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Abstract

The reduction of the n per rev. pitch-, roll- and vertical
vibrations of an n-bladed rotor by n per rev. sinusoidal variations
of the collective and cyclic controls is investigated. The

numerical results presented refer to a four-bladed, 7.5-foot model

and are based on frequency response tests conducted under in

Army-sponsored research program. The following subjects are
treated:

Extraction of the rotor transfer functions (.073R hub

flapping and model thrust versus servo valve command,

amplitude and phase)

Calculation of servo commands (volts) required to

compensate .073R hub flapping (3P and 5P) and

model thrust (4P)

• Evaluation of the effect of the vibratory control inputs

on blade loads

Theoretical prediction of the root flapbending

moments generated by o to 5P perturbations of the

feathering angle and rotor angle of attack.

Five operating conditions are investigated covering advance

ratios from approximately 0.2 to 0.85. The feasibility of vibra-

tion reduction by periodic variation on conventional controls is
evaluated.

For several operating conditions covering advance ratios

from approximately 0.2 to 0.85, the control inputs required to

counteract the existing 4P pitch, roll and vertical vibrations are

calculated. The investigations are based on experimental vibra-

tion and response data. As the tests were part of and added on to

a larger hingeless rotor research program, only a few operating

conditions with essentially zero tip path plane tilt were investi-

gated because of limited tunnel time. At the test rotor speed (500

rpm) the rotor blade mode frequencies were 1.34P, first fapping,
6.3P, second flapping, and 3.6P, first inplane.

This work was conducted under the sponsorship of the

Ames Directorate of the U. S. Army Air Mobility R&D Lab-

oratory under Contract NAS2-7245. The authors gratefully

acknowledge the assistance of Mr. David Sharpe, the AMRDL

Project Engineer, and Messrs. R. London and G. Watts of

Lockheed in conducting the experimental portion of this work.

Presented at the AHS/NASA-Ames Specialists' Meeting on
Rotorcraft Dynamics, February 13-15, 1974.

It should be noted that there was no instrumentation to

measure the vibratory pitching and rolling moment_ These

moments were obtained by properly adding up the flap-bending
moments of the four blades at 3.3 in. (0.073R) which were

measured separately. This means, the effects of the inplane

forces, vertical shear forces and blade torsion have been ignored.

These are important influences in current hingeless rotor designs.

The inplane 3P and _P slaear forces are of particular

interest. However, the experimental data obtained for a model

hingeless rotor system provides the beginning of at least a partial

data base for the investigation of vibration attenuation of such

systems through periodic variation of conventional controlg

Generally speaking, the control inputs required for flapping
(hub moment) sourced vibration elimination are smaller or about

of the same magnitude as those used for the frequency response

tests. Their amplitudes tie, depending on flight condition and

advance ratio, between 0.2 and 3 degrees. With the exception of

the /a = 0.851 case, for which the results are somewhat in doubt

(the response tests to lateral cyclic pitch and the corresponding

baseline data were inadvertently run with 0.3-degree collective

pitch differential), the control inputs required for vibration re-

duction drastically reduce the 3 and 5P, and have only a minor

effect on the 2P flexure flap-bending moments. Chord-bending

moments and blade torsion generally increase.

The theoretical predictions mentioned refer to forced-

response influence coefficients. They are based on the first two

flapping modes. The blade root flap-bending moments (OP

tllltJU_lt Jl j Will.it l_ut_ **VA,I _*uL _i_s_ ....... _ ....

feathering angle and rotor angle of attack have been calculated.

The solution provides for intermode coupling through the 17th

harmonic by analytic solution of the two-degree-of-freedom

system, utilizing constant coefficient and loading descriptions

over ten-degree azimuth sectors. In each solution case, the rotor

reached steady-state motion in eight revolutions. In that time the

least converging second mode flapping motion converged to a

minimum of four significant figures.

Evaluation of the test data reveals two types of short-

comings, which should be avoided in future tests. First, the data

given are based on a single test and have not been verified.

Second, in some eases, the baseline and frequency response tests

were not run successively.

From the data available, the approach is promising,

especially for the low and medium advance ratio range. At higher
advance ratios (_ _ 0.8), the control inputs required for vibration

reduction may become prohibitive.

Notation

A, B quantities describing cos 44 and sin 4 _ components

of actuator input for frequency response tests, volt,

see Table lI and Equation (1)
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M,L,T

0nominal

Oo, Os, Oc

r 1 ... r18

_2

C, D quantities describing responses to A and B, in.-lb

and lb, respectively, see Equation (1)

E, F, G, H blade loads due to unit actuator input, in.-lb/volt,
see Equation (13)

K 1 ... K18 gains of rotor response, see Table I

m calculated flapbending moment at 3.3 in., in.-lb,

m = m o + Emns sin nqJ + _mnc cos n_

4P vibratory pitching moments, rolling moments

and thrust variations, inAb and lb, respectively;
subscript e denotes existing vibrations to be com-

pensated, subscript control describes effects of

oscillatory control inputs.

Me = Ms sin 4_ + Mc cos 4_

Le = L s sin 4qJ +.L c cos 4_k

Te = Ts sin 4¢ + Tc cos 4¢

nominal collective pitch, degrees

oscillator inputs for collective, longitudinal
and lateral cyclic pitch, volt

0o = 0os sin 4Lk+ 0oc cos 4_

0s = 0ss sin 4_ + 8sc cos 4_

0c = 0cs sin 4¢ + Occ cos 4¢

lag angles of response, degrees, see Table I

rotor angular velocity, sec -1

azimuth position of master blade, tad

CRM = Blade Root Moment, STA(o)

ao _rR3 p(_2R)2a °

where

a = 5.73

p = 0.002378 slugs/ft 3

o = 0.127

"Compensating Control Inputs" define those which reduce

the existing 4P pitching moments, rolling moments and vertical
forces of a given flight condition to zero.

The analysis deals with the concept of vibration reduction

by oscillatory collective and cyclic control applications. Several

related aspects of this problem are treated. The foremost are the

determination of the proper control inputs and their effect on
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the vibratory blade loads. These studies are based on frequency

response tests conducted on a 7.5 foot-diameter, four-bladed,

hingeless rotor model, the results of which are published in

Appendixes C and D of Reference 1. The subject matter covered,

apart from the items listed below, is an abridged version of these
appendixes.

Other subjects treated are (a) the calculation of blade loads,

based on test data, due to vibratory control command applica-

tions; (b) the theoretically determined eigenvalues, at 10-degree

azimuth intervals, of the first and second flapping modes, at

u = 0.191, 0.45 and 0.851;(c) the computed single-blade root
flap-bending moment, Sta 0, harmonic influence coefficients

at u = 0.191,0.45 and 0.851; and (d) a limited comparison of the

theoretical loads with experiments.

The general case of vibration control will include the effects

of lateral and fore-and-aft shear forces at blade passage frequency.

These forces can be as influential as the pitch and roll moment

and thrust oscillations in causing fuselage vibrations. Thus, in

general, five rotor vibratory inputs are to be controlled by mani-

pulation of three controls. Although the five vibratory inputs
cannot be nulled individually with three controls, their combined

contribution to the fuselage vibration can be controlled. Thus,

the general application will involve control of fuselage vibration

at three points; say two vertical vibrations and one roll angular

vibration. This general application implies the use of adaptive

feedback controls. Although the present paper is limited to the

more simple case outlined herein, the general application to the

control of any three suitable quantities will be apparent.

Although prior investigations of the use of higher harmonic

pitch control on teetering and offset hinge rotors have been con-

ducted to investigate improved system performance and also for

vibration attentuation (References 2, 3 and 4 ), this is believed

to be the first experimental and theoretical hingeless rotor study

of the use of periodic variation of conventional controls for

vibration attentuation. The use of 2P feathering to improve rotor

performance is not included as part of this work.

Transfer Functions Involved

As a distinction must be made between control applications

in phase with sin 4¢) and cos 4if, there are six control quantities

available, i.e., 0os, 0oc , 0ss , 0sc , 0cs and 0cc, to monitor the
pitching moments, rolling moments and vertical forces. This

means the dynamic system investigated, which consists of rotor,
control mechanism and oscillators used, is characterized by 18

gains Kp and lag angles rp. The subscripts p (p = 1 through 18)
are defined by Table I.

