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Abstract

The problem of helicopter mechanical insta-

bility is considered for the case where one blade

damper is inoperative. It is shown that if the hub

is considered to be nonisotropic the equations of

motion have periodic coefficients which cannot be

eliminated. However, if the hub is isotropic the

equa_lons can be transformed to a rotating fr_m_

of reference and the periodic coefficients elimi-

mated. The Floquet Transition Matrix method is

shown to be an effective way of dealing with the

nonisotropic hub and nonisotropic rotor situation.

Time history calculations are examined and shown

to be inferior to the Floquet technique for deter-

mining system stability. A s_earing technique

used in the past for treating the one damper inop-

erative case is examined and shown to yield uncon-

servative results. It is shown that instabilities

which occur when one blade damper is inoperative

may consist of nearly pure blade motion or they

may be similar to the classical mechanical

instability.

Notation

c i lag dampimg rate

C x effective hub damping in x-directlon

Cy effective hub damping in y-direction

e lag hinge offset

Ib second mass moment of blade about lag

hinge

ki lag spring rate

effective hub stiffness in x-direction

mb

effective hub stiffness in y-direction

blade mass

mx effective hub mass in x-direction

N

effective hub mass in y-direction

number of blades i_rotor

Pj characteristic exponent corresponding to

Jth eigenvalue of the FloquetTransition
Matrix

Presented at the AHS/NASAAmes Specialists' Meet-

ing on Rotorcraft Dynamics, February 13-15, 1974.

Px

Py

T

Xc_ Yc

xh, Y h

xi, Yi

_h

Aj

v h

V
0

P

%

%

[ACt)]

[_t}]

[ql

_O(t}1

_Z(t) I

force acting on hub in x-direction

force acting on hub in y-dlrection

first mass mc_ent of blade about lag

hinge

period of the periodic coefficients,
m _ ,_.../r_

coordinates of hub in rotating reference
frame

coordinates of rotor center of mass in

fixed reference frame

coordinates of hub in fixed reference

frame

coordinates af elemental blade mass dm

in fixed reference frame

lag deflection of Ith blade

defined by Eqmations (18)

defined by Equations (7)

Jth eigenvalue of the Floquet Transition

Matrix

defined by Equations (18)

defined by Equations (7)

distance fram lag hinge to elemental

blade mass dm

azimuthal locati_ of ith blade

rotor speed

defined by Equations (18)

defined by Equations (7)

characteristic matrix, periodic with

period T

state matrix, periodic with period T

Floquet Transition Matrix

state transition matrix

state vector
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_ne problem of mechanical instability of

helicopters on the ground has been recognized and

understood for many years. The analysis by Coleman

and Feingold I has bec_ne the standard reference on

this phenomenon although it _as not published until

many years after the first incidents of mechanical

instability, or ground resonance as it is commonly

known, were encountered on the early autogyros.

The mechanical instability phenomenon is most com-

monly associated with helicopters having articu-

lated rotors; however, helicopters using the soft-

inplane hingeless rotors which have become popular

in recent years are also susceptible to this

problem. Machines employing these soft-inplane

hingeless rotors are also known to experience a

similar problem, commonly known as air resonance,

which occurs in flight rather than on the ground.

The air resonance problem has received _aeh atten-

tion in recent years (see, e.g., Refs. 2 and 3).

From the analysis of Reference I and others

it is known that the ground resonance problem is

due primarily to a coupling of the blade inplane

motion with the rigid body degrees of freedom of

the helicopter on its landing gear. These analyses

have shown that with the proper selection of blade

lag dampers and landing gear characteristics the

problem of mechanical instability can be eliminated

within the operating rotor speed range. All of the

mechanical instability analyses conducted to date

have one assumption in common - all blades are

assumed to have identical properties. This is a

reasonable assumption under ordinary circumstances;

however, the U.S. Army has a requirement on new

helicopters which invalidates this assumption. The

requirement is that the helicopter be free from

ground resonance with one blade damper inoperative.

