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The effects of including compressibility in the Kemp-Sears 
problem of aerodynamic interference between moving blade rows are 
examined. Methods of linearized, subsonic, plane, unsteady flow are 
adopted. The major new effect is that a resnnance appears a t  certain 
combinations of flow Mach number, tip Mach number, and blade 
vane ratios. The resonance is a t  exactly the Tyler-Sofrin cutoff condi- 
tion for rotor-stator interaction. A t  such conditions the unsteady lift 
on a blade row due to externally imposed nonstationary upwash 
vanishes. However, the resonance appears to be very sharp and 
seems to he more significant as an indication that around this condi- 
tion the unsteady lift changes very rapidly. 

This paper is concerned with unsteady blade forcw developed on an 
axial compressor blade row due to  unsteady periodic wave disturbances. 
The applications discussed pertain to unsteady disturbances produced 
on a blade row due to  steady-state lifts of adjacent rows moving past the 
row of interest and due to viscous wakes shed by upstream rows. 

The framework for the analytical approach to  the solution of this com- 
plex problem is contained in two pioneering papers by Kemp and Sears 
(refs. 1, 2). Kemp and Sears adopt the representation of blade wheels as 
infinite cascades of two-dimensional airfoils. They consider a typical 
airfoil in the blade row on which unsteady forces are to be calculated as 
an isolated airfoil in linearized, unsteady, incompressible flow. This 
isolated airfoil is subject to unsteady disturbances from various sources. 
Reference 1 considers nonstationary upwash due to translation of steady- 
state design fields of an adjacent row. In this case the effect of a row upon 

1 The author gratefully acknowledges substantial assistance rendered during the 
course of this work by Dr. T. C. Liu. Many thanks are also due to N. J. Lipstein and 
I. H. Edelfelt of the General Electric Research and Development Center. The work 
was supported financially by the assessed funds program of the G.E. Research and 
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514 UNSTEADY FLOW A N D  NOISE 

an adjacent row downstream of it and the nonstationary upmash due to 
the “inviscid” wakes is included. Reference 2 considers nonstationary 
upwash due to viscous wakes shed by an upstream row. In  this papcr two 
refinements are considered. First, a typical airfoil of the row on which we 
wish to calculate the unsteady blade forces is regarded as a member of an 
isolated, infinite cascade of airfoils rather than as an isolated airfoil. 
Second, in calculating both the nonstationary upwash and the unsteady 
forces we include compressibility cff ects. Methods for linearized, subsonic, 
plane, comprcssiblc unsteady flow are adopted. For the present, we have 
not included nonstationary upwashes due to  “inviscid” wakes. The 
motivation for incorporating t hcse refinements is simply that in most 
present-day applications whcre unsteady blade forces in fans and com- 
pressors are of intcrcst, th(x Mach numbrrs of thc flow are too high for 
compressibility effects to be negligible. 

Consider an isolated, infinite flat-plate cascade of identical airfoils 
spaced s apart whose chord lengths have bwn normalized to unity and 
with flow at  3Iach number M through the cascade. M is restricted to 
M<1 (subsonic flow through the blade passages). The problem is to  
calculate the unsteady lift on a typical blade of such a cascade due to a 
known nonstationary upn-ash on it where the time-dependence of the 
nonstationary upwash is of  simple harmonic typc.. The nonstationary 
upwash will later be rclatcd to the translation of  adjacent steady-state 
design fields and to viscous wakes shed by an upstream row. Due to  thc 
symmetry of the cascade the nonstationary upwash on the nth blade is 
essentially the samc as on the zeroth blade, except for a phase diffcrcnce 
factor of exp ( j n y ) * ,  where we will later rdate y to the aerodynamic 
parameters. 