TABLE I

GAINS AND LAG ANGLES OF RESPONSE

TO OSCILLATORY CONTROL APPLICATIONS

0os 0oc 0sc 0cs 0co

M K 1 r 1 K2r 2 K3r 3 K4r 4 K5r 5 K6r 6

L K7r 7 K8r 8 K9r 9 Kl0rl0 Kllrll Kl2rl2

T K13r13 K14r14 K15r15 K16rl 6 K17r17 K18r18



As indicated, K3 is def'med as the amplitude ratio M/0ss and
r 3 is the lag angle of M with respect to 0ss. For convenience, the
dimensions used are identical with those of the computer output,

i.e., oscillator voltage for input, in.-lb for M and L, lb for the

thrust variation T. This means the dimensions of Kp are

K 1 through K 12 in.-lb/volt

K 13 through K 18 lb/volt

See also Figure 1 which shows the oscillatory pitching moments

due to combined 0ss and 0sc control applications. The moments
generated are presented by rotating vectors where cos 4_k is posi-

tive to the right and sin 4_ positive down. This means, the vector

positions shown refer to _ = O. By definition, the quantifies Rij

characterize the responses in phase with the excitation and lij
those out of phase. The latter are, positive if the response leads.

As indicated, there are altogether four responses involved which
are combined to the resultant M.

The phase angles rp are given in degrees, Tp is positive if the re-
sponse lags.

Although the investigations deal exclusively with 4P control

variations, some general remarks may be in order. The general

case involves sinusoidal collective and cyclic control variations

wRh the trequency nf_ where n can be any positive number.

If n is an integer, the rotor excitations repeat themselves

after each rotor revolution which means that the responses of

each revolution are identical. This is true for any number of rotor

blades but does not necessarily mean that all blades execute
identical flapping motions. The latter is true only if n equals the
number of rotor blades or is a multiple of the blade number.

Only for these cases does a truly time independent response with

invariable amplitude ratios K and lag angles r exist.

Extraction of Gains and Lag
Angles from Experiments

As for all response tests conducted, the oscillator input con-

tained both sin 4ff and cos 4if-components; always two amplitude

ratios K and two lag angles r are involved. Therefore, each time a

set of two tests must be evaluated, According to Table II, the

input is characterized by the quantities A 1 B 1 A 2 B2 and the

response by C 1 D I C 2 D 2.

If the rotor responds to cos 4_ excitations with the gain Kj
and the lag angle r i (j = even number) and to sin 4_ excitations
with Ki and r i (i = odd number), input and output are related by
the equations

A 1 Kj cos (4if- rj) + B ! K i sin (4if- ri) = +CIDlcossin4ff4_/)

A 2 Kj cos (4if- rj) + B2 Ki sin (4_k- ri) = C2 cos 46 1

+ D 2 sin 4¢ j

TABLE II
INPUT AND OUTPUT NOTATIONS

(l)

= c

Figure 1. Vector Diagram Showing Pitching Moment

Due to 0ss and 0sc Control Applications

Inserting Equation (2) into Equation (1) leads to

A1D2-A2D 1

AIB2-A2B 1

AIC 2 - A2C 1
Ii=

A1B 2 - A2B 1

tan_i= IIi/Ri I 0<_i<Ir/2

(3)

Test Input Response

#1 A 1 cos4ff+ B 1 sin4ff C 1 cos4¢/+ D 1 sin 4¢/

#2 A 2 cos 4ff + B2 sin 4_b C 2 cos 4ff + D 2 sin 4ff

To calculate the unknowns K i Ki r i and ri, a component

analysis is used. The gains K i Kj are eipressed fis

Ki = (R_+ I_) 1/2 t (2)

and

C1B2-B1C 2

Rj= A1B2" A2B1

BID 2 - B2D 1

lj=
A1B 2 - A2B 1

tan Yj = I Ij/Rj I 0<_j <7r/2

(4)
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In both cases

T=+_ for R>O I<0
=-_ R>O I>0
=Tr+_ R<0 I>O
=Tr-_ R<O I<O

Check of Calculated Ki Kj ri and rj Values

If so desired, Equation (1) can be used to check the calcu-

lated values of Ki K: ri and r:. Splitting up these equations into
sin 4ff and cos 4ff coJmponen_s leads to the following four
expressions which must be satisfied

A 1Kjcosrj-B 1K isinr i =C 1

A 1Kjsinrj+B 1K icosr i =D 1

A 2Kjcosrj-B 2K isinr i =C 2

lr_ T:
A 2Kjsinrj _D 2r_ icos'r i -D 2

/
I (5)

)

'Oscillatory Control Inputs Required

The six oscillator inputs available have to be selected so that

their responses satisfy the requirements, whatever they may be.

By definition, the vibratory control inputs result in the following

pitching moments, rolling moments and vertical forces (n = 4):

Mcontro 1 = + 0os K 1 sin (nff- rl)

+ 0oc K 2 cos (nqJ- r2)

+ 0ss K 3 sin (nff - r3)

+ 0sc K4 cos (n¢- r4)

+ 0cs K 5 sin (nqJ- rS)

+ 0cc K 6 cos (n_0- r6)

Lcontro I = + 0os K 7 sin (n¢- r7)

+ 0oc K 8 cos (n_- r8)

+ 0ss K 9 sin (n_b- r9)

+ 0sc K10 cos (n_- rl0)

+ 0cs KI 1 sin (nff- rll )

+ 0cc K12 cos (n_- r12)

(6)

(7)

Tcontro 1 = + 0os K13 sin (nff- r13 )

+ 0oc K14 cos (n_- z14)

+ 0ss K15 sin (n_b- r15 )

+ 0sc K16 cos (nff- r16)

+ 0cs K17 sin (nff- r17)

+ 0cc K18 cos (nff- r18) (8)

Mcontro 1 = -Ms sin 4¢- Mc cos 4_ t
Lcontro I = -Ls sin 4_k - Lc cos 4_

T ...... = -T _in At//- T o_e At])
_UlltlUl -S ....... C .... , j

(9)

To reduce the existing ,,ih._t;..o, _h. _._.,o _.n forces

generated must counteract Me, Le and Te, i.e.,

Equations 6 through 9 lead to six linear equations, ( I 0),

for the unknowns 0os , 0oc , 0ss, 0sc, 0cs and 0cc.

Effect on Blade Loads

An objective of the investigations is to determine the effect

of the compensating control input on the blade loads, i.e., on the

following measured quantities:

• flapbending at 3.3 in.

• flapbending at 13.15 in.

• chordbending at 2.4 in.

• torsion at 9.28 in.

In all cases the 2 to 5P content of the loads is of interest.

The first task is to determine from the response tests the contri-

bution of each of the six possible 4P control inputs to these

loads. Again, two sets of data are required. The vibratory control
applications used and the resulting n th harmonic of the load con-
sidered are written as follows:

Tes.__t Input

#1 A 1 cos 4_+ B 1 sin4_

#2 A 2 cos 4_ + B2 sin 4_

Resulting Load (in.-lb)

Cnl cos nff+ Dnl sin nqJ1

ICn2 cos n_k+ Dn2 sin nff

(11)

"+K 1 cos r 1 +K 2 sin r2 +K 3 cos r3

-Klsin r 1 +K 2 cos r 2 -K3 sin r 3

+K 7 cos r 7 +K 8 sin r 8 +K 9 cos r 9

-K 7 sin r 7 +K 8 cos r 8 -K 9 sin r 9

+Kl3COS r13 +Kl4sin r14

-K13sin r13 +Ki4cos r14

+K 4 sin r4 +K 5 cos r 5 +K 6 sin r6

+K 4 cos r4 -K 5 sin r 5 +K 6 cos z 6

+Kl0sin r 10 +Kll cos r 11 +K12sinrl2

+Kl0COS rl0 -KI1 sin rll +Kl2COSrl2

+l_15cos r15 +Kl6sin r16 +K17cos r17 +K18sin r18

-Kl5sin r15 +Kl6COS r16 -K17sin r17 +Kl8COSrl8

°

0os

0oc

0ss

0sc

0cs

•0cc.