As will be shown later, this one blade damper inop-

erative requirement has a serious impact on the

classical method of analyzing a helicopter for

mechanical instability. Further, there is at pres-

ent no published method available for treatin_ the

case where each of the blades is permitted to have

different properties. Thus the designer is faced

with the dilemma of trying to satisfy the require-

ment with an analysis method in which one of the

basic assumptions is severely violated.

Two methods have been used to circumvent this

difficulty. The first of these involves a physical

approxin_tion so that the classical analysis

becomes applicable. In this approach all blades

are still assumed to have identical lag dampers

even when one blade damper is removed I but the

value of each of the dampers is reduced by the

amount ci/N where N is the number of blades

and c i is the original lag damper rate. As can

be seen, with this approach a system is analyzed

which is quite different from the actual situation

of a rotor with no damping on one blade. The sec-

ond method which has been used is to reformulate

the equations of motion allowing for differing

blade characteristics and to obtain the stability

characteristics of bhe system using a time history

integration of the equations. This seccad approach

has the drawback that interpretation of stability

characteristics from time history calculations is

often difficult and open to question. The method

will yield correct results, however, provided the

equations are integrated over a sufficiently long

time period.

The purpose of this paper is to present a

method of obtaining the mechanical stability char-

acteristics directly for a helicopter operating on

the ground with one blade damper inoperative. As

will be shown later, the equations governing the

motion of this system have periodic coefficients.

This fact suggests the use of Floquet theory as the

means for determining the stability characteristics

of the system. In the following, the one-damper-

inoperative problem is formulated and the resulting

equations are solved using the Floquet Transition

Matrix method described by Peters and Hohenemser. 4

Results obtained using this method are compared

methods and reconmendations are made concerning

the future use of the three methods described.

Equations of Motion

The equations of motion for the mechanical

instability problem will be formulated using an

Eulerian approach. It will be assumed, as is done

in Reference l, that the helicopter on its landing

gear can be represented by effective parameters

applied at the rotor hub. It will be further

assumed that only inplane motions of the hub and

blades are important in determining the ground

resonance characteristics of the helicopter. Thus

the degrees of freedom to be considered consist of

two inplane hub degrees of freedcm and a lead-lag

degree of freedom for each blade in the rotor. The

mathematical model to be used in the analysis is

shown in Figure 1. Note that in the figure only a

typical blade is shown. The analysis will be

formulated for a rotor having N blades, and each

blade is assumed to have a rotational spring and

damper which act about the lag hinge.

The blade equations are developed by summing

moments about the lag hinge. The coordinates of

the elementalmass dm in the fixed system are

x i = x h + e cos ¢i + p c°s(¢i + _i ) I (1)

Yi = Yh + e sin _i + p sin(_i + _i ))

where

@i = nt + 2_(i - I)/N i = 1,2,...,N

These expressions can be differentiated twice with

respect to time to yield the accelerations exper-

ienced by the differential mass
k

_i = _ - e_2 cos @i - 0(_ + _i)2COS(¢i + _i))

- _i sin(_i+ _i)

9i Yh - en2sin_i " _(n+ _i)2sin(_i+ _i)%
/

+ P[ie°s(_i+ _i)
(2)

Using D'Alembert's principle the summation of

moments about the lag hinge can be written as
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Sp sm (*i+ _i)_i_ " f_ oos()i+ _i)_i_

- ki_i = ci_i = o i = 1,2,...,_ (3)

where the integrals are evaluated over the length

of the blade. Introducing the expressions for

_i and Yi and defining the following

(10

the blade equations become

LoKi + e_2Sbsin _i - %[_ sin(*l + _:i)

" Yh c°s(*i+ _i)] + kiwi+ ci_i= 0 (7)

i = 1,2,...,N

If small displacements are now assumed the blade

equations may be linearized to obtain

2 2
= (,?o/e)[_ sin_'i + ni_i + (_02i + a VO)_i *i

" _h COS )i] i = 1,2,...,N (6)

where the following parameters have been introduced

2 esblL_ )V 0 =

2

_°i ki/Ib t (7)