The method of solution adopted is the method of distributed singulari- 
ties and singular integral equations. An x-y coordinate system is used 
as shown in figure 1. Let .$ denote the running coordinate on the zeroth 
blade that runs from -3 to 3. Let the unsteady lift distribution on the 
zeroth chord be denoted by F(.$)elWt. Let K,,(z,.$) denote a kernel function 
that gives the nonstationary upn-ash a t  the point (x,O) on the zeroth 
blade due to an infinite roiv of equal oscillating forces of unit strength with 
phase shift y located at .$ and its corresponding points; Le., a t  

.$+m sin ( C Y , ) ,  ns cos (a,) 

where n=O, fl, f 2 ,  . . . , ctc. K ,  (z,E) is known since it is merely the 
sum of upwash contributions due to unit forces of known phase and 
location. Let V d ( ~ ) e 3 ~ ‘  be the known nonstationary upwash due to  the 
adjacent rows. Then the boundary condition that the velocity normal to  



COlIPRESSII1ILITY EFFECTS I N  T H E  KEIIP-SEARS PROHLEJI 515 

ZEROTH 

FIGURE 1 .--Coordinate systena. 

X 

the blade chords be zero leads to the integral equation: 
112 

F(E)Ku(z,E) dE= - 2 k ( X )  . . . 

where K,(z,()  and uJ(z)  are known. Only F ( E )  is unknown, and, after 
solving equation (1) , the total unsteady lift is found from 

112 

(totallift) = 1 ~ ( 0  (2) 
-1 I2 

K,(z,()  has a singularity; i.e., a term as l/(z--{); hence, equation (1)  
constitutes a singular integral equation for the force distribution. There 
are two other requirements on F ( ( )  : first, that it vanish at  the trailing 
edge = 3 (the Iiutta-Joukowski condition), and, second, that i t  have a 
square-root singularity a t  the leading edgv; i.e., the force distribution 
tends to 00 as E+- 3 as 1/ 1/E++. 

CALCULATION OF KERNEL FUNCTION 

The physical significance of the kernel function K,,(z,E) is repeated: 
It is the upwash at  point (x,O) on the zeroth blade due to an infinite row 
of unit forces located at  

(+?is sin ( a e ) ,  ns cos (a,) 

with n=O, f l ,  f2 ,  . . . , ctc., where the phase of the oscillating force 
on the nth blade is related to that on the zeroth blade by a factor 
exp ( 3.w). 
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In  the derivation of the kernel function me have relied heavily on a 
recent paper by I h j i  and Okazaki, who treat an analogous problem 
(ref. 3). We are especially indebted to their rcpcated and ingenious use of 
the Poisson summation formula to snitch from infinite series of Hanltel 
functions to infinite series of exponcntial functions. In  view of their paper, 
we omit many of the details of the derivation of the kernel function and 
follow Iiaji’s notation. 

The first step is to note that the nonstationary upwash V,(x,O,t) at 
(x,O) due to  a force of complex strength exp ( $ 2 7 )  located a t  
[[+ns sin (a , ) ,  ?is cos ( a , ) ]  is as follows. 

Let k = w/a,  P = d1- W ,  p = density of uniformly flon ing medium, 
a = speed of sound, x ,  = x - t - ns  sin (as), yn = - ns  cos ( a8), and 
x,’=x’-~--ns cos (a,) .  Then 

and 

The above expression for V ,  may be deduced from equations (8) and (11), 
section 14.3, of Y. C. Fung’s “An Introduction to the Theory of Aero- 
elasticity.” Thus, 

3 HO(*) and HI(?) are Hankel functions of the second kind of orders 0 and 1, 
respectively. 
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4npp2Ma 1-M2 K,.(x,t) = 

sin 
2w 

where 

- -2(x-E) sin ( a , ) ~  r= 
s[ 1 - M2 cos2 (a,) ] 

ksM sin (a,) 
*=- y- 

2n [ (1-M2)  

-27r sin (a,) p =  
sC1-M' cos2 ( a , ) ]  

and 

2n di=m cos (a,) 
s [1-M2COS2 (a , ) ]  

e=- 

and 

and 
77=d I x - t  I 
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1, represents the contribution from the integral term in equation (3); 
we give below the transformed form of it after application of the Poisson 
summation formula: 

I , = l  
m exp [ j 1 i ~  - p d (6 - n)2- w2] 

~ 

1 + p  d ( 6  - n) 2-  W 2  
IC 

M ( 1 - JP) 
--m 

for (x-5) <O. ( 54  

I ,  = ex m cxp [j?zP--d(6-?2)?-w?] 

1 k --m 

- p 4 ( 6  - n)2- w2 
M ( 1 -A/*) 

T 

for (x-()>O. 