-M s

-M c

-Ls

-L c

-T s

. -Tc (10)
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If nonlinear effects are excluded, the n per rev load vari-

ation due to unit control application in phase with

(a) cos4_ amountsto(Encosn_+Fnsinn¢)
(12)

l(h) sin 4_k (G n cos n_k+ H n sin nO0

In these expressions

B2Cnl-B1Cn2

En = AIB2_A2B1

B2Dnl-BIDn2

F n = AIB2_A2B1

A1Cn2-A2Cnl j (13)

G n = A1B2_A2B1

A1Dn2-A2t_l
I-In = A1B2_A2B1

If 0_s, 0Ec (E = o, s, c) denote the vibratory control inputs
used, the mcr£ments of the n th harmonic of the load considered

are

(Aload) n = (0_c E n + 0g s Gn) cos n_

+ (0g c F n + 0g s H n) sin n¢

Evaluation of Experiments

(14)

Flight Conditions Investigated

The methods outlined in the previous sections are applied to
the following five operating conditions for which test data are
available:

TABLE III

OPERATING CONDITIONS IN-V-ESTiGATED

0nominal a CT/°

0.191 12 ° -5 ° 0.102

0.239 4 -5 0.028

0.443 4 -5 0.011

0.849 10 -5 -0.005

0.851 4 -5 -0.013

In all cases the shaft angle of attack is a = -5 ° and the rotor is

trimmed so that essentially a 1 = b 1 = 0. As can be seen, the tests
cover the advance ratio range from approximately/a = 0.2 to

tz= 0.85. The case _t= 0.191 is characterized by 0nomina 1 = 12 °

and CT]O = 0.102, the latter figure indicates a relatively high

specific loading In contrast, at the advance ratios # = 0.849

and 0.851 the rotor is practically unloaded, i.e., no steady lift-
ing force is generated. The 4P vibrations associated with the
various test conditions are listed in Table IV. The moments are

given in inch-pounds and the vibratory forces in pounds.

These moments were obtained by properly adding up the

flap-bending moments of the four blades at 3.3 in. which were

measured separately. This means, the effects of the in-plane
forces, vertical shear forces and blade torsion have been ignored.

TABLE IV

VIBRATORY MOMENTS AND FORCES
TO BE COMPENSATED

ts

Lc

Tc

0.191

0.3805

-0.5301

12.2080

2.2180

0.1979

-0.2013

0.239 0.443 0.849 0.851

-1.7207 2.6149 20.0483 3.5349

-0.4113 1-0.5208 -4.5724 -8.4341

1.3725 i-6.7626 9.4647 -10.5154

-1.9145 I-3.7399 -31.1214 -17.2626

-0.1089 0.0304 1.9247 0.8838

-0.0865 0.0556 -0.0048 -0.8626

Gains and Lag Angles

The rotor response characteristics are calculated by applying

equations (2, 3, 4) to the test data available. The results

available are listed in Table V. As pointed out previously, the
values given include the effect of the actuator used. Some

general statements can be made. It is obvious that for _u = 0.
the gain and lag angle of the responses to sin _ and cos

4 6"-type control applications must be the same. For V :# 0 this is
no longer true, and one would expect that the spread between

KiK. and ¢.r. (see equations (3), (4)) widens with increasing--j _.j
aavance rauo. Further, according to classical rotor theory which

neglects blade stall, the nominal collective pitch setting has no
effect on the frequency response characteristics,

Generally speaking, the KiK i and ri Ti values given in

Table V differ very little. It a'ppears h6wever, that at higher
advance ratios (compare columns for _ = 0.849 and 0.851 ) the

collective pitch has a larger effect than anticipated. It is also
possible that the error of the baseline data described in the sum-

mary may play a role.

Oscillator Inputs Required

Equation (10) is used to calculate the inputs required to

(a) generate unit amplitudes of pure pitching moments,

rolling moments and vertical forces and

(b) compensate the existing vibrations

The results are given in Tables VI and VII. They show that, as

to be expected, the oscillatory inputs required for vibration

reductions generally increase with increasing advance ratio.

Surprisingly, the rotor collective pitch setting seems to play a

larger role than the steady lift generated. See also Table VIII

which summarizes the results obtained and lists the operating

conditions investigated in the order of decreasing vibrations.

The first column shows the relative magnitude of the vibratory

moments generated and the last column the approximate

amplitude of the blade pitch variation required to compensate

the vibrations. The amplitude of the pitch variation produced

per volt oscillator input changes with the control loads and
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TABLE V

GAINS AND LAG ANGLES DERIVED FROM EXPERIMENTS

(Kp - in.-lb/volt, -rp - degrees)

P

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

ta = 0.191 ta = 0.239 /_= 0.443 /_= 0.849

Kp

5.617

6.126

17.571

26.019

30.696

32.505

2.856

i.507

35.384

41.674

45.953

61.589

6.879

7.211

6.635

6.033

13.000

10.057

"rp

42.3

44.0

-9.6

- 45.4

155.7

181.7

136.0

98.4

213.4

185.8

116.6

131.5

45.6

43.7

245.2

218.3

127.3

128.6

Kp "rp

1.099 125.6

1.141 149.1

52.416 -30.1

47.991 - 37.3

59.416 182.9

77.408 193.2

4.246 81.9

5.083 67.1

59.420 198.8

51.280 198.6

76.875 108.3

86.361 99.3

5.420 51.4

6.195 46.4

4.275 205.9

3.962 208.1

7.596 94.3

8.176 97.4

Kp "rp

2.236 120.5

2.791 129.3

42.237 - 28.7

40.073 - 30.1

45.186 188.4

61.144 180.8

8.166 86.5

8.077 66.9

43.846 181.4

39.383 19q 7

78.512 101.8

80.995 95.7

8.928 39.2

8.999 35.9

2.571 195.2

3.123 188.7

7.632 76.7

8.381 92.2

Kp Tp

4.798 72.0

4.787 72.6

18.537 - 19.8

20.329 - 41.5

33.002 183.4

21.085 180.0

2.472 102.1

3.412 144.7

44.506 200.5

48.473 20! .0

67.268 134.4

61.288 141.5

8.188 35.8

8.906 36.1

5.976 215.0

4.775 229.5

13.261 133.1

7.953 126.3

#= 0.851

Kp "rp

4.094 116.5

3.487 135.6

43.319 -5.1

37.081 12.7

26.170 214.2

38.661 184.5

10.097 93.1

7.979 62.9

48.081 176.2

An _n Q'7 '7• V.u JV ] U t • !

88.540 94.7

90.934 95.3

9.340 38.5

9.651 35.6

3.623 184.0

1.977 185.4

11.188 86.9

11.101 90.7

the type of control (0 o, 0 s, 0c) used. Therefore, the con-
version factor varies and the last column of Table VIII is

given only to indicate the approximate amplitudes involved.

With one exception, the vibratory control applications re-

quired were smaller than those used for the frequency response

tests. The exception is the case with the highest vibration level

encountered for which the compensating controls required were
approximately 15 to 20% higher than the inputs used for the 4P

frequency response tests.

Blade Loads

The calculation of the effect of the compensating control
inputs on the blade loads is based on Equations (13) and (14). The

first step is to calculate, for each specific case, the quantities E n
through H n (n = 2, 3, 4, 5). See Table IX which refers to _ = 0.849
and lists the sin nq_and cos nq_components of the various

loads due to unit control (volt) application. The table shows, for
instance, that at the advance ratio ta = 0.849, a _+1volt variation

of 0ss produces 3P chordwise bending moments of the magnitude

(-91.77 sin 3_0+7.15 cos 34) in.-Ib

As the control inputs required for vibration reduction have been
previously calculated, their effects on the blade loads can be de-

termined by adding up the various contributions. The reader is

referred to Table X which applies to the flapbending moment
at 3.3 in.for the case g= 0.849. Given are the original loads

without vibratory control application, the individual contribu-

tions and thc sum. The last column shows the amplitudes with-
out and with compensating control input. A summary of the

loads is represented in Table XI. Generally speaking, chord-

bending, blade torsion and the 4P flap-bending moments of the

root flexure increase with increasing advance ratio. The 3 and 5P

flap-bending moments of the flexure are, by nature, reduced and

the 2P flap-bending moments are least affected. From the limited

data available, it appears that the 4P chordwise- and 5P torsion

moments may be the critical load for this configuration,

inasmuch as the natural frequencies are close to these
values.

As mentioned previously, it is assumed here that

the pitching and rolling moments are solely caused by the flap-

bending moments of the root flexure which were individually

measured and properly combined by a sin-cos potentiometer.

This means, the only source for the troublesome 4P moments in

the nonrotating system are the 3 and 5P flap-bending moments at

3.3 in. For four identical blades, it follows that elimination of

the 4P pitching and rolling moments requires that the sin 3_, cos

3_b,sin 5_b and cos 5_bcomponents of the flap-bending moments

at 3.3 in. are reduced to zero. As the four blades behave dif-

ferently, this ideal condition will practically never be fulfilled.

