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Abstract

A method is presented for obtaining

the mass, stiffness, and damping param-

eters of a linear mathematical model,

having fewer degrees of freedom than the

structure it represents, directly from

dynamic response measurements on the

actual helicopter without a priori knowl-

edge of the physical characteristics of

the fuselage. The only input information

required in the formulation is the approx-

imate natural frequency of each mode and

mobility data measured proximate to these

frequencies with sinusoidal force excita-

tion applied at only one point on the

vehicle. This dynamic response informa-

tion acquired from impedance testing of

the actual structure over the frequency

ranqe of interest yields the second order

structurally damped linear equations of

motion.

The practicality and numerical sound-

ness of the theoretical development was

demonstrated through a computer simulation

of an experimental program. It was shown,

through approximately 400 computer ex-

periments, that accurate system identifi-

cation can be achieved with presently

available measurement techniques and

equipment.

Notation

C in fluence coefficient

d damping

f force

force phasor

structural damping coefficient

imaginary operator (i = /T[)

number of generalized coordinates

stiffness

m mas s
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Subscripts

i modal index

j, k

( )

number of degrees of freedom

number of forcing frequencies

number of modes

residual

modal mobility ratio

displacement mobility, _y/_f

natural frequency

matrix of modal vectors

degree oI freedom index,

generalized coordinate index

a subscripted index in

parentheses means the index

is held constant

Superscripts

(q)

R

I

T

-i

-T

+

Brackets

[], ()

{ }

q-th iteration

modal parameter

real

imaginary

transpose

inverse

transpose of the inverse

pseudoinverse, generalized

inverse

matrix

diagonal matrix

column or row vector
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capital letters under matrices indicate
the numberof rows and columns,
respectively

a dot over a quantity indicates differen-
tiation with respect to time

Thesuccessof a helicopter struc-
tural design is highly dependenton the
ability to predict and control the

dynamic response of the fuselage and

mechanical, components. Conventionally,

this involves the formulation of intu-

itively based equations of motion.

Ideally, this process would reduce the

physical structure to an analytical

mathematical model which would predict

accurately the dynamic response character-

istics of the actual structure.

Obviously, the creation of such an

intuitive abstraction of a complicated

real structure requires considerable

expertise and inherently includes a high

degree of uncertainty. Structural

dynamic testing is required to substan-

tiate the analytical results and the

analysis is modified until successful

correlation is obtained between the

analytical predictions and the test

results.

Until a prototype vehicle is avail-

able, intuitive methods are the only

choice for describing an analytical model.

However, once the helicopter is built,

the method of structural dynamic testing

using impedance techniques can be used to

define directly a dynamic model which

correlates with the test data. Such a

model, synthesized from test data,

succeeds in unifying theory and test,

minimizing the intuitive foundation of

conventional analyses.

System Identification has been de-

fined as the process of obtaining the

linear equations of motion of a structure

directly from test data. In System

Identification the objective is the ex-

traction of the mass, stiffness and

damping parameters of a simple mathemati-

cal model directly from dynamic response

measurements on the actual helicopter

without a priori knowledge of the physical

characteristics of the fuselage. Figure 1

presents a pictorial representation of

the System Identification process.

This paper describes the theory of

System Identification using impedance

techniques as applied to a mathematical

model having fewer degrees of freedom

than the structure it represents. The

method yields the mass, stiffness and

damping characteristics of the structure,

the influence coefficient matrix, the

orthogonal modes, the exact natural

frequencies, the generalized parameters

associated with each mode and dynamic

response fidelity over the frequency range

of interest. The only information nec-

essary to implement the method is the

approximate natural frequency of each mode

and mobility data measured proximate to

these frequencies with the excitation

applied at a single point on the vehicle.

