higher frequency
root the accuracy is good throughout, and best for
this same rotational pickup, as might be expected on

qualitative grounds. Any of the pickups, however,
would give a good prediction of flutter speed (see

Figure 10B) provided the speed increments chosen

were not too large.

From flight measurements in practice one could
scarcely hope to get such a consistent set of results
as has been obtained from the estimates in this

simple binary example. On the other hand the example

does suggest that the method is sound in principle so

that if there are practical arguments which favour

recording from continuous excitation rather than

decaying oscillations the Kennedy and Pancu type of

analysis is likely to provide good results. It may well

be however, that with many degrees of freedom pres-

ent, as on real aircraft, the choice of pickup position

is more important than in the binary example. In

general the flight analysis would be carried out for

two or three pickups as a normal safety precaution.

RESULTS FROM A LOW SPEED WIND-TUNNEL

MODEL

The method outlined above has been applied by
Bristol Aircraft Limited to a wind-tunnel model de-

signed to investigate flutter of a T-tail configuration.

Figure 11 shows a typical vector diagram at a for-

ward speed that is about 83% of the extrapolated

flutter speed. The diagram is for the mode which
starts at zero speed as tailplane fundamental sym-

metric torsion, and which provides the main pointer

to the critical flutter condition as did wing pitch in

the theoretical example of section 3. The experimental

results are consistent and define a very good circle.

Figure 12 shows the variation in frequency anddamp-
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ing with airspeed of the fundamental bending mode of

the tailplane and Figure 13 gives the corresponding
results for the fundamental torsion mode*. The graph
of Figure 13 can be extrapolated to the flutter speed.

It is not the purpose of this paper to deal with
the experimental technique involved but one or two
points should be made. It is necessary to have a

phase meter available that gives accurate readings in
the presence of buffeting. The instrument used by
Bristols measures in-phase and quadrature compo-
nents, and is arranged to descriminate against noise
(as in a wattmeter type of phasemeter). It can give
an accuracy of about 5% even with a signal to noise
ratio as low as unity. The rate of sweep of the ex-
citer (in terms of frequency) is determined by trial

and error, and a satisfactory rate will depend on the
damping in each case. The frequency control of the
exciter must be accurate, i.e., high short term stabil-
ity is required, and in practice at low dampings the
frequency increments may need to be as small as
0.4_ in order to get a reliable measure of the
damping.

Figure 11. Example of Phase Against Amplitude Plot

with Damping Analysis

*These terms are used for descriptive purposes
only: in practice, of course, the modes change shape
under the aerodynamic forces.
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o ioo _ 300 V $.p.s.

Figure 12. Tailplane Fundamental Symmetric Bending Resonant

Frequencies and Damping Against Airspeed
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LIST OF SYMBOLS

a is an inertia coefficient

d is a damping coefficient

e is an elastic coefficient

g is the phase angle of the restoring force (a
damping coefficient}

q is a generalized co-ordinate

F is a generalized exciting force

% is the natural frequency of one degree of freedom

0) is the exciting frequency

_2 °)2

2

tOo

V c is the flutter speed

V is the forward speed

V

v - Vc

List of Symbols (cont)

is a frequency parameter %
Vc

c is the wing chord

s is the wing span

p is the air density

Eli is the spring restraint against vertical trans-
lation

Ell

YO -

PFcS c 2

z is vertical displacement

a is the angle of pitch
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