In the preceding paragraphs the flapbending moment of a

specific blade, with consideration of the compensating control

input, was calculated. To a certain extent, these predicted loads

can be used as an independent check. As an example, the case

# = 0.849 is treated. According to Table IV the amplitudes of

the 4P pitching and rolling moments to be compensated are

266

M = 20.56 in.-lb

L = 32.52 in.-lb
(15)



The calculated 3 and 5P flap-bending moments with confider'a- The amplitudes of the resulting 4P pitching and rolling moments

tion of the compensating control input amount to (see Table VII), are

m3s = 0.6233 in.-lb

m3c = -1.1833

m5s = -1.9266

(16)

m5c = 0.3099

M = 3.14 in.-lb

L = 5.91 in.-lb
(17)

P

0.191

0.239

0.443

0.849

0.851

* in.-lb

TABLE VI

OSCILLATOR INPUTS REQUIRED (VOLT) TO GENERATE PURE sin _ AND cos 4d_ COMPONENTS
OF PITCHING MOMENTS, ROLLING MOMENTS AND VERTICAL FORCES

Mcontro I *

Ms, control = 1

Mc, control = 1

Ls, control = 1

Lc, control = 1

Ts, control = 1

Tc, control = 1

Ms, control = 1

Me, control = 1

LS, control = 1

Lc, control = 1

Ts, control = 1

Tc, control = 1

Ms, control = 1

Mc, control = 1

Ls, control = 1

Lc, control = 1

Ts, control = 1

Tc, control = 1

Ms, control = 1

Mc, control = 1

Ls, control = 1

Lc, control = 1

Ts, control = 1

Tc, control = 1

Ms, control = 1

Mc, control = 1

Ls, control = 1

Lc, control = 1

"Is, control = 1

Tc, control = 1

Oos 0oc

+0.0143

+0.0117

-0.0177

+0.0042

+0.0922

- 0.1044

+0.0028

+0.0109

- 0.0023

+0.0128

+0.1356

-0.1436

- U.LI'U 1

+O.0O53

-0.0057

+0.0120

+0.1020

-0.0714

+0.0049

+0.0149

-0.0124

+0.0052

+0.1050

-0.0772

+0.0001

+0.0O82

- 0.0080

+0.0113

+0.1016

- 0.0682

-0.0485

-0.0123

-0.0236

-0.0071

+0.1380

+0.1164

-0.0069

+0.0028

-0.0108

-0.0029

+0.1337

+0.1085

+0.0011

- 0.0067

- 0.0028

+0.0732

+0.0941

- 0.0240

- 0.0149

- 0.0137

- 0.0056

+0.0698

+0.1079

-0.0O81

-0.0055

-0.0107

-0.0102

+0.0599

+0.0998

0ss 0sc 0cs 0cc

+0.0508

- 0.0055

- 0.0113

- 0.0209

- 0.0490

+0.0123

+0.0299

- 0.0096

- 0.0056

- 0.0245

- 0.0053

+0.0168

, v.v&._ ..?

- 0.0023

- 0.0021

- 0.0155

- 0.0088

+0.0071

+0.0338

- 0.0109

- 0.0120

- 0.0072

- 0.0211

- 0.0034

+0.0191

- 0.0126

- 0.0043

- 0.0069

- 0.0087

+0.0034

+0.0290

+0.0283

+0.0052

- 0.0200

- 0.0302

-0.0210

+0.0219

+0.0206

+0.0203

- 0.0243

-0.0155

+0.0070

+0.0!!6

+0.0331

+0.0253

- 0.0084

- 0.0094

-0.0108

+0.0179

+0.0487

+0.0074

-0.0121

+0.0037

- 0.0305

+0.0122

+0.0290

+0.0117

+0.0028

+0.0109

-0.0143

-0.0296

-0.0219

-0.0169

+0.0003

+0.0252

+0.0235

-0.0111

-0.0154

-0.0167

- 0.0008

+0.0072

+0.0091

-0.0O6_.9

-0.0168

-0.0135

-0.0093

-0.0018

+0.0171

-0.0229

-0.0271

-0.0118

+0.0006

+0.0017

+0.0221

-0.0077

-0.0135

-0.0057

-0.0137

-0.0130

+0.0189
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+0.0241

- 0.0098

+0.0073

- 0.0147

- 0.0232

+0.0081

+0.0211

- 0.0070

+0.0078

- 0.0210

- 0.0128

+0.0100

+0.0!45

- 0.0004

+0.0126

-0.0112

- 0.0138

- 0.0024

+0.0182

- 0.0222

+0.0024

- 0.0123

- 0.0214

+0.0031

+0.0109

- 0.0055

+0.0098

- 0.0037

- 0.009 i

- 0.0058



TABLE VII

OSCILLATOR INPUTS REQUIRED (VOLT)
TO COMPENSATE EXISTING 4P- VIBRATIONS

0.191 0.239 0.443 0.849 0.851

0 os 0.1683 0.0394 0.0146 0.0457 0.0300

0oc 0.3121 0.0224 -0.0490 0.2354 -0.2726

0ss 0.1746 0.0090 -0.1400 -0.7980 -0.3275

0sc -0.0133 -0.0293 0.1273 -0.5881 0.3498

0cs 0.2052 -0.0026 -0.1176 0.4610 -0.3549

0cc -0.0651 -0.0180 0.0056 -0.8308 -0.0428

Rel. Vibration
Level

1

0.58

0.32

0.21

0.08

TABLE VIII

VIBRATION SUMMARY

0nomi- Ampl. of Pitch
t_ nal CT/O Variation

0.849 10 ° -0.005 ~3.00

0.851 4 -0.013 2.0

0.191 12 0.102 0.8

0.443 4 0.011 0.5

0.239 4 0.028 0.2

Decreasing
Vibration
Level

TABLE IX

EFFECTS OF UNIT 4P OSCILLATOR INPUT ON BLADE BENDING

AND TORSION MOMENTS (in-lb). t_ = 0.849

t_ = 0.849 Input sin 2ff

0os 0.3815

0oc 0.7265

0ss - 20.1796

0sc 1.4455

0cs - 15.0717

0cc - 11.0041

0os 3.1446

0oc 0.4488

Flapbending % - 13.1131

13.15 in. 0sc 3.1093

0cs - 15.3541

0cc 3.7738

0os 5.2318

0oc 0.3311

0ss - 23.2604

Flapbending

3.3 in.

Chordbending 0sc 4.7043

2.4 in. 0cs - 25.0714

Torsion

9.28 in.

cos 2ff sin 3qJ

1.1212

2.1170

0.4843

-11.8793

1.7568

-12.2451

+ 0.0644

+ 5.7587

9.4439

-13.7168

-20.8842

7.2742

2.6028

0.7428

7.1252

-18.6069

19.2091

-12.5052

0.01156

3.3139

1.6401

-10.4663

3.9011

-10.2279

5.1653

2.6008

3.6649

8.0015

15.3009

18.4997

55.9170

-91.7693

-37.9514

-59.7492

cos3+

+ 1.9467

0.9082

10.9746

0.8771

+ 13.3006

3.9250

6.4289

0.6033

11.4718

7.3647

14.1583

11.8491

66.4765

15.3823

7.1537

71.7419

-177.5673

Occ 2.0059

Oos 0.1891

Ooc 0.0788

- Oss 0.4975

0sc 0.6976

0cs 0.8756

0cc 0.8745

7.7253

0.0544

0.1531

0.2685

0.7498

0.0250

0.9375

77.1483

0.2460

0.1960

0.9271

3.0700

1.5421

2.1226

7.0902

0.5652

0.2328

1.5838

1.4345

0.9968

2.5792

sin 4ff

+ 0.0022

1.7646

9.2290

1.9670

4.4390

-11.5818

0.5673

7.2213

2.7493

0.7250

4.0272

2.4534

8.5046

8.5503

-12.9172

6.5301

41.5059

68.5358

1.0733

0.6076

0.0498

1.0039

1.9762

1.3255

cos4ff

1.6252

0.1744

1.4705

9.2946

13.0827

6.8481

5.5966

1.7289

1.6368

4.6008

4.6816

1.0036

2.0555

12.5308

5.1116

-16.8130

-80.7110

26.5134

0.2665

sin 5_

0.4640

+ 0.4336

-12.1221

+18.4710

24.2022

17.1269

2.6912

4.4109

20.3552

-31.6355

-53.1766

-30.9619

6.0027

-10.1401

-13.8450

4.2184

5.8153

7.7451

0.1925

cos5_

+ 0.2286

0.2014

-16.4408

-13.1116

-18.4700

+18.2863

5.2806

1.9638

30.4485

23.4534

36.9531

-33.3918

8.6689

4.6381

7.4174

-12.8505

-27.4052

-28.5566

0.0465

1.0110

1.4606

0.9952

1.0423

1.2713

0.0102

15.6374

-11.8807

-14.6088

-17.9657

0.01822

13.1496

15.1709

21.3914

-13.8937
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Comparison of Equations (15) and (17) shows that the vibratory
pitching moment is reduced to approximately 15 percent and the

rolling moment to approximately 18 percent of its original value.
This indicates that the various blades behave differently and that

the goal of zero 4P pitch-roll and vertical vibrations is achieved
by cancellation of the effects of the four blades.