This data can be readily obtained from

impedance type testing of the helicopter

over the frequency spectrum of interest.
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Figure i. System Identification

Process

The usefulness and numerical sound-

ness of the theoretical development was

demonstrated through a computer simulatior

of an experimental program, including a

typical and reasonable degree of measure-

ment error. To test the sensitivity of

the method to measurement error, a series

of computer experiments were conducted

incorporating typical and reasonable

degree of measurement error. The results

indicate that accurate identification of

structural parameters from dynamic test

data can be achieved with presently

available measurement techniques and

equipment.
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Description of the Theor_

Derivation of the Single Point Iteration

Process

As presented in References 1 and 2,

the mobility of a structure at forcing

frequency, _, is given by

[Y ] = [¢] _Yi J [¢]T (I)

With excitation at station k, the respon-

ses at station j, including k, are

obtained• These provide the k-th column

of the mobility at a particular forcing

frequency _i:

_Yl/_fl

{Yj (k)_ I} = {_y2/_f I}

_YJ/_fl

N . .

= i=17 Yi_lSki{_} i = [#]{Yi_l_ki} (2)

where 1 _ j _ J and 1 _ i _ N.

This represents a column of mobility

response each element of which is the

response at a generalized coordinate on

the structure with excitation at station

k and at forcing frequency _I" Similarly,

with the exciter remaining at station k,

the k-th column of the mobility at

another frequency, _2, can be obtained.

_Yl/_f2

{Yj (k)_ = {_Y2/_f2}

_YJ/_f2

_2

N . ,

= i=iZ Y'1_2$ki{$}i = [_]{Yi_2$ki} (3)

The columns of mobility response

represented by (2) and (3) may be com-

bined into one matrix

1 2

JxN NxN Nx2

(4)

Generally, for p forcing frequencies

where 1 < p < P,

Lzj (k)pJ = t_J t_kiU L_iP'r'"I

JxP JxN NxN NxP
(5)

If J > P, Equation (5) is set of more

equations than unknowns for which there is

no solution• In this situation, Equation

(5) can then be written as

[Yj (k)p] = [#] tSki_ [Yip] + [Rjp] (6)

where R. is the residual associated with
3P

the j-th station and the p-th forcing

frequency.

=_ d=_b_ a in o_ =._ I =n_

the imaginary displacement mobility is

usually significantly affected by modes

associated with natural frequencies in

proximity to the forcing frequency.

Reference 3 indicates that accurate

estimates of the modal vectors may be

obtained by considering only the effects

of modes proximate to the forcing fre-

quency. Therefore, the analysis will

employ only Q modes, where Q is less than

N. The imaginary displacement mobility

may be expressed as:

*I

[Y_(k)p] = [$] _ki _ [Yip] + [Rjp] (7)

Since each column of [Y_] is

associated with a particular frequency,

the dominant element of each row of the

matrix will be the modal mobility measured

at the forcing frequency in proximity to

a particular natural frequency. Nor-

malizing the rows of the aforementioned

matrix on the largest element yields

[Sip] = _I/Y_ *I[Yip] (8)

where y*I is the maximum value of the i-th
in

row. Equation (7) may be rewritten,

incorporating Equation (8)
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I *I

[Yj (k)p ] = [_] _kiYi_ [Sip] + [Rjp] (9)

The matrix Equation (9) has no

solution, however, an approximation to a

solution may be defined as that which

makes the Euclidian norm of the matrix of

residuals a minimum. The modal vector

matrix with respect to which the Euclidian

norm of the residuals is a minimum is ob-

tained through use of the pseudoinverse,

and is given by

S +
[$] = [Y_(k)p ] [ ip ] __

_kiYin (I0)

S +
where [ ip] is defined as the generalized

inverse or pseudoinverse of IS. ] and is

defined by _P

+ T [Sip]T)-1[Sip] = [Sip] ([Sip] (ii)

In Equation (i0) each diagonal element of

_j simply multiplies the correspon-

SkiYin

ding column of the modal matrix. Since

each modal vector is normalized on the

largest element in the vector, the effect

of the aforementioned multiplication is

negated and Equation (i0) can be reduced

to

[$] = [Y_(k)p] [Sip] + (12)

The IS] matrix can be accurately

estimated from knowledge of only the

forcing frequencies and the natural fre-

quencies. Equation (12) will be solved

utilizing matrix iteration techniques.

