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Abstract

Methods of interpreting response measurements
which could be amenable to flight flutter testing pro-

cedures are being studied analytically and in the wind
tunnel. One suggested scheme, which requires evalu-

ation, is an iterative technique in which derivatives

obtained from subcritical response data are used to

indicate the approach to flutter. This paper considers

a simplification of this procedure by examining the

manner in which a single characteristic of the sut)-

critical response behaves in relation to variations of

the density or dynamic pressure in the approach to

flutter. The use of this single parameter scheme is

examined for random excitation as well as for sin-

usoidal forcing. The feasibility of the method is

illustrated by several examples and the relative merits
of random and sinusoidal excitation are discussed:

ocity enters. Actually, the work startedwhenwe were

considering the application of ideas suggested by

Professor Moll_-Christensen. The present work

evolved as a special consideration, and we thought it
to be of enough interest to merit separate attention.

In the first part of the paper an elementary but

rational analysis is given to show how the response

of a wing system might be expected to depend on air
density, for both the cases of sinusoidal and random

torce input. A theur_i_i ,nodel i11u_trating thc

technique of extrapolation to the flutter condition is

then considered. Then, inthe second part of the paper,

attentionis focused on the experimental testing of the
approach by application to some wind-tunnel studies.

INTRODUC TION

In this paper certain new slants are given on the

prediction of critical flutter condition from subcritical

response data. Specifically, the technique considered
herein deals with the manner in which the forced

response behavior of an aeroelastic system varies

with changes in air density, while velocity is being
held essentially fixed. The impression is not to be

given that density considerations are necessarilynew,
but rather the point of view is held that a further

examination of density effects may lead to a simple
index which may be useful in the prediction of flutter.

The motivation stems from the fact that density appears

in a rather clean-cut fashion in the equations for

flutter, in contrast to the complex way in which vel-

ANALYTICAL TREATMENT

Derivation of Extrapolation Equations

Let us consider an aeroelastic system which is
being excited into motion by either a sinusoidal shaker

or a sinusoidal gust, and then proceed to investigate

how the amplitude of the response, such as deflection,

is dependent on the density of the air flow. To do this,

introduce the equation governing the motion of the

system as follows

Dw = p = J mw + p V2DL TM + F s + z Fg (1)

where the equation may be interpreted either in dif-
ferential operator form or in matrix notation. The

operator D on the left hand side converts the surface
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deflection w into the total surface loading composed

of the inertia, aerodynamic, and applied loadings on

the right hand side. The operator D L is complex and

is a function of Mach number and reduced frequency,
and when operating on the deflection, leads to the aero-

dynamic loading; the shaker force F s (considered to

be distributed over a small area to give an intensity)

and the gust loading p Fg are treated together for
convenience, and will be separated later. It is re-
marked that the sinusoidal gust condition is introduced

because this condition yields a necessary part -- the

transfer function -- of the solution for response when

random inputs are involved; the density p is shown

specifically as an ingredient of the gust loading so as

to keep the density in an explicit sense throughout

the analysis.

We now choose to make an approximate solution
of equation (1), since our essential result is arrived
at rather quickly, and will leave a more rigorous,
but lengthier, treatment which leads to the same re-
sult to an appendix. The approximate solution is of

the Galerkin type and is made by assuming that the
deflection is expressed in terms of the modal shape
which occurs at flutter, thus

w = alw f (2)

where a 1 is a coefficient to be determined and wf is
the flutter deflection shape which satisfies the equation

Dwf = J/ mwf +p/vf2DL?f (3)

which is simply equation (1) with the forcing terms

suppressed. Substitute equation (2) into (1), use equa-

tion (3), multiply by wf and integrate over the wing
surface; the result leads to the following _olution for

a I

Qs + P Qg

a 1 - vf2A f 2A (4)J - J M -p
f + P/ v

where Qs and Qg are in the nature of generalized
forces

Qs = f WfFsdS ' Qg = j WfFgdS

and

M = f mwf2dS, Af = f WfDLfWfdS , A = f WfDLWfdS (5)