Poisson’s summation formula as under 
For x#(, the expressions for 11, 12, and I 3  may be transformed by 

The expressions for Il,  12, and I3 diverge as x--+ in rquations ( 5 a ) ,  ( j b ) ,  
and (5c), or as P, 7-0, which is merdy the indication of the 1/1 x-5 1 and 
log I x - t  I types of singularitics in K ,  ( ~ ’ 5 ) .  To locate thrsc singularitics, 
we examine the small value expansions of the Hankel functions as follows. 

where yo = 0.5772 = Eulcr’s constant and ( 5 )  - 2 j / ~ x .  With the aid 
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of the above it is easily shown that 

is regular as z+. This motivates writing 

Finally, let 

Equation (1) now reads as 

CALCULATION OF UPWASH DUE TO TRANSLATION OF 
ADJACENT STEADY-STATE FIELDS 

Potential Interaction 

The problem of potential interaction (sce fig. 2 )  is to calculate the 
nonstationary upwash on line A B  due to stcadg-state design lifts on a 
blade row on the right-hand side, which translatcs downward a t  a certain 
speed corresponding to a tip AIach numbcr AT,. In a linearized treatment, 
clearly the stagger (ar) and Rlach number Mr of flow through the ad- 
jacent row are related to M t ,  M, and as by 

Y ‘  

FIGURE 2.-Geonietry of adjacent 
row. 
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cy1-= tan-‘ [M,+M - sin ( a 8 ) ]  
111 cos (as )  

and 
hl,= ~ 1 1 1 ? + A 1 ‘ + 2 ~ X K ( G J  

Lct W,=aM,. We first find thc solution for velocity components IC’ and 
d, parallel to the x’-y’ coordinate system of figure 2, due to rquallg spaced 
concrntratc.d unit forces a t  th(3 origin and its corresponding points as 
shown in figure 2. (Sot(. that thc bladc exrrts a forcc on the fluid equal 
and oppositc to the force cxrrted by the fluid on thc bladr.) Wc use a 
framr of rcfcrmce fixvd with rrspcct to the translating bladr row so that 
we have a steady-state problem. Wc have to  considcr thc effrct of a 
sum of forces: 

1 5 S(x’)S (y’--2n;) 
n=- 00 

where 1 denotes a unit force vector and 6 stands for thc Dirac ddta  
function. By using a result on page G8 of reference 4 concerning the sum 
of an infinite row of equally spaced dclta functions, n-c find that the 
above is clearly equal to 

- 1 S(d) [ 1+2 2 exp (j2+)] 

d 7Z=l 

since our use of complex forms always implies that rcal parts arc to be 
taken. The linearized equations of motion and continuity arc 

aut dU’ 
cos (a,) ,+ sin (a,) - ax ayr 

and 
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In  what follows we omit the y’ indepcndrnt tcrm in the force since it givcs 
a stationary upwash (cf. p. 591 of ref. 1 ) .  In  equations (12a), 1(12b), and 
(12c), p’ and p’ stand for small perturbations of the drnsity and pressure. 
Eliminating p’ from equations (lob) and (1Oc) we derive 

a a d  aut 2s(xt) ( 2 7 r ~ r ) ]  
cxp j __- = o  a [ cos (ar)  ax’ -+ sin (a,) - ay‘I [ q - G - m  

Since ut,  v’, and the dclta function term vanish far from the bladc row, 

(11 )  
aut au 2s (2’) __-=- 

(I< utta-Joukowski Law). 
Next wc climinatc the force terms in equations (126) and (12c); 

I assuming an isentropic relation between p’ and p’, wc obtain: 

aut aut 
- [1-M,2 cosz (ar)]+-’ [I-M? sin2 (a,)] 
ax’ aY 

aut aut 
= M,2 sin (a,) cos (a,) -+-’ [a,! ax 1 (12) 

(modified continuity equation). 
€kbrg-equations (11)  and (12), single rquations for u t  and v’ may be 

obtained that may bc solved by requiring that u’ and IJ’ vanish as x’+f 00. 