Analytical Formulation and
Calculated Results

The aeromechanicai characteristics of the High Advance

Ratio Model (HARM) has been analytically described in 2

degrees of freedom. These are based on the f'trst and second flap-
ping modes which have been approximated by polynomial fits of

finite element determined mode shapes. The first and second
mode shape approximations used are given by

and

where

01 = 2.292x 2 - 1.292x 3

02 = -10.21x 2 + 20.78x3-9.57x 4

x =r; the non-dimensional radial station.
R

The aerodynamics are based on classical quasi-steady incom-

pressible strip theory. The reverse flow region is fully accounted

avl_ LStaL _tall _l/_gcL_ llaVU U_UII I/U_IU_L_U_ d_ U_IIU_U 111 1_1_1"

ence 5.

TABLE X
EFFECT OF VIBRATION COMPENSATION ON FLAPBENDING

MOMENT (in-lb) AT 3.3 in. v = 0.849

4

cos n

W/O V_ration Control

Contribution of 0 o

0s

0c

TOTAL

-92.7652

0.0559

16.6165

19.2393

sin n Amplitude

17.2338

0.1536

15.2507

2.2002

W/O Vibration Control

Contribution of 00

0s

0c

TOTAL

W/O Vibration Control

94.35

-56.9653 34.5311 66.61

14.831.1732

0.1248

9.2715

9.3862

- 14.7883

- 0.5496

6.5928

9.3684

- 1.1833 0.6233 1.34

3.5448- 0.1403 3.55

Contribution of 0o

0s

Oc

TOTAL

W/O Vibration Control

Contribution of 0s

Os

, Oc

TOTAL

0.1153

4.2868

0.3317

3.9801

3.2312

0.0370

20.8199

- 23.7042

0.3099

0.4152

8.5191

11.6713

0.8078

2.2658

0.0809

1.1807

3.0926

1.9266

4.06

3.95

1.95
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Operating

Condition /1

0.191

Without 0.239

Oscillatory
0.443

Control !
Input 0.849

• 0.851

f 0.191
III;*1_ /_ ")20

,, ,LI,

Oscillatory

Control

Input

n=2

30.1

10.5

16.4

94.4

18.9

29.6

1N2

i ...........
. 0.443 12.3

0.849 66.6

• 0.851 20.2

TABLE XI

SUMMARY OF OSCILLATORY BLADE LOADS (IN.-LB)

WITHOUT AND WITH VIBRATION COMPENSATION

_apbendingat3.3in.

n=3n=4n=5

4.4 1.6 3.5

0.6 0.2 0.9

2.7 0.1 1.6

14.8 3.6 4.0

8.6 1.5 3.1

1.1 2.9 0.4

1.3 1.3 1.1

1.3 4.1 2.0

2.4 6.5 4.1

Flapbending at 13.15 in.

n=2 n=3 n=4 n=5

16.0 1.9 3.0 4.3

5.3 1.7 0.9 1.2

9.2 3.2 0.4 3.5

55.9 3.6 9.5 5.9

17.7 4.6 3.4 5.8

16.1 4.4 5.0 3.0

7.5 2.7 0.5 1.3

41.7 1.3 2.4 2.1

16.5 3.8 7.0 2.5

Chordbending at 2.4 in.

n=2

21.0

4.6

9.4

31.5

17.4

19.2

A'7

7.7

15.7

17.5

n=3 n=4 n=5

2.2 8.3 19.4

2.0 11.0 2.6

1.7 10.5 7.7

31.4 13.1 14.6

10.9 18.9 10.7

22.7 10.9 3.9

3.0 ! !.5 2.!

3.5 13.6 8.7

68.8 38.9 22.3

13.6 75.6 7.0

n=2

1.2

0.5

0.9

6.8

3.3

Torsion at 9.28 in.

n=3

0.7

0.2

0.6

4.1

2.4

1.0 1.2

0.5 0.3

0.8 1.4

6.5 4.4

2.3 4.0

n=4

0.4

0.3

0.3

0.9

0.7

n=5

0.6

0.2

0.2

0.3

0.4

0.4 4.5 I
0.3 ! .2

I

1.4 1.7 I

I0.8 3.1

0.7 3.5

The method of solution provides for intermode harmonic

coupling through the 17th harmonic. This is accomplished by

obtaining transient solutions of the 2-degree-of-freedom descrip-

tion of the rotor system described as constant coefficient linear

differential equations over 10-degree sectors of the rotor

azimuth.

The values of the coefficients for the system of differential

equations evaluated in this work have been determined at the

center of the sectors i. e., at 5 °, 15 °, 25 °, etc.

The basis for the analytical formulation is founded on

Shannon's sampling theorem which says that the discrete signal is

equivalent to the continuous signal, provided that all frequency

components of the latter are less than 1/2T cycles per second, T

being the time between instants at which the signal is defined,

(References 6 and 7 ). Since the solution also provides for a com-

pletely general transient solution, it can be used to calculate a /
Floquet solution by specializing the initial conditions. This has

been done for the square spring oscillator case studied by M. A.

Gockel and reported in the AHS Journal in January 1972. The

problem statement which is exactly describable by this theo-

retical method was shown to yield the identical Floquet solutions

as those reported. It is important to note that should the system

be unstable, the harmonic balance method of solution would not

directly reveal this instability.

Briefly, the initial conditions at the beginning of a sector are

determined by calculating the terminal conditions for the pre-

vious sector which are then used to initialize the new sector. It

has been found that essentially arbitrary conditions can be used

to start the solution and that excellent steady-state conditions

have been obtained for the conditions examined in six rotor revo-

lutions. For each solution case presented, the rotor has been

solved for eight revolutions to ensure that the second flapping

mode contribution to the response has converged to a steady-

state value accurate to at least four significant figures. The pro-

gram is used to calculate closed-form analytic solutions over each

10-degree sector and therefore is not dependent on a particular

method of numerical integration. (See Appendix A.) The

method, however, when applied to the analysis of steady-state

conditions, does require that sufficient solution time be calcu-

lated so that initial transients are dissippated to ensure that

steady-state equilibrium is achieved (Reference 8).

The test configuration experimentally examined with re-

spect to 1P flapbending distributions at/a = 0, including center-

line measurements, has been compared with this analysis

procedure on Figure 2, utilizing the two-mode description. This

is a limited use of the analysis technique to establish test/analysis

correlation. It is believed that the absence of time-dependent

aerodynamics quasi-steady, largely accounts for the phase error

in response. The centerline shaft moment measured was 0.75 of

the calculated (a = 5.73). This may be due to the relatively low

inflow of the test condition.

In general this correlation, including the spanwise distribu-

tion, appears reasonable.

The eigenvalues of each 10-degree sector are evaluated as

part of the method. These are summarized in Tables XII, XIII, and

XIV versus azimuth the _ = 0.191, 0.45, and 0.85 where the real

and imaginary parts of the eigenvalues have been normalized by

the noted natural-mode frequencies. The negative aerodynamic

spring effects over azimuth 90 < q_< 270 as well as the positive

stiffening from 270 < q, < 90 are as expected more pronounced

on the first mode frequency. The effects of reduced aerodynamic

spring and damping are also seen on the retreating side. These

results show that both damping as well as frequency variations

occur around the azimuth which influence the rotor response

with harmonic excitations.