In general, all of these generalized coefficients are

complex. At a velocity and frequency equal to the

values at flutter but at a subcritical value for density,

the value of a 1 is particularly significant and is

Qs + p Qg
a I = (6)

vf2Af _Pf - p,,

By inverting this equation and at the same time sep-
arating the effects of the shaker and gust terms, we
arrive at the final two equations which indicate how the

amplitude of wing deflection varies with density

1 ,')IA.,<I
1%'_7= Io_1 rp.f-p_

shaker only (7a)

Ps_}l_sl _
gust only (Tb)

I% I t°el P Ps

These two equations suggest the basic linear extra-
polation procedure of this paper. Thus, assume that

in-flight measurements of response are made accord-
ing to the following plan: we fly at a velocity near the

expected flutter speed (or at a velocity for which we

want to prove the aircraft safe), but take care to first

fly at a high altitude where the density is low. Then,

repeat the tests at successively lower altitudes. Then,

for tests utilizing a sinusoidal shaker input, we might

expect a plot of the reciprocal of the amplitude versus

density to form a straight line, which when extra-
I

polated to _ = o yields the density that ought to pro-
,-11 1

duce flutter. For the case of agust input,X'_-'_is plotted
1

against p for an expected linear relationship. In the
actual testing in a random force input environment, the

output spectrum of response will be found. But since
this spectrum is proportional to the square of the

frequency response function for sinusoidal gust input,

we see that the reciprocal of the square root of the

output spectrum should be plotted against-- I , to arrive
P

at a condition consistent with that indicated by equation
(7b).

In applying equations (Ta) and (7b),itis implied

that the frequency of flutter is known. This is, of

course, not so; therefore the procedure to follow is to

observe the amplitude-density behavior at several

frequencies until it becomes clear from the frequency

response plots what frequency is emerging as the

flutter frequency.

Example of Calculated Results

As a test of the possible range of applicability
of equations (7a) and (7b), response calculations were

made for a rectangular cantilever wing, and inter-

preted in accordance with these equations. The re-

sponse analysis was limited to two degrees of freedom,

one bending and one torsion, and employed the aero-

dynamic coefficients for M = 0.8 in a strip fashion.

The frequency response functions obtained for ampli-

tude of torsional displacement at the wing tip are

shown in Figure 1, where the curves at the left are

for a sinusoidal gust input, whereas the curves at the

right are for a sinusoidal shaker input located at the

tip and at 10 percent chord position. The parameter

is a ratio of structural mass to air mass, and
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Fig_are 1. Frequency Response

therefore may be regarded as inversely proportional
to air density. It is seen that as the air density
increases (_ decreasing) an ever _ruwh_ ,_iid s,hr.rper

peak develops at a frequency of 158 cps, thus suggest-

ing a frequency of flutter.

Application of equations (7) to the amplitude

values at this frequency gives the curves shown in

1

Figure 2. Extrapolation of the curves to_-_L= 0 indi-

cates a flutter density ( # = 89) which agrees identi-

cally with that given by a conventional flutter anaiysls.
The very pronounced range of linearity is also to be

noted; in fact, using only the data at densities of 45
and 75 percent of the flutter density would give a

flutter prediction erring by only a few percent. It is
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significant to note also that the data point correspond-
ing to the 45 percent of critical density condition is

not a major peak in the frequency response curve for

this density. Thus, subcritical response data which

have not yet indicated peaks may still be useful.

The single data point and dashed curve shown for
densities above the critical value are shown simply as

a matter of interest to indicate that the theoretical

response calculations based on sinusoidal conditions
show a branch above the flutter condition as well as

below.

The main conclusion to be drawn from this

example is that the present technique for predicting

flutter appears quite promising. In the secondpart of

the paper we shall see how well itworks when applied
to wind-tunnel studies.

Before looking at the experimental results, we

might make a few comments on the general applica-

bility of the density extrapolation technique. As with
other flutter extrapolation techniques, there will un-

doubtedly be cases where this scheme breaks down.