'li ci/_ J
Under the assumptions stated earlier the hub

equations of motion can be written directly as

_ + Cx_ + _ : P_ I
(8))re?i,+cQ-h +'<th: %"

where the coefficients on the left side of these

equations are the effective hub properties in the

x- and y-directions, respectively. The determina-

tion of these properties depends on an extensive

knowledge of the helicopter inertial character-

istics and the stiffness, damping, and geametrical

characteristics of the landing gear system. These

properties may be determined either by ground shake

tests of the helicopter, as suggested in Refer-

ence l, or by direct calculations. The right-hand

side of the above equations are the forces acting

on the hub due to the fact that the rotor is

experiencing accelerations in the x- and y-

directions. If the accelerations of the rotor

center of mass are _ and _c, respectively, the

Px and Py are givenc by

P_ = -_c I (9)
Py -HmbY c )

The equations as written also indicate that in the

absence of the rotor the hub degrees of freed_n are

uncoupled. This is an approximation, but it is

an assumption made in Reference i and one generally

used in helicopter mechanical stability analyses.

If all blades in the rotor are assumed to have

the same mass distribution, the coordinates for the

total rotor center of mass may be written as

N
1

Xc = Xh +N i_=Ixic:

(I0)

(ll)

N

Yc = Yh + N .= Yi c

where Xie and Yic arc the coordinates of the

respect to the hub. If the center of mass of the

itch blade is a radial distance Pc from the lag
hinge

Xic = e cos *i + Pc c°s(_i + _i )

Yie : e sin *i + Pc sin(_i + _i )

Making the observation that, for N > i

N N

cos,k: _ sin,k:O
k=l k=l

the rotor center of mass coordinates become

)Xc = Xh - (OclN) _ _i sin )i
i=l

N

Yc : Yh + (Pc/N) _ _i cos*i
i:l

These expressions may now be differentiated twice

with respect to time and the forces Px and Py
obtained as

PX = -Nmb_+% Ki - a2_i)sin *i + 2a_i cos *

q)Py -_Yh-Sb _ gi-a2gl)c°s *i-2a_i sin

(l_)
The hub equations of motion thus become

(_ +%)_+ c_ +_ =

"[( l% i_l Ki " a2_i)sin *i + 2_i cos *i

(I)Q

% +%)_h+C/h+'<th:

"7 1-%_ _'i- _pcos *i - _4i sinh

The e_uations of motion for the system thus con-

sist of (N + 2) coupled second-order differential
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equations with the coupling terms having periodic

coefficients. The periodic coefficients arise

because the blade equations are written in a rotat-

ing reference system whereas the hub equations are

in a fixed system. As is shown in the Appendix,

if all the blades have identical lag springs and

lag dampers, the periodic coefficients may be

eliminated through the use of multiblade coordi-

nates. The effect of these coordinates is to

transform the blade equations from the rotating to

the fixed system of reference. The resulting con-

stant coefficient system of equations is the set

normally solved in the classical ground resonance

analysis. As is shown, however, if the blades are

allowed to have different lag springs and dampers,

the periodic coefficients cannot be eliminated in

the usual manner.

An alternative does exist, however, for

eliminating the periodic coefficients even when

the blades are allowed to have differing character-

istics. The alternative consists of transforming

the huh equations into the rotating system of

reference. In order to eliminate the periodic

coefficients using this

assumption must be made

That is

m = m
x y

C = C

x y

k =k
x y

approach, the additional

that the hub is isotropic.

This is the approach used in Reference I for treat-

ing the two-bladed rotor which is another case

where the periodic coefficients in the equations

of motion cannot be eliminated by transforming the

blade equatioas to the fixed system.