At each successive iteration a solution

is found that minimizes the Euclidian

norm of the residual matrix with respect

to the newly found matrix of either [S]

or [$]. The basic algorithm used in the

matrix iteration procedure for the q-th

iteration becomes

+

[$(q) ] = [yI] [s(q-1)]

and

[s(q)] = [$(q)]+[gI] (13)

Determinin 9 the Modal Parameters

The real modal impedance at forcing

frequency Up can be written as

*R
Y.

*R _ 1_p
Zim 2 2

*I
p (y*R) + )

P (Yi_p
(14)

Substituting the real and imaginary dis-

placement mobility as given in Reference 1

yields

*R = K* _p2/_i2)Zi _ i( I - (15)

P

that the modal impedance is a linear

function of the square of the forcing

frequency. The forcing frequency at which

the modal impedance becomes zero is,

therefore, the natural frequency. From a

least squares analysis of modal impedance

as a function of forcing frequency

squared, proximate to the natural fre-

quency, the generalized stiffness of the

i-th mode and the natural frequency of the

i-th mode can be calculated.

The generalized mass associated with

the i-th mode is given by

* [/_i 2m i = K (16)

The structural damping coefficient may be

determined from

*I

2 Y.

1

P
(17)

Models

There are two basic types of dynamic

mathematical models describing structures.

The first type described as "Complete

Models" considers as many modes as degrees

of freedom. The second type labelled

"Truncated Models" considers fewer modes

than points of interest on the structure.

Using the methods described herein, it is

possible to identify either a complete

model or a truncated model.

For the completed model the modal

matrix [$] is square. However, in the

case of the truncated model the modal

matrix [$] is rectangular having J rows

corresponding to the points of interest

and Q columns associated with the mode

shapes, where J > Q.
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Truncated Models

Consider a rectangular identified

modal matrix which has J rows indicating

the points of interest on the structure

and Q colunms representing the modes being

considered where J > Q. The influence

coefficient matrix for the truncated model

is given by

[CTR ] = [_] _i____ [_]T (18)
K.
1

The above matrix is singular being of rank

Q _._ _A,_ _ _ .... , stiffness _nd

damping matrices for the truncated model

are

[mTR ) = (#]+T _m;_ (_]+

[KTR] = [_]+T_K;_ [#]+

[dTR] = [#]+T_giK;_ [_]+ (19)

The classical modal eigenvalue equation

has the analogous truncated form

1

[CTR] [mTR]{_ i} = _ {_i }

1
(20)

Complete Models

For the complete model the identified

modal vector matrix is square, having the

same number of degrees of freedom as mode

shapes, thus J = Q. The influence matrix

is given by

. N T

[C] = [_] _I/Ki_ [_]T = _ i/K;{_i}{_i}
i=l

(21)

The mass, stiffness and damping

matrices for the complete model are simi-

lar to those of Equation (19), except

that the matrices are square.

[m] = [_]-T_n;_ [_]-I

[K] = [_]-T _I/K;_ [_]-i

-T * -i
[d] = [_] _iKi _ [#] (22)

Full Mobility Matrix

The full mobility matrix of either

complete or truncated models is given by

[y] = [_]/_i _ [_]T

Co_uter Test Simulation

(23)

The usefulness and numerical sound-

ness of the theoretical development was

demonstrated through a computer simulation

of an experimental program. Approximately

400 computer experiments were performed in

the study. A twenty-degree-of-freedom

lumped mass beam type representation of a

helicopter supported on its main landing

gear and tail gear was used to generate

simulated mobility test data. Each of the

coordinates was allowed a transverse de-

gree of freedom. The concentrated mass

and stiffness parameters of the beam are

shown in Table I, with EI varying

linearly between stations and with 5

percent structural damping.