One possible example is that associated with wing

systems which are capable of a single degree of

freedom type flutter. Interestingly enough, equation

(7) can be used to demonstrate why. Up to now we

have tacitly assumed that unbounded response (al-----_

oo ) occurs when _/ - p becomes zero. It, of course,

also is possible for the response to become infinite

when A vanishes, and this may occur either in a

classical way for attached flow, or what is more

likely, when the flow becomes separated, such as in

stall flutter. The equation indicates that density is

unimportant in these instances, and this is actually

what the experiment shows. Thus, any flight investi-

gation should keep this possibility in mind.

EXPERIMENTAL RESULTS

The previous section concerned the analytical

background which has formed a guide to some wind-
tunnel experiments discussed in this section.

The linear extrapolation technique has been

examined experimentally for six cases involving ran-
dom excitation and for one case of sinusoidal excita-

tion. These various cases are illustrated in Figure

3, where a typical flutter boundary is used to illustrate

the manner in which the flutter condition was ap-

proached. Geometric properties of the four semi-

span, cantilever mounted models are listed in Table
I. Model A was used to obtain three sets of sub-

critical response data -- Case I and Case II at two

different stagnation pressures, but increasing velocity,

and Case 1TI at constant velocity but increasing

density. Models B and C were tested at constant stag-
nation pressure and increasing velocity. ModelDwas

equipped with an electro-hydraulic shaker housed in a

tip tank. This model was examined for two cases --
Case I, random excitation at constant stagnation pres-

sure, and Case II, sinusoidal excitation at constant

velocity. In all of the cases examined the type of

flutter encountered was classical bending torsion

involving the coupling of well separated modes.
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TABLE I

GEOMETRIC PROPERTIES OF MODELS TESTED

Aspect Taper Sweep Airfoil

Model Ratio Ratio at 1/4 C Section

A 5 1.0 0 ° 6 percent Cir-

cular Arc

B 6 1.0 45 ° Flat Plate

C 3 1/7 45 ° NACA 65A004

D 3 1.0 0 ° NACA 65A010

Random Excitation

The subcritical response data for Models A, B,

and C were obtained by recording the output of re-

sistance wire strain gage bridges mounted near the

root of the model, while the model was responding to

the normal turbulence in the wind-tunnel airstream.

The response data were recorded on magnetic tape

using frequency modulation amplifiers (ref. 1). After

completing the tunnel runs, thirty-second samples of

the tape records were analyzed using analog data

reduction equipment described in reference 1. The

peak values in the power spectra of strain response

were operated on to yield numbers proportional to

the reciprocal of the absolute magnitude of the strain

response. These results are illustrated in Figure 4
where the response magnitudes are shown as functions

of the ratio of the dynamic pressure at flutter to the

dynamic pressure associated with each point.

It should be pointed out that this form of pre-
sentation is not identical to that suggested by the
analysis. Some of the experiments were completed

before the analysis was available, and the form of

presentation chosen was such that all of the experi-
ments would be consistent within themselves. For

example, the velocity squared term has been combined

with the density to form the dynamic pressure. This

is a necessary step in that some of the experiments

involved an approach to the flutter condition primarily
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through increases in velocity. These variations in

velocity require the statement of additional qualifi-

cations to those already mentioned ifone is to expect

a linear extrapolation of the response data. Perhaps

the most important of these additional assumptions
is that near the flutter condition, the air forces

associated with flutter do not vary rapidly with the

reduced frequency and Mach number.

An idea of the usefulness of these extrapolation

methods can be gained by examining Figure 4. A

reasonable degree of linearity of the response data is
indicated for all of the cases, when the dynamic pres-
sure is within about 20 percent of the critical value

and the extrapolation gives a good indication of the
flutter condition. The least encouraging results were

obtained for Model B which was poorly instrumented.

The strain gage bridges were mounted very near the
root and were about equally sensitive to bending or
torsional motions. The response data for the other
cases were taken from strain gages arranged such

that they were sensitive primarily to torsional strains.
It might be mentioned that the results shown for the
third case of Model A indicate a linear relation to

lower values of dynamic pressure than most of the
other cases. This result may be associated with

the constant velocity method of obtaining the response
data in this case.