We omit the details and give thc result. 

m 

x c exp ( j  2+) 
1 

Similarly : 

T 1  27rny‘ 27rnx‘ 
vtforx’2O=--_ exp j-- 

p d w  r ’ ( d ) {d[1-$1.1 cos2 (a , ) ]  

The upwash normal to line AB (fig. 2) is 
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v d = v ’  COS (a,) -u’ sin (a,) 
Thus vd for x’ >< 0 is 

M? sin (a,) cos (a,) sin (a,) 
1-M? COS’ (a,) 

j sin (as) ~ I - M ?  
pd W ,  =F 1 - M,2 cos2 -1 (a,) 

2 m x ‘ j M 2  sin (a,) cos (a,)  

1 

rn 

x c exp ( j  ’+) exp [ - 
d 1 -M,2 cos2 (a,) 

( 1 3 4  
The effect of distributed loading on a finite chord may be estimated by 

integrating the results of equation ( 1 3 4  over the finite chord. We again 
omit thc dctails sincc the derivation is very similar to  that outlined on 
pages 589 through 590 of reference 1. Noting that these upwash fields 
translate with respect to  the adjacent rows, onc readily obtains the non- 
stationary upwash on the adjacent row.  

Viscous Wake Interaction 

The form of the nonstationary upwash contributed by the viscous 
wake intraction mechanism was assumed to be the samc’ as in rcference- 
2. The pertinent equation giving the upwash is equation ( 2 8 )  of reference 
2. 

FINAL FORMULATION OF INTEGRAL EQUATION (9) AND 
METHOD OF SOLUTION 

From figure 3, clearly the frequency w of unsteady lift is (27r?i/d)M1 a 
and thus k = w / a =  ( 2 m t / d ) M , .  In what follows we consider each harmonic 
n separately. The phase lag y is discussed on page 592 of reference 1. It 
is easily shown that 

Assume for F(E)  the form 
N 

A,, cot (:)+ A ,  sin (n4) 
1 

where E = - 3 cos 4, 4 = 0 at  the leading edge, and 4 = T at  the trailing edgc. 
All the above terms are zero a t  thc trailing edgc ( I h t t a  condition) , and 

the series has the usual square-root singularity a t  the leading edge. 
Ao,  AI, A,  . . . A ,  are, of course, unknown. We let x= -a cos 8 so that 
8 = 0 corresponds to x = - 3 and 8 = ?r corresponds to x = 3 and denote by 
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UPSTREAM 
ROW 

DOWNSTREAM 
ROW 

- I  
M t a  

SOLIDITY (Tu, SOLIDITY (Td, 
STEADY-STATE ST E ADY-STATE 

LIFT F, L IFT Fd 

FIGURE 3.--Sketeh for potential interaction due lo two adjacent rows. 

G(n,e)  = J r  cos (n4)Kr(x,5) d 4  

where n = O ,  1,. . . , N + 1 .  

The G(n,e) will be evaluated numerically by Simpson’s rule and will 
prrsent no difficulties since K,(z,() is boundcd. Then it is easily shown by 
using the results of equations (16), (17)’ and (18) of the appendix that 
equation (9) may be written as 
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The above equation holds for O<e<n, and the method of collocation of 
points involves satisfying thc above equation exactly for ( N  + 1) equally 
spaced values of e between 0 and n and thus deriving ("1) simul- 
taneous equations for Ao, A1, . . . , A N ,  which may be solved by matrix 
inversion. 

The net lift is 

and the magnitude of unsteady lift is the amplitude of a/2[A0+ (A1/2)]. 

NUMERICAL DETAILS AND TYPICAL RESULTS 

The unsteady lift distribution was assumed to  have the form of an 
(M+l)  term series. The check on whether the chosen M is satisfactory 
is whether the terms A,,  AI, . . . , A resulting from the solution of the 
simultaneous equations (14) converge rapidly enough. Judging from the 
calculations performed in this paper, the value of M to be used increases 
with the Mach number of the flow through the blade passages. Up to a 
Mach number of about 0.5, M = 7 suffices. Between Xach numbers of 0.5 
and 0.8, M = 11 suffices. Beyond a AIach number of 0.8 it seems necessary 
to use M = 15 to get good convergence. The use of the present analysis for 
Mach numbers close t o  unity is not very valid anyway because for such 
high Mach numbers the convected wave equation (from which eq. (3) is 
derived) is not a valid linearized equation for describing the nonsteady 
Aow. 