270



3.0

2.0

1.0

o

1.C,'_

0.8 _

I

x

a_

.o.6

o
0_ 0.4

0.2

0
o

-C

I
NOTE: PHASEMEASURED IN

DIRECTION OF ROTATION
FROM _ = 0°
I I I

J

I I
TEST DATA
CONFIGURATION 5
P=0
0o=40
O 550 RPM (P = 1.28)
• ANALYSIS

I

0.1 0.2 0.3 0.4 0.5
x ,, r/R

Figure 2. One-Per-Rev Blade Radial Flap-Bending Moment
Distribution at V.= 0.

The rotating frequencies and properties of the flapping
modes noted in Tables XII, Xlll, and XlV analytically describe
the 7.5-ft-diameter rotor, configuration (5), 500-rotor-rpm con-

dition for which all harmonic feathering tests were conducted.

In an effort to further improve analytic correspondence with

test data the slight change of the second flapping mode fre-

quency resulted from matching collective blade angle selection

at the test conditions. Details of the test model are given in
References 9, l 0 and 11.

The harmonic components of the blade root flap-bending
moment (0P through 5P) were calculated for these advance ratios

for unit perturbation of blade feathering angle at 01c, 01 s, 02c,
02s, 03c, 03s, 04c, 04s, 05c, 05s, as well as for unit change in
0o and c_

The single non-dimensional blade root, centerline flap-bending
moment harmonic influence coefficients resulting from harmonic

feathering are summarized in matrix form in Tables XV, XVI, and

XVII for p = 0.191, 0.45, and 0.85. These are based on har-

monic analysis of the moment at each condition for 36 equally

spaced ( I0-degrees apart) azimuth intervals. Single-blade

TABLE XII

NORMALIZED EIGENVALUES* AT EACH 10-DEGREE

AZIMUTHAL SECTOR FOR p = 0.191

SECTOR KU o

1 5

2 15

3 25

4 35

5 45

6 55

7 fi5

8 75

9 85

10 95

11 .105

12 115

13 125

14 135

15 145

t6 155

17 165

18 175

19 185

20 195

21 205

22 215

23 225

24 235

25 245

26 255

27 265

28 275

29 285

30 295

31 305
32 315

33 325

34 335

35 345

36 355

P=1.34

R 1 I 1

-.204 1.024

-.212 1.022

-.220 1.019

-.227 1.014

-.233 1.007

-.238 .999

-.242 9o0_

-.244 .980

-.245 .970

-.244 .960

-.242 .951

-.239 .943

-.234 .937

-.228 .933

-.221 .930

-.213 .930

-.205 .932

-.197 .935

-.188 .940

-. 180 .945

-.172 .952

-.165 .958

-.159 .965

-.154 .971

-.150 .978

-.148 .984

-.147 .989

-.148 .995

-.150 .999

-. 154 1.005

-.158 1.010

-.164 1.014

-.171 1.018

-.179 1.021

-. 187 1.023

-.195 1.025

P = 6.38

R 2 12

-.155 1.002

-.163 1.002

-.170 1.002

-.177 1.002

-.183 1.001

-.187 1.001

- !90 !.000

-.192 1.000

-.193 .999

-.192 .998

-.190 .998

-.186 .997

-. 182 .997

-. 176 .997

-.169 .996

-.162 .996

-.154 .996

-.146 .997

-.138 .997

-.130 .997

-. 123 .997

-.116 .998

-.111 .998

-.106 .998

-. 103 .999

-.101 .999

-.100 1.000

-.lO1 1.000
-.103 1.000

-.107 l.OOl

-.Ill l.OOl
-.ll7 1.OOl

-. 124 1.002

-.131 1.002

-.139 1.002

-. 147 1.002

*SECTOR EIGENVALUES ARE GIVEN BY:

(R 1 +I 1 i) (1.341"1)

AND (R 2 + 12 i) (6.38$2)

computed root flap-bending moment influence coefficients

at V = 0.45 are compared with experimental 0.073R

single-blade data, in parentheses, from Reference 1 and 1
in Table XVIII.

These appear reasonable when shear effects are considered.

It is important that the general character of these influence
coefficients be established in future tests. These tests should be

structured to permit measurement to confirm these distributions.
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TABLE XIII

NORMALIZED EIGENVALUES* AT EACH 10-DEGREE

AZIMUTHAL SECTOR FOR ta= .45

SECTOR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

K/t o

5

15

25

35

45

55

65

75

85

95

105

115

125

135

145

155

P

R 1

-.215

-.234

-.252

-.269

-.283

-.295

-.303

-.309

-.311

-.310

-.305

-.297

-.285

-.271

-.255

-.237

165 -.218

175 -.197

185 -.177

195 -.158

205 -.139

215 -.123

225 -.109

235 -.098

245 -.089

255 -.085

265 -.083

275 -.084

285 -.089

295 -.078

305 -.108

315 -.122

325 -.138

335 -.156

345 -.175

355 -.195

= 1.34

I 1

1.087

1.088

1.084

1.075

1.059

1.037

1.011

.982

.951

.920

.891

.867

.850

.839

.837

.842

.854

.870

.889

.909

.928

.945

.960

.972

.982

.990

.997

1.003

1.011

1.018

1.027

1.038

1.049

1.061

1.072

1.081

P = 6.2

R 2 12

-.167 1.007

-.186 1.007

-.203 1.007

-.218 1.006

-.232 1.005

-.242 1.004

-.250 1.002

-.255 1.000

-.256 .998

-.254 .996

-.249 .995

-.240 .993

-.229 .992

-.215 .991

-.200 .991

-.182 .991

-.164 .992

-.145 .992

-.126 .993

-.108 .994

-.092 .995

-.078 .996

-.068 .997

-.061 .998

-.057 .998

-.056 .999

-.055 1.000

-.056 1.001

-.058 1.001

-.062 1.002

-.069 1.003

-.079 1.003

-.093 1.004

-.110 1.005

-.129 1.006

-.148 1.006

TABLE XIV

NORMALIZED EIGENVALUES* AT EACH 10-DEGREE

AZIMUTHAL SECTOR FOR # = .85

SECTOR

1

2

3

4

5

6

7

8

9
14
IU

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

_.tO

P1

R 1

5 -.231

15 -.267

25 -.301

35 -.332

45 -.360

55 -.382

75 -.409

85 -.413

105 -.402

115 -.387

125 -.366

135 -.339

145 -.308

155 -.274

165 -.237

175 -.199

185 -.160

195 -.123

205 -.090

215 -.062

225 -.043

235 -.034

245 -.032

255 -.032

265 -.033

275 -.032

285 -.032

295 -.034

305 -.043

315 -.061

325 -.088

335 -.120

345 -.156

355 -.193

= 1.34

I 1

1.192

1.209

1.212

1.200

1.171

1.126

l.uu_

.992

.911
o_d

.o_u

.745

.675

.625

.603

.611

.645

.698

.759

.822

.879

.925

.954

.970

.977

.983

.990

1.000

1.009

1.016

1.021

1.028

1.040

1.063

1.094

1.130

1.165

P2 = 6.20

R 2 12

-.040 1.014

-.048 1.015

-.055 1.016

-.061 1.015

-.067 1.013

-.071 1.010

-.vt_ J.VVU

-.076 1.002

-.076 .997

-.073 .988

-.070 .984

-.065 .982

-.060 .980

-.053 .980

-.040 .981

-.039 .983

-.031 .986

-.023 .989

-.016 .992

-.012 .993

-.011 .994

-.012 .996

-.014 .997

-.015 .998

-.015 .999

-.016 1.000

-.015 1.000

-.015 1.001

-.014 1.002

-.012 1.004

-.011 1.006

-.013 1.007

-.017 1.008

-.024 1.010

-.032 1.012

*SECTOR EIGENVALUES ARE GIVEN BY:

(R 1 +I li) (1.34fl)

AND (R 2+I 2i) (6.20_2)

*SECTOR EIGENVALUES ARE GIVEN BY:

(R 1_+ I li) (1.34_)

AND (R 2 _+12_) (6.20_)
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AO¢

A0

A01S

A01C

A02S

A02C

A03S

A03C
A94S

A04C

A05S

A05C

TABLE XV
CRM- BLADE ROOT (STA 0) BENDING MOMENT INFLUENCE COEFFICIENT MATRIX FOR/_ = 0.191

ao (PI = 1.34, P2 = 6.38)