Sinusoidal Excitation

In order to gain some insight regarding the

relative merits of sinusoidal excitation as opposed to

random excitation, two cases have been examined for

a model equipped with an electro-hydraulic shaker
contained in a tip tank (Model D). These results are

shown in Figure 5. The data in the left hand part of

the figure were obtained in the same manner as the
data of the previous figure except that the angular
motion of the tip of the model was deduced from the
combined output of two linear accelerometers mounted
in the tip tank.

The data shown in the right hand part of Figure

5 were obtained by measuring the amplitude of re-
sponse at the two accelerometer stations due to a
sinusoidal applied force. The amplitudes were meas-
ured after the shaker had been tuned to the frequency

of maximum response which, in this case, appearedto
be associated with the torsional mode. Although some

response due to turbulence was present during the
shaker tests, the phase sensitive instrumentation used
effectively eliminated its effects.

It is noted that both sets of response data indi-

cate an equally good extrapolation to the flutter con-
dition. If it is assumed that random excitation and

sinusoidal excitation will yield equally adequate extra-

polation results, the question of relative cost or dif-

ficulty of the two methods is of interest. It was
mentioned earlier that six cases of random excitation

as opposed to one case of sinusoidal excitation have
been examined. In the wind tunnel, at least, it is

believed that this six-to-one ratio is a fair estimate

of the relative difficulty of the two methods. This is

due, primarily, to the fact that the turbulence is always
available while the shaker must be constructed and

installed. Although turbulence also exists in the

atmosphere, the problem of finding it during a flight

test and determining enough of its properties to permit

its use might improve the relative attractiveness of a
sinusoidal shaker as a source of excitation.

COMPARISON OF EXTRAPOLATION FROM RANDOM lAND SINUSOIDAL EXCITATION
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APPENDIX

The Response-Density Relationship

A more rigorous development of equation (7)can
be made along the following lines. Introduce the two
equations

(D - _2m)w = p V2DL TM (Ala)

(D - _2m)z = pV2DL'Z (Alb)

We may now proceed to solve equation (1) by
expressing the deflection by the following series ex-

pansion involving w n

w = alw 1 + a2w 2 + a3w 3 + ... (A5)

where the an'S are unknown coefficients to be deter-
mined. Substitute into equation (1), use equation (A2a),
multiply by Zm, integrate over the surface and then
apply equation (A4); the result is an independent solu-

tion for a n as follows

where the first is simply the statement of flutter, i.e.,
equation (1) with forcing terms suppressed, and the
second is what we shall term the transposed mate of

equation (Ala). For fixed v and _, these equations
may be regarded as eigenvalue statements of p ; they

may be shown to have the same eigenvalues P, (which
in general may be complex), and hence may be written

Bw n = Pn V2DLWn (A2a)

Bz m =Pm _V2DL'Zm (A2b)

where B = D -_ m. Considered jointly, some signifi-
cant relations between w n and z m may be found. Thus,
multiply equation (A2a) by Zm, equation (A2b) by Wn,
integrate both over the wing surface, then subtract the
re_ultin_r ex__ressions and make use of the fact

that f ZmBWndS = f WnBZmdS and f ZmDLWndS =

f WnD L'zmdS; there results the relation

(Pro - Pn) f ZmDLWndS (A3)

From this equation we arrive at the basic orthogonality

properties of w n and z m as given by the following
equation

f ZmDLWndS = O m f n (A4a)

f ZmFsdS + p J- ZmFgdS
a = (A6)

n (p. _ p) v2A
n

Now, if w, v, and Pl are chosento represent an actual

flutter condition (w = _f, v = vf, p 1 = p/), then w 1 will
represent the associated flutter mode shape, and the

solution for a 1 becomes

f ZlFsdS + pf ZlFgdS
a 1 = (A7)

,(pf - p) vf2A1

This solution thus confirms the validity of equation

(7) presented in the body of the paper. The form of the
equations is the same, but it is of interest to note

that the more rational analysis presented here indi-
cates that the generaltzeci iorces are associated wi[h

the work done by the applied forces in moving through

thecnodal displacements of the transposed system.
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