The transformation from fixed to rotating

coordinates is given by

= x h cos _t + Yh sin gt I (15)
-x h sin Gt + Yh cos gt)

Differentiating these expressions allows the fol-

lowing identities to be established

cos _t + Yh sin Dt = x -

-_ sin _t + Yh cos 2t = y + f_

cos Gt + _h sin _t = x - _2_ _ 2_

e.

-_ sin [_t + Yh cos _t = _ = n2_ + 2n_

The hub equations in the rotating system are then

obtained by appropriate combinations of the x h

and Yh equations, Equations (14). The resulting

equations are given below

2 _j = 22_j)sin -i)+ _J= vh

_Vh _j.a2_j)cos 2N-_J-I )- 2_j sin _J-i

(17)

where the following parameters have been introduced

vh = %/(mx + _)

2
(t_n = kx/Cmx + Nmb) (18)

_h = Cx/(_ + _b )

Introducing the rotating coordinates into the blade

equations, Equations (6), results in

-(._._-a2_ -+2_)eosr - (19)

J = 1,2,...,N

Since modern helicopters do not in general

have isotropic hubs, the above equations can only

be used to approximate the effects of a noniso-

tropic rotor. They are, however, easily solved for

the stability characteristics of the system and

thus they might be used to obtain a first approxi-

mation to the mechanical stability boundary for a

helicopter with one blade damper inoperative.

From the foregoing discussion it can be seen

that if either the rotor or the hub is isotropic)

the mechanical stability characteristics of the

system may be obtained using conventional tech-

niques. If both the rotor and hub are nonisotropic

the equations of motion of the system contain

periodic coefficients and thus the standard eigen-

value techniques cannot be used to determine

whether the system is stable or unstable. It is

the purpose of this paper to demonstrate that

Floquet theory can be used to analyze this general

situation of a nonisotropic rotor coupled with a

nonisotropie hub.

Solution of the E_uations

If the periodic coefficients in the equations

of motion are eliminated by assuming either an

isotropic rotor or an isotropic hub, the stability

of the system can be determined using standard

eigenvalue techniques. The general case of a

nonisotropic rotor coupled with a nonisotropic hub

will be treated using Floquet techniques as

described by Peters and Hohenemser, _ and Hohenemser

and Yin.} A brief description of the technique

will be presented here for the sake of completeness.

In state vector rotation the free motions of

the system may be written as

lil = [D(t)]l_ I (20)
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where the state variables for the problem being

considered consist of

and the equatioms which describe the motions of the

system are Equations (6) and (14). The matrix

[_t)] is periodic with period T and for the

mechanical stability problem T = 2x/_.

Floquet's theorem states that the solution to

the above system of equations has the form

= [ACt)] l_sm(X+i_)t I (21)

where [A(t)] is the characteristic matrix and is

also _eriodie with perlo_ T. The eolu_ of

tlaloonditi Iz(0)lis in
as

i_I(I = [A(O)]-llm(0)l (22)

The matrix [A(0)], the modal damping A, dud the

modal frequency _ are determined from the Floquet

Transition M_trix [Q] which is defined by the

equation

Iz( )l--EQ31 (0)I
for all sets of in_tlal conditions I_(O)l. It is

shown in References 4 and 9 that th_ eig_nvalues

Aja_ of the matrix [@J can be used to determine Aj
_j since

Aj = e(AJ+i_J )T (2_)

and the modal matrix of [Q] is Just [A(0) ]. The

characteristic matrix [A(t)] is then shown to be

givenby

[ACt)] = [_(t) ] [A(0) ] _e'C_+is_)t_ (25)

where the state transitlo_ matrix [_(t)] is defined

by

IzCt)l = [_(t)]l_(O)l (26)

The characteristic multipliers Aj of the

system are uniquely defined since the matrix [QS

is real; however, cnly the real parts of the

characteristic exponents pj -- Aj + i_j are
defined uniquely since

' (ZnlAjl + I argAj) (_)Pj =

The imaginary part can only be determined within an

integer multiple of 2_/T. This indeterminacy of the

_j causes no particular difficulty if one is only

interested in the stability of the system. However,

if one is interested in understanding the mechanism

involved in any instability which might be found 3

this indeterminacy can be quite troublesome.