C_o
.0034
•0132

.0036

-.0005

0
-.0003

0

0

0

0

.0119

0

cPlC

.0009

.0049

.0057

-.0213
-.0056

-.0005

-.0001

.0004

0

0

0

0

C_ls

-.0016

-•0111

-•0225
-.0045

-.0004

.0057

.0004

0

0

0

0

0

C_c
-.OOO1

-.0007

-.0018
-.0001

.0018

.0031

.0001

.0002

0

.0001

0

0

C[32S

-.O001
-.0005

-.0003
.0018

.0031

-.0018

.0002

-.0001

.0001

-.OOOl

0

0

C_3C
0

-.0001

0

.0002

.0014

-.0009

-.0046

-.0012

-.0010

.0017

.0002

.0002

C1_3S

0

0

.0002

0

-.0009

-.0014

-.0012

.0046

.0017

.0009

.0002

-.O002

C_4C
0

0
0

0

.0002

.0OO3

.0015

-.0014

-.0076

-.0026

-.OOl5

•0O24

C_4s
0

0
0

0

.0003

-.0002

-.0014
-.0015

-.0026

.0076

.0024

.0015

Cf_5C

0

0

0

0

0

0

•0001

.0003

.0017

-.OO20

-.0101

-•0033

C_s
0

0

0

0

0

0

.0003

-.OOOI

-.OO20

-._17

-.OO33

.0101

TABLE XVI

CRM - BLADE ROOT (STA 0) BENDING MOMENT INFLUENCE COEFFICIENT MATRIX FOR /_ =.45

ao (Pl = 1.34, P2 = 6.20)

C_O C_IC C_1S C{32C C{32S C03C C_3S C134C C045 Ct35C C_35S

Ao .0085 .0053 -.0089 -.0010 -.0012 -.0004 -.0004 -.0001 -.0001 0 0

A0 .0160 .0135 -.0276 -.0038 -.0029 -.0009 -.0004 -.0001 -.0OO2 0 0

A01S .0087 .0102 -.0292 -.0048 -.0016 -.0004 .0007 -.0006 0 0 0

A01C -•0011 -•0226 -.0034 -.0004 .0046 .0011 .0002 .0001 .0003 0 0

z_02S 0 -.0130 -.0006 .0006 .0046 .0036 -.0020 .0009 .0015 -.OO02 .0002

A02C -.0015 -.0024 .0142 .0043 .0001 -.0020 -.0035 .0015 -.0009 .0001 .0002

A03S 0 0 .0023 .0004 .0010 -.0057 -.0032 •0038 -.0036 .0008 .0016

A03C -.0002 .0022 -.0002 .0007 -.0001 -.0033 .0057 -.0036 -.0038 •0016 -.0008

A04S 0 -.0001 0 .0003 .0007 -.0026 .0042 -.0090 -.0046 .0043 -.0048

:,04(? 0 0 0 .0004 0 .0042 .0026 -.0046 .0090 -.0048 -.0043
A05S 0 0 0 0 .0003 .0008 .0008 -.OO38 .0058 -.0118 -.0055

A05C 0 0 0 0 .0003 .0008 -.0009 .0058 .0038 -.0054 .0118

A¢I,

A0

A01S

A01C

AA2S

A02C

A03S

A03C

A04S

_04C

A05S

A05C

CRM
no

TABLE XVII

- BLADE ROOT (STA 0) BENDING MOMENT INFLUENCE COEFFICIENT MATRIX FOR # = .85

(Pl = 1.34, P2 = 6.20)

c%
.0201

.0253

.0192

-.0024

-.0006

-.0056

-.0003

-.0009
-.O005

-.0004

0

0

CI31C COlS C[32C CI32S CI33C C_3S C_4C C_4 S CI35C C05S

.0227 -.0296 -.0056 -.0102 -.OO37 -.0039 0 -.0021 0 -.0015

.0378 -.0598 -.0141 -.0155 -.0061 -.0039 0 -.0032 -.0003 -.0018

.0278 -.0490 -.0117 -.0114 -.0036 -.0004 -.0019 -.0014 -.0005 -.OOOl

-.0258 -.0015 -.OOl 2 .0085 .0035 .0008 .0003 _0022 0 .0009

-.0229 -.0007 -.0026 .0079 .0081 -.0034 .0024 .0054 -.0019 .0016

-.0110 •0308 .OO84 .0067 -.0026 -.0064 .0052 -.0019 .0013 .0023

-.0014 .0076 .OOI0 .0035 -.0088 -.0082 .0100 -.0084 .0033 .0049

.0060 0 .0029 -.0009 -.0084 .0089 -.0084 -.0100 .0048 -.0033

-.0004 .0003 .0013 .0008 -.0067 .0087 -.0135 -.0100 .0112 -.0100
•0002 -.0002 .0007 -.0014 .0087 .0067 -.0100 .0134 -.0101 -.0112

.0001 .0006 .0002 -.0003 .0029 .0023 -.0088 .0124 -.0167 -.0115

.0006 -.0002 -.0003 -.0002 .0023 -.0029 .0124 .0088 -.0116 .0167
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TABLE XVIII

BLADE ROOT (STA 0) BENDING MOMENT (IN-LB)/DEG INFLUENCE MATRIX FOR t_ = .45

(It= 52.36, P1 = 1.34, P2 = 6.20)

!30

Aa 19

A0 36

A01S 20

A01C -2

A02S 0

A02C -3

A03S 0

A03C 0

A04S 0

A04C 0

A05S 0

A05C 0

_IC

12

31

23

-51

-29

-5

0

5

0

0

0

0

151S

-20

-62

-66

-8

-1

32

5

-1

0

P2C

-2

-9

-11

-1

1

10

1

2

1

0 1

0 0

0 0

P2S

-3

-7

-4

10

I0

0

2

0

2

0
1
A

1

[33

-1

-2

-1

3

8

-5

-13

-7

-6

9

2

2

2 _3S

(1) -1 (-2)

(1) -1 (1)

(1) 2 (-2)

(o) o (1)
-5

-8
-7

13

(0) 9 (6)

(6) 6 (-2)

2

-2

134C

0

0

-1

0

2

3

9

-8

-20 (-8)

10 (-4)

-9

13

_4S

0

0

0

1

3

-2

-8

-9

-10 (-5)

20 (7)
Io
IJ

9

0(1)

o(1)
o(1)
o (o)

-1

0

2

4

lO (-5)

-11 (-6)
-27

-12

135S

o(-1)
o (o)
o (o)
o (o)
0

0
4

-2

-11 (-1)

-10 (3)

-12

27

LIFT

6

10

6

0

0

-1

0

0

0

0

0

0

Full-Scale Control Loads

The feasibility of active vibration attenuation depends on

the capability of the rotor to generate cancelling shaft moments
and shears while control forces and displacements remain within

acceptable limits.

Since full-scale data are the most relevant from the stand-

point of hardware test background, the CL 840/AMCS

(Advanced Mechanical Control System) Cheyenne rotor

configuration, at a gross weight of 20,000 and with a rotor shaft

moment of 100,000 inAb, was analyzed for hovering flight to

gain a numerical measure of how loads co_npare with limits. In

this analysis three higher harmonic blade-feathering excitations,

3P, 4P and 5P, were examined to determine the relationships

among control loads, shaft moments and shear forces. The

Lockheed Rotor Blade Loads Prediction Model was used for

this analysis; 68 finite elements were used to describe the system.

The calculated results, based on 1-degree excitation levels, are

summarized in Table XIX.