In figure 4 n-c have plotted results for potential interaction4 on a row 
with flow a t  a Mach number of 0.1 due to a row downstream. This case 
should be analogous (owing to the lorn Xach numbers) to a case cal- 
culated in figure 5 of reference l. The Kemp-Sears results and results of 
this paper compare reasonably well. 

A similar check with the Kemp-Sears results is obviously desirable for 
viscous wake interaction. In  reference 2, in the intercst of obtaining a 
closed-form solution, the upwash uscd to calculate the unsteady lift is 
taken at selected points on the airfoil. Two sets of results pertaining to a 
stator rotor sequence as sketched in figure 5 ,  one corresponding to the 
upwash at  quarter chord from the leading edgc and another corresponding 
to the upwash a t  quarter chord from the trailing edge, are presented in 
table 1 of reference 2. The methods used in this paper make such an 

For all potential interaction calculations reported in this paper (Figs. 4, 6a, 7 b )  
the steady lift distribution is assumed to be of the flat-plate type (see p. 594 of ref. 1). 
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M.0.1 

STEADY-STATE LIFT 1.00 

0.20 I 

RESULTS OF 

0.1 5 - 

z z  
z -  
3 

'0 d.1 012 i 3  0.4 
b 

FIGURE 4.--Potential interaction due lo downstream row. Comparison with Kemp-Sears 
(reference 1 ) .  

FIGURE 5.--Stator rotor sequence used lo compare 
results for viscous wake interaction with Kemp- I 
Sears (Teference 2 ) .  

STATOR' ROTOR 

approximation unnecessary; our results are compared with the Icemp- 
Sears results in table I below. The calculations in this paper are again for a 
row with flow a t  a Mach number of 0.1. 

From table I it is seen that the first harmonic results compare well if 
Ihmp-Sears results corresponding to an upwash a t  a quarter chord from 
the leading edge are used. 
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Q.C. from 

Q.C. from 

L.E .............. 
_________-- 

T.E .............. 

In  figure 6a we have plotted results for unsteady lift assuming the 
vclocity triangles of figure 4 to be linearly scaled up in Mach number. 
This could be representative of changes in unsteady lift as one runs up a 
fan or compressor on a constant loadlinc. 

The forms for 12, 13, and 1, obtained by the use of the Poisson summa- 
tion formula (eqs. 56, 5c, and 5 4  indicate that if, for any integer m, 

( 6 - m ) 2 - d = 0 . .  . (14) 

then 12, I,, and Iq-+ 00. Since K ,  (z,,$) in equation (1) involves 12, I,, and 
I,, this mcans that if equation (14) is satisfied then K ,  (z,C;) --f 00. The only 
way in which one can obtain a bounded zid(x) under the condition that 
Kt(x,,$)-+m in equation (1) is to havc F(,$)-+O. Thus thc resonance 
condition denoted by equation (14) is one for which the unsteady blade 
forces vanish. Physically this condition arises when purely transverse 
waves are produced in the blade passages (i.e., waves traveling only in the 
tangential direction) . At this resonance condition, waves emitted from 
onc surface, say the upper surface of a blade, travel transversely and 
arrive a t  the lower surface of an adjacent blade with the time of travel 
being such that the incident wave phase is exactly antiphase (Le., with a 
phase difference of some odd integer multiple of 180") with the phase of 

0.029 

0.023 

Harmonic 
number 

1 ......... 

Kemp-Sears results 

C D  

0.01 

___ 

0.02 

Upwash 
evaluated at  

I- 

I-- _______ 
Q.C. from 0.0.57 
L.E .............. 

Q.C. from 
T.E .............. 

0.045 

Results of present paper 

Harmonic 
number 

1 

C D  

0.01 

_____ 

0 .02 

CL 

0.029 

0.05757 

Q.C. = quarter chord, CO = profile drag coefficient, L.E. = leading edge, T.E. = 
trailing edge, CL = coefficient of unsteady lift. 

1 Comparison with Kemp-Sears results for case sketched in figure 5 
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I I I I I I 

A POINT TAKEN FROM KEMP-SEARSPAPER (REFERENCE 1) 
0 POINTS: PRESENT PAPER 

SECOND RESONANCE POINT 

W FIRST RESONANCE POINT ----... 
c 

I I I I 
0. I 0.2 0.3 0.4 

- M  
0.5 0.6 

FIGURE Cia.--PolenliaZ interaction for dynamically similar velocity triangler. Effect of 
Mach number. 

the sources on the lower surface of this adjacent blade. This phase can- 
cellation prevents development of any unstrady lift. 