The Flo_uet Transition Matrix which is the

basic element needed in the stability analysis is

easily determined by a numerical integration of

the equations of motion over one period T. If

one desires to compute the characteristic functions

[A(t)] the matrix [_(t)] is saved at each time

point in the numerical integratiou to obtain [Q].

For the calculations of this paper, the fourth 6
order Runge-Kutta method with Gill coefficients

was used for the numerical integration.

A co,dent is in order concerning the charac-

teristic functions [A(t)]. The matrix [A(t)] is

a e_mplex valued mtrix and is determined at as

many time points as desired. The computation of

these functions can be relatively expensive and

intepretation can be difficult. The interpreta-

tion is made easier by the procedure outlined in

Reference _ for converting the complex functions

into real functions which may be plotted as func-

tions of time. The scheme used is essentially the

same as that used when it is desired to plot as a

function of time the modes of a system having con-

sfmat coefficients. That is_ for a conjugate pair

of characteristic exponents

pj = Xj + i_j

the characteristic functions are also conjugate

pairs. Thus the real modal function co_ for

this conjugate pair of characteristic exponents

will be given by

,-IZJ(t) I _ _1 _(A_+i_o_)t _" I (A-is )t= IAj%_;%= _ , + _Aj(t)_e J

(28)
e JA,(t) I is the Jth column of [A(t)] and

(t)l_ _S the complex--conjugate of this column.

The purpose in performing these manil_Alations is

to be able to plot the modal functions to deter-

mine the relative magnitudes and phases of the

various degrees of freedom in each mode. A discus-

sion of this technique as it applies to constant

coefficient systems is given by Meirovitch.7 In

this paper the exp(Ajt) is omitted from the above

equation since it is simply a constant which multi-

plies each component of the mode and causes each

component to damp at the same rate. Thus the

plots of the characteristic functions which are

presented later in the paper will appear to be

neutrally damped.

In making the calculatioms for this paper it

was foumd that the output from the calculation of

the modal functions became so voluminous and these

calculations became so expensive that the modal

functions were only computed for selected points.

Generally a sweep of rotor speed was made and the

results examined. If an unstable region was indi-

cated the rotor speed corresponding to the maximum

positive kj was rerun and the modal functions
calculated.

Discussion of Results

In order to demonstrate the application of

the above-mentioned techniques and to obtain a

general understanding of the effect of one blade

damper inoperative on mechanical stability, a set

of parameters were chosen. The parameters in the
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mechanical stability analysis were chosen so as to

be in the general range of interest for a single

rotor helicopter and were such that the system was

stable with all dampers functioning up to a rotor

speed of 400 rpm. The parameter values chosen for

the calculations are shown in Table 1.

The parameters presented in Table 1 correspond

to an isotropic rotor and a nonisotropic hub. In

the following discussion results are presented for

the case of an isotropic hub coupled with a non-

isotropic rotor and a nonisotropic hub coupled

with an isotropic rotor as well as the case of

interest which involves a nonisotrop_c hub coupled

with a nonisotrpic rotor. When an isotropic hub

is mentioned, this means that the hub parameters

in both the x- and y-directions were assigned the

values shown in Table 1 for the x-dlrectlon. An

i_ut±oplc _utu±- implies Lhat all dampers are

operational and a nonisotropie rotor is meant to

indicate that the lag damper has been removed from

blade number i. The analysis has been formulated

in such a way that any number of blade lag dampers

or lag springs may be removed to make the rotor

nonisotropic. The results presented here, how-

ever, only involve the removal of the lag damper
from one blade.