Shaft Forces

4P H-force

4P Y-force

4P Pitching Moment

4P Rolling Moment
4P Thrust

Blade Root Torsion *

Harmonic

Steady
IP

2P

3P

4P

5P

TABLE XIX

CL 840 ANALYSIS -
SHAFT AND BLADE LOADS DUE TO ONE-DEGREE

OF HIGHER HARMONIC BLADE-FEATHERING MOTIONS

3¢

Amplitude Phase

380 lb 61°

380 Ib 84 °

22,000 in.-lb 83 °

22,000 in.-lb 16 °
0

-3800 in.-lb

210 in.-lb 11 °

80 in.-lb 49 °

1500 in.-lb 15 °

130 in.-lb 47 °

20 in.-Ib 27 °

4_

Amplitude Phase

FEATHERING FREQUENCY

5_

Amplitude

401b 59 °

401b 83 °

0

0

30001b 40 °

-4000 in.-lb

210 in.-lb I 1°

50 in.-Ib 42 °

70 in.-lb 82 °

13_ in.-lb 88 °
80 in.-Ib 35 °

310 lb

310 lb

108,000 in.-lb

108,000 ill.-Ib

0

-3900 in.-Ib

220 in.-lb

50 in.-lb

40 in.-lb

400 in.-Ib

7800 in.-lb

Pitch link forces arc internal loads between the blade and

swashplatc and therefore self-cancelling.
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Phase

34 °

12 °

8°

76 °

II °

39 °

84 °

57 °

10 o

Endurance t
Limit, in.-lb

325,000

15,500



The calculated root torsion moments shown in the table

reflect both the feathering moments at the primary exciting

frequency and the interharmonic coupling terms; as expected,

the latter are considerably less. Pitch link loads can be

determined by multiplying the root torsion moment by 0.1 (to

account for all applicable geometry); endurance limit of the

pitch link load is 1550 pounds.

to determine rotor vertical and inplane shear forces should

be incorporated in such future tests. Also a system with a
first inplane frequency in the vicinity of 1.5P in combination

with a flapping frequency of 1.1P should be tested at con-

ventional advance ratios to provide experimental data
representative of current designs.

The 7.5-foot hingeless rotor model data showed that 0.2 to

0.6-degree cyclic angle excitation levels were required. Study of
CL 840 test data indicates that similar blade excitation would

be expected with a full-scale, four-bladed rotor. The CL 840

data are not yet published in documents that can be referenced,

however, this material is expected to be published during 1974.

In summary, full-scale data founded on endurance limit

loads will not limit the trim flight use of periodic variation of

conventional controls for vibration attenuation.

Conclusions

The present report is a preliminary evaluation of the con-

cept of vibration reduction by properly selected oscillatory col-

lective and cyclic control applications. The investigations are

based on experimental frequency response data covering advance

ratios from approximately 0.2 to 0.85.

Because there was no instrumentation for the measurement

of the pitch and roll vibrations, these values were obtained by

properly adding up the flap-bending moments at 3.3 inches. Any
other quantity representing pitch/roU vibrations can be

compensated for in the same fashion.

The calculated control inputs required for vibration reduc-

tion Stay within acceptable limits. For four of the five conditions

tested they are smaller than the values used for the frequency

response tests. The blade pitch variations required for vibration
alleviation vary, depending on the advance ratio, less than 1o for

.2 _; ta _<.45 and _ 3 ° for t_ = .85.

As to be expected, the compensating controls greatly affect

the blade loads, i.e., torsion, flap- and chordwise bending. With

regard to flap-bending at 3.3 inches (root flexure), the following
statements can be made:

• 3 and 5P flap moments were, by command,

drastically reduced

I.

2.

3.

4.
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where al, u 2 ..... an are all distinct, this yields

n P(ak) akt
t3(t) = Z _ e

k=l Q'(ak)

In the case cited

(4)

12. Watts, G. A. and London, R. J., VIBRATION AND LOADS

IN HINGELESS ROTORS, Vol. I and II, NASA

CR-114562, September 1972. where

Q(s) = A(s) (s - a) (s - x/)

c_1 = 0

Appendix A

The transient response solution of a system described by
constant coefficient linear differential equations is developed

in this appendix. The single-dezree-of-freedom case with arbi-
trary initial conditions and solution of the general case for an
nth order system with both zero and nonzero initial conditions

is reported.

Given the single degree of freedom:

Ad213+ B--_-t + C_3= F(t)
dt 2

(1)

where A, B, and C are constants, then

A,_(_t_2 )+ B._(--_t)+ C,_([3) = ,/_(F(t))

where ,2_ is the Laplace transform operator. This yields

and

e(s) = L + [_(0)A] s2 + 1_(0)_ + _(0)A]s

Therefore

n P(ak) eCrkt
13(t) = _ Q,(._k"-"_k=l

p(t) =
L

A(- a) (- x/)

[L+[13(0)A] a2 +[13(0)B+I 3(0)A] aleat (5)+ A(+ u)(+ a - _/)

L + [f3(0)A]_/2 + [fS(0)B + p(0)A] T] e vt+ (A)(+_)(¥- a) 1

(As 2 + Bs + C) 13(s) = F(s) + [3(0)(As + B) + _(0)A (2)

or

_(s) :
F(s) + 13(0)(As + B) + _(0)A

As 2 + Bs + C

If a positive constant step load of magnitude + L is the form of

F(t), then

,/_(F(t)) = F(s) = +___.LL
S

and

L p(0)As
p(s) - A(s)(s- a)(s- ¥) + A(s- a)(s- "_)

+ [3(0)B + 13(0)A
A (s - a) (s - y)

Where [3(0) and _(0) are the values of the variable 13at time
t = 0 and cv, V are the roots of s2 + Bs/A + C/A, [3(s) trans-
formed back into the time plane is accomplished through use
of the inverse Laplace transform of the form P(s)

Q(s)

(3)

where

P(s) = polynomial of degree less than n

Extension to the general case is accomplished as follows.

Given the general determinantal equation:

Is21n +s BJ+ I ,s,I=IF,s,l
Where the elements of matrix A, B, and C are constants,

using Cramer's Rule:

(6)

[Bi(s) =

Denominator with IColumn i replaced by F(s) (7)

Is2[At; sl.l + Ict I

Expanding

yields

where

Is21nl+ +Icl

A o(s-al)(s-a 2) ... (s-a n ) (8)

A o = Coefficient of highest power term

a i (i = 1 . .. n) are the eigen values (roots) of
the determinantal equation

and

Q(s) = (S-al) (s-a 2) .... (s- a n)
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Case I - Zero Initial Conditions

Assume _i(0) and _i(0) for all i are both zero and that a

positive unit load acts on 13eand that the response of 15f is to
be determined. Then

Defining

{F,s,}I+,,smrow,witha,,oth,r1
rowsequal0

as the original determinantal equation with Row e and Column
f removed and all the remaining rows and columns moved up
and to the left, respectively, this forms a determinantal equation
of one less order.

Based on the earlier development in the s-plane

) a° a 1 a 2 a n=_ + _ + _+...+
flf(t) s s-a I s-a 2 s-a n

and in the time plane

ant
13f(t) = a o + al ealt + a2 ea2t +...+ane (10)

where

ao -

(- 1)(e + f) D(o)e, f

n

Ao N cti
i=l

and

(- 1)(e+ f) D_j)e'f i _: j
aj- n

ojA o 1I (aj-ai)
i=l

A o is determined by the relationship

n

D(o) = A o IIai
i=l

Case 2 - Nonzero Initial Conditions

The general form of F(s) now becomes:

(11)

whe.re L i are the forces applied at each coordinate 13i and 13i(0)
and fli(0) are the positions and rates of the coordinates at time

zero (initiations of the solution). In this case place the column
I I

s IF(s) t into the column location of the coordinate for which the

response is desired without reduction of the order. Then

Column i

P(s) = s{ F(s)}

where all other terms are

(12)

Is2IA +sIB +icJI
and

Q(S) = A0(s-a O)(S-al)... (s -an) (13)

where the a's are the eigenvalues of the determinantal
equation

Then

lsls:iAl+ If0

n P(ak ) e c'kt
15i(t) =

k= 0 Q'(ak)
(14)

D(o)e, f and D(t_3e, f are formed from the original determinantal
equation with l_ow e and Column f removed and all the remaining
rows and columns moved up and to the left, respectively,

evaluated at o and t_j. The _j are the roots of the original deter-
minantal equation before Row e and Column f were removed.

These roots are assumed distinct, an unimportant limitation for

most physical systems. Note that this solution does not preclude
instability either aperiodic or oscillatory.

In practice the eigenvalues are obtained prior to the fomaa-

tion of the coefficients and are examined to verify the distinct
character of the eigenvalues.

Scalar multiplication of this solution provides the result
for the nonunit loading case. Summation of solutions obtained

for loadings at each coordinate can be used to.provide the
general solution for this case where _i(O) and fli(O) for all i
are both zero, i.e., that the initial conditions at time zero
are all zero.

where s = 0 and the remaining eigenvalues of the general deter:

minantal equation form the set of ak'S, and A 0 is determined
by the relationship

n

D(0) = A 0 IIOq
i=l

(15)

as given in Case 1.

In most applications the restriction that the initial condi-

tions are zero is an unacceptable constraint and this condition
has been relaxed; the solution follows.
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