The resonance condition of equation (14) may bc rewritten in terms of 
tip Mach numbers and flow Mach numbers as 

For velocity triangles of the type shown in figure 4, M = M u/'z, a8 = - 45", 
and the solution of (15) yields resonant Mach numbers of 

where m is a positive integer. The first significant resonant Mach number 
M is thus 

1 
&I = --=0.447 6 

and the second is 
n 
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These two ordinate lines (corresponding to M=O.447 and 0.632) are 
shown in figurc Go as first and second resonance points. As can be noted, 
the resonance is extrc.mc.1J- sharp in that thc approach of the unsteady lift 
to zero as M-+l/ds is rxtrcmely sharp, bcing rcprcsentcd by an almost 
vertical drop in figurc Ga. 

The results of figurc Gn suggcst that the resonancc, v-hilc undoubtedly 
denoting a point of zero unsteady lift, is much too sharp to have practical 
significance as a condition of Ion- unstcady lift. Howver,  the resonance 
points do have considerable significance (as may bc obscrvvd from fig. Ga) 
as dclineating rather diff crtmt familics of variations of unstcady lift with 
l lach  number. 

A similar result is shown by Kaji and Okazaki in reference 3. They 
consider in rcfcrcncr 3 the cffcct of a flat-plntc cascadc with flow on an 
incident sound wave as shov n in figure Gb. An unstvady forcc. distribution 
on the blades to cancd the vdocitic\s induced by the incident sound n-avc 
is sought as the solution to an integral equation of the same type as 
equation (1). Later the cffect of the unsteady forcc distributions is 
integrated to obtain far-field pressure (sound) waves in the transmitted 
and reflected regions. The cascade in figure Gb behaves as a diffraction 
grating with respect to  the incident sound wave. One propagating rcflected 
and one propagating transmitted wave are always produced by thr  inter- 
action of the incident sound n-avr and the’blade row. Thc reflected wave 
corresponds to a specular reflection of the incident wave by the blade row, 

R E F L E C T E D  
R E G I O N  

I N C I D E N T  S O U N D  
W A V E , W / C  = 1.5492 7T 

FIGURE Gb.--ConJiguration of cascade whose results are shown in Jigure 6c of 
reference 5. 
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and the transmitted wave has the same orientation as the incident wave. 
The basic transmitted wave, produced under all circumstances, is denoted 
by the authors of reference 3 as a v = 0 modr5 in figure 5 of their paper (the 
upper half of which is reproduced as fig. 6c in this paper). Higher order 
modes are also produced if, for the interartion of the incident wave and 
the blade row, more than one resulting mode is above “cutoff.” In  figure 
6c, for Q less than about 40°, a basic transmitted mode (labeled v = O )  
and a higher order mode (labeled v = - 1) are produced. For Q greater 
than 40°, the basic transmitted mode and a higher order mode (labeled 
V =  +1) are produced. The pressure transmission coefficient is the ratio 
of amplitude of transmitted wave to  the amplitude of incident wave. The 
ordinate around Q = 40” in figure 6c represents a resonant condition of the 
type of equation (14). In  the example of figure 6c, the orientation of the 
higher order transmitted wave undergoes an abrupt change as one passes 
across the resonant incidence angle. Note how the pressure transmission 

PRESSURE TRANSMISSION COEFFlCl ENT FOR 

CURVE II: V = I MODE 
CURVE r :  Y = o  MODE 

CURVE ID: V = - I  MODE 

I- z 
0 
G 
LL 
w 
0 
0 
z 
v) 

w 1.c 

0 
’“ 0.5 
5 z 
U 
I- 
w 
3 

a 

a 
v) 

E C  a 150 120 90 60 30 0 a 
a DEGREES 

I -30 

FIGURE 6c.-Curve from upper half of figure 5 of reference S. 

Corresponds to m - 1 = 0 in this paper. 
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coefficient associated with the basic transmitted wave ( v = 0 mode) under- 
goes an abrupt change as one crosses over the resonant incidence angle. 