The case of an isotropic hub was first run in

an effort to become familiar with the nonisotropic

rotor results before proceeding with the more

complicated Floquet analysis. The isotropic hub

permits the equations to be transformed into the

rotating reference frame and results in a system

of equations with constant coefficients, Equa-

tions (16), (17), and (19), even with a noniso-

tropic rotor.

Figure 2 shows the results of the calculations

for the isotropic hub with all blade dampers work-

ing. Note that since the equations were solved in

the rotating system, the frequencies in the lower

portion of Figure 2 are plotted in the rotating

system. The numbers attached to the different

modes in Figure 2 and in subsequent similar figures

have no significance other than to provide a label

for the various modes. In Figure 2 the dashed

lines represent the uncoupled hub modes. The

uncoupled rotor modes follow along the curves

labeled 1,2 which also represent, in the terminol-

ogy of Reference 5, the rotor collective modes.

Note that the uncoupled blade frequencies are zero

for rotor speeds less than about 65 rpm. This is

due to the fact that the blades are critically

damped for these low rotor speeds. At the higher

rotor speeds modes 3 and 4 are essentially rotor

modes and modes 5 and 6 are essentially hub modes.

At the lower speeds, however, due to the coupling

between rotor and hub, mode 4 changes to a hub

mode and mode 5 changes to a blade mode. Note

from the damping plot that all the modes indicate

stability over the entire rotor speed range.

The results for one blade damper inoperative

and an isotropic hub are plotted in Figure 3.

Note that the removal of a blade damper has caused

the appearance of a mode which was not present in

Figure 2, namely the mode labeled 3 in Figure 3,

and that this mode exhibits a mild instability

between 160 and 200 rpm. At rotor speeds below

about lO0 rpm this mode has a frequency which cor-

responds to the uncoupled frequency of the blade

which has no damper. At rotor speeds above lOO rpm

this mode begins to deviate in frequency from the

uncoupled frequency. Another interesting point is

that mode 1 in Figure 3 is precisely the same as

the collective modes of Figure 2, and in Figure 3

there is only one such mode. Thus it appears that

the unstable mode in Figure 3 has evolved from one

of the two collective modes shown in Figure 2

because of the removal of one of the blade dampers.

A time history calculation was made for the

point of maximum instability in Figure 3 which

occurs at approximately 175 rpm. The results of

the time history calculation are shown in Figure 4.

_nese results were obtained using the same inte-

gration scheme as that used for generating the

Floquet Transition Matrix. The top portion of the

figure represents the individual blade lag motions

whereas the lower portion represents the hub

response in the x- and y-directlons. Note from

the figure that each of the degrees of freedom was

given an initial displacement but the initial

velocities were zero. The equations were inte-

grated for 17 rotor revolutions. The figure indi-

cates the blades which have lag dampers are well

damped, but the blade on which the damper is

inoperative experiences large lag excursions.

Also, the hub motions, although not large, do not

appear to have a high degree of damping. Frc_ the

time history one would conclude that the system is

stable since the motions of the various degrees of

freedom do not appear to be increasing in ampli-

tude with increasing time. The eigenvalue analysis

has shown, however, that an instability exists.

The problem with the time history calculations is,

of course 3 that the equations of motion have not

been integrated over a sufficiently long time

period for the initial conditions chosen. Herein

lies the difficulty with using the time history

approach for calculating the stability character-

istics of systems. One can never be sure if a

sufficiently long integration period has been

used, and the choice of initial conditions which

will minimize the integration time required is a

trial and error process. It has been observed on

an analog computer that for the ground resonance

problem the choice of initial conditions has a

strong bearing on the conclusion inferred from the

time history traces. The time history integration

is also much more time consuming on the digital

computer than the eigenvalue analysis. The time

to generate Figure 4 which is for only one rotor

speed was much greater than the time required to

generate the eigenvalue results for all of Fig-

ure 3. It is thus concluded that whenever it is

at all possible the eigenvalue approach to sta-

bility calculation is to be desired over the time

history approach.