Simulated Errors

System Identification theories of any

practical engineering significance must be

functional with a reasonable degree of

experimental error. Therefore, a typical

and reasonable degree of measurement error

ranging to +15% random error uniformly

distributed--and 15% bias error, was incor-

porated in the simulated test data. Both

random and bias error were applied to the

real and imaginary components of the dis-

placement mobility data. The levels of

error applied are consistent with those

inherent in the present state-of-the-

measurement art.

Models

The number of degrees of freedom of

a physical structure is infinite. There-

fore, the usefulness of model identifica-

tion, necessarily with a finite number of

degrees of freedom, using impedance

testing techniques, depends on the ability

to simulate the real structure with a

small mathematical model.

Several size models, containing from

5 to 15 degrees of freedom, were synthesi-

zed from the simulated test data incor-

porating the specified experimental error.

Table II describes the various models

used in the analysis. The model stations

used in the models refer to the corres-

ponding stations in the twenty point

specimen.

Identified Models

Typical generalized mass identifica-

tions are shown in Tables III, IV and V.

Table III presents results for several

different five point models. The model

designations refer to the descriptions

presented in Table II. Data are also

243



presented for the twenty point specimen

with zero experimental error. Thus, a

basis of comparison is established with

the theoretically exact control model of

the beam representation of the helicopter.

It is apparent that no outstanding dif-

ferences exist among the identified

generalized masses for the models con-

sidered for comparison. Table IV presents

similar data for the nine-point models

studied. The generalized mass distribu-

tion associated with each of the models

is in excellent agreement with the twenty

point model results.

Table V describes the results of the

computer experiments conducted employing

the twelve point models. The results are

satisfactory except for the identification

of the generalized masses of th_ tenth and

eleventh modes. However, the generalized

masses associated with these modes are

extremely small in comparison with the

remaining modal generalized masses. An

examination of the tenthmode shape re-

vealed a lack of response at all points

of interest on the structure other than

the first station. Therefore, the effect

of the tenth mode is difficult to evaluate

in the .calculation of the generalized

parameters. Computer experiment 309

yielded a negative generalized mass for

the tenth mode. All computer experiments

that failed in this respect gave dras-

tically unrealistic values of generalized

mass. Ordinarily, in a situation where

the generalized mass was unrealistic, use

of different stations for the model

improved the identification.

TABLE I. 20-POINT SPECIMEN DESCRIPTION

Sta No. 1 2 3 4 5 6 7 8 9 i0 ii 12 13 14 15 16 17 18 19 20

Sta (In.) 0 60 120 160 200 240 280 320 370 430

30 100 140 180 220 260 300 340 400 460

Mass .029 3.67 2.18 2.385 2.08 .910 .170 .070 .095 .210

(Lb-Sec2/In.)

1.05 3.71 2.18 2.59 1.56 .260 .085 .060 .120 .15C

.35 .35 1.95 4.37 5.80 4.425 3.07 2.05 .975 .55

I n_Lb-I x 1010 )

.35 1.20 3.00 5.70 5.60 3.6 2.60 1.60 .65 .50

Springs to

iGround (Lb/In.) i0000 i0000

TABLE II. MODEL DESCRIPTION

Stations Used

_odel 1 2 3 4 5 6 7 8 9 i0 ii

5A x x x

5B x x x

5C x x x

5D x x

12 13 14 15 16 17 18 19 2G

x x

x x

x x

x x

9A x x x x

9B x x x

9C x x x x

x x x

x x x

x x x

x x x

12A x x x x x

12B x x x x x

12F x x x x x

x x x

x x x

x x x

x

x

x

x

x

x
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TABLE III. IDENTIFICATION OF GENERALIZED MASSES,

5 X 5 MODEL OF 20 X 20 SPECIMEN

Model 5A 5B 5C 5D l * *

Computer

Experiment

Number 296 297 292 295 -

Random Disp. Error +5% +5% +5% +5% 0

Bias Disp. Error +5% +5% +5% +5% 0

Random Error Seed 13 13 13 13 -

Generalized Masses

Mode (Lb-Sec2/in.)