This typc of resonance effect was apparently first observed by Runyan, 
Woolston, and Rainey (ref. 5 ) .  Their concern was with the effect of wind- 
tunnel walls on the lift forces developed by an oscillating wing in two- 
dimensional subsonic compressible flow. The resonance phenomenon was 
experimentally confirmed by these authors. 

In  view of the very rapid change of events just around resonance, it 
might appear worthwhile to  attempt an analytical solution of equation 
(1) close to rrsonance. However, RIcCune, in a different context, has 
examined the merits of replacing cylindrical wave functions (which should 
be employed in a proper three-dimensional analysis) by two-dimensional 
approximation in such problems (ref. 6). Hc shows clearly that such an 
approximation breaks down precisely a t  these rcsonancc frequencies. 
Thus, it seems of dubious advantage to  pursue the cascade planc analysis 
any further near resonance. Finally, one may easily show that the reso- 
nance conditions are precisely the conditions at  which successive rotor- 
stator interaction modes of the classical Tyler-Sofrin analysis (ref. 6)  
are cut off. Thus thr  cutoff frequencies introduced by Tyler and Sofrin 
as delineating regimes of acoustic propagation or decay of succcssive 
interaction modes arc seen to  play an important role in the estimation of 
the unsteady blade force problem. 

From equation (13d), one notices that the cxponcntial decay rate of 
the potential flow field of an adjacent row is altered from its incomprcssiblc 
value by the factor 

JFiiiT 
1-M: cos2 (au,) 

To show the effect of this factor, we have plotted the drcay of unst,cady 
lift with spacing for ar = 0,45", and GO" in figure 7. 
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FIGURE 7rt.-Efects of stagger angle on decay of potential flow fields-configwaiions 
considered. 
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APPENDIX 

Two well-known principal value integrals are 

and 

(17)  
sin (714) sin (4) d4 

-= COS ( ? l e )  . . . 

An cxpansion of j k  (log 1 z - 6 I ) / 2 M  ( 1 - ATP) convclrgcnt for z # C; or 0 # 4 is 
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DISCUSSION 

A. AHDELHA3IID (Carleton University) : I would like to comment 
on the effect of the blade being in a row or being isolated and on whether 
it’s a first- or a second-order effect. I believe it’s a second-ordcr effect 
because the steady vorticity on the blades of the same row as the blade 
that you are considering will not contribute to the contour it imposes. 

J. E. FFOWCS WILLIAMS (Imperial College of Science) : It seems to 
me that when you have this guaranteed repetitive system you must 
generate a resonance. You’ve got to pick them up somehow. My point of 
concern is the way in which the boundary conditions are put in. There are 
difficulties concerned in judgments, and these turn up when the resonant 
wave fronts are going at  a parallel, one normally observes. Now if they’re 
going parallel to the surface, the procedure to adopt is one to control the 
velocity on the surface. If one asks what pressure is required on that 
surface to bring about a control on the velocity, it turns out to be infinite 
by the way his blade is set, so a more realistic boundary condition for 
any practical system would be a pressure-release condition. 

BZANI (author) : Two points have been raisrd in the discussion period. 
The first concerns the proper boundary condition to be used near the 
resonant (cutoff) frequency. The author agrees that if very large pres- 
sures result the assumption of perfectly rigid blades is not a suitable one 
and should be replaced perhaps by an impedance condition. It is worth 
reiterating, however, that from the point of view of the isolated two- 
dimensional cascade model’s representativeness of the actual situation 
in the turbomachine, it would not be worthwhile to pursue matters much 
further in the cascade plane near cutoff. The effect of adjacent blade 
rows, open-end terminations, and three-dimensional effects become all- 
important a t  this condition. 

The second pertains to the effect of adjacent blade rows. It should 
be noted that estimates of effect of adjacent rows as carried out in the 
original Kemp-Sears papers is not entirely sufficient. Kemp and Sears 
assumed the fluid to  be incompressible and, with this assumption, all 
nonaxisymmetric flow patterns exhibit exponential axial decay. When 
the fluid is regarded as compressible, some of these flow patterns (those 
above cutoff) exhibit no axial decay and hence the treatment of the 
problem on the basis of isolated blade rows subject to given external 
upwash becomes questionable. 