1 8. 544 8. 538 8. 543 8. 568 8. 534

2 4. 506 4. 506 4. 619 4. 610 4. 449

3 .494 .494 .494 .493 .495

4 1.048 1.047 1.050 .994 1.087

5 .653 .653 .651 .629 .630

** From 20 x 20 Specimen

TABLE IV. IDENTIFICATION OF GENERALIZED MASSES,

9 X 9 MODEL OF 20 X 20 SPECIMEN

Model 9A 9B 9C 20 Pt

omputer

Experiment

Number 300 303 304 i**

Random Disp. Error +5% +5% +5% 0

Bias Disp. Error +5% +5% +5% 0

Random Error Seed 13 13 13 -

Generalize d Masses

Mode (Lb-Sec=/In.)

1 9.000 9.015 9.043 8.534

2 4.350 4.335 4.513 4.449

3 .472 .472 .472 .495

4 1.042 1.042 1.138 1.087

5 .551 .549 .584 .630

6 .786 .783 .723 .743

7 1.154 1.243 1.120 i.]77

8 1.401 1.411 1.396 ].412

9 .787 .708 .791 .78f_

** From 20 x 20 Specimen
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TABLE V. IDENTIFICATION OF GENERALIZED MASSES,

12 X 12 MODEL OF 20 X 20 SPECIMEN

Model 12B 12F 12A 20 Pt

Computer

Experiment

Number 312 311 309 I**

I
Random Disp. Error +5% +5% +5% 0

Bias Disp. Error +5% +5% +5% 0 I
Random Error Seed 13 13 13 _ __

I

Mode

Generaiize_ Masses

(Lb/Sec_/In.)

1 8.474 8.464 8.518 8.534

2 4,556 4.510 4.492 4._49

3 .488 .487 .487 .495

4 1.150 1.151 1.103 ].087

5 .596 .597 .595 .630

6 .722 .724 .777 .744

7 1.182 1.113 1.159 1.177

8 1.232 1.242 1.215 1.412

9 .797 .743 .789 .786

10 1.203 1.043 -.564 .043

ii .093 .]04 .0103 .]72

12 1.177 1.119 1.147 1.050

** From 20 x 20 Specimen

Response From Identified Model

One of the most essential requisites

of relating a discrete parameter system

to a continuous system is model response

fidelity over a given frequency range of

interest. The finite degree of freedom

model must accurately reproduce the dy-

namic response of the infinite degree of

freedom structure over a specific number

of modes. Figures 2a and 2b show typical

real and imaginary driving point accel-

eration response respectively for the

five point model. The "exact" curve

represents the simulated experimental

data for the twenty point structure,

obtained with zero error. The frequency

range encompasses the first five elastic

natural frequencies. Figures 3 and 4

present similar results for tvpical nine

and twelve point models, respectively.

The computer experiments for which results

are presented incorporated a +5 percent

random and a +5 percent bias _n the real

and imaginary displacement mobility data.

As evidenced by the figures, the various

models yielded satisfactory reidentifica-

tion of the twenty point specimen simu-

lated dynamic response data.
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Figure 2a. Effect of Error on Five-Point

Model Identification of Real

Acceleration Response; Driving

Point at Hub

Figure 2b. Effect of Error on Five-Point

Model Identification of

Imaginary Acceleration

Response; Driving Point at Hub
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Figure 4a - Continued

Conclusions

Single point excitation of a structure

yields the necessary mobility data to

satisfactorily determine the mass,

stiffness and damping characteristics

for a mathematical model having less

degrees of freedom than the linear

elastic structure it represents.

The method does not require an in-

tuitive mathematical model and uses

only a minimum amount of impedance

type test data.

The eigenvector or mode shape

associated with each natural

frequency is also determined.

Computer experiments using simulated

test data indicate the method is in-

sensitive to the level of measurement

error inherent in the state-of-the-

measurement art.

l.

2.

Figure 4b.

3.

Effect of Error on Twelve-

Point Model Identification

of Imaginary Acceleration

Response; Driving Point at

Hub
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