Having examined the case of one blade damper

inoperative an an isotropic hub, the next logical

step is to examine the more realistic situation of

a nonisotropic hub. Before examining the one

damper inoperative situation it was first desired
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to ccmfirm that the system was stable with all

dampers working. The modal damping and frequency

of the various modes with all dampers working and

a nanisotropic hub are shown in Figure 5. As can

be seen frc_ the damping plot, all the modes are

stable. In this case the equations of motion are

solved in the fixed frame of reference and hence

the frequencies are plotted in this frame. The

dashed lines o_ the frequency plot represent the

uncoupled system: the horizontal dashed lines

being the hub modes and the slanted dashed lines

being the rotor modes. Note that because the rotor

modes become critically damped at low rotor speeds

the two uncoupled rotor frequencies cume together

before reaching the origin. The uncoupled rotor

lines also represent the collective modes for the

rotor. These modes are cc_pletely uncoupled from

the other modes and hence are not included in the

elgenvalue analysis of the nonisotropic hub

coupled with an isotropic rotor. The dsmping for

the collective modes is exactly the same as that

shown for modes 1,2 in Figure 2.

The validity of the Floquet analysis w_s

verified by comparing results from *_his analysis

with results from both the rotating system analysis

(isotropic hub) and frem the fixed system analysis

(isotropic rotor). In each case the results fram

the Floquet analysis were identical to results

from the other analyses.

Having thus established the validity of the

Floquet analysis, results were obtained for the

nonisotropic hub and une blade damper inoperative.

These results are shown in Figure 6. Note that

these results are very _Ach similar to those shown

in Figure 5 except that, as was the case with the

isotropic hub and one blade _r inoperative,

there are additional modes introduced. Also indi-

cated is a relatively strung instability between

210 and 30_ rpm. The frequencies of the addi-

tional modes which are introduced correspond, at

low rotor speeds, to the frequencies of the

uncoupled blade which has no damper. In the rotor

speed range where the instability occurs, however,

the frequency deviates from the uncoupled value as

indicated by the mode labeled 3. In this range

and at higher rotor speeds the mode labeled 5 is

nearer the uncoupled blade frequency. It thus

appears that far this case the instability is more

a coupled rotor hub mode than a pure blade mode as

was indicated for the isotropic hub.

This conjecture is further strengthened by an

examination of the modal functicns. The modal

functicms for a rotor speed of 20_ rpm s which is

the point of maximum instability, are shown in

Figure 7. The functions are plotted over a time

period corresponding to one rotor revolution. Note

from this figure that blade i, the blade without a

damper s has a significantly higher contributiou to

the mode than the other blades. Also from the

plot of hub respnnse it can be seen that the par-

ticipatic_ of the lateral hub degree of freedom s

which has the higher of the uncoupled hub fre-

quencies shown o_ Figure 6, is considerable. It

is thus concluded from Figures 5 and 6 that the

one damper inoperative situatinn can lead to a

classical mechanical instability.

Time history traces for this same condition

are shown in Figure 8. These traces show the same

general trends as observed in the case of the

isotropic hub, that is, a large response of the

blade having no damper and moderate responses from

the other blades and the hub degrees of freedom.

Again the time history traces are inconclusive

regarding the stability of the system.

One of the methods used in the past for

treating the one blade damper inoperative case

involves a smearing of the total blade damping.

The reasoning for this approach is as follows.

If the rotor has N blades then the total damping

available in the rotor is Nc i where ci is the

damping on ene blade. If _e damper is r_moved,

the total damping becomes (N - l)c i. Thus, using

this approach, each blade in the rotor would be

treated as if it had a lag damper equal to

ciCN- 1)IN.

After an examination of the preceding c_e

damper inoperative results it would be expected

that this approach would lead to unccmservative

results. This is due to the fact that the insta-

bilities encountered in the previous results

involved large motions of the blade which had no

damper. The smearing technique results in damp-

ing, which is not greatly different from the

original value, being applied to each blade and

thus the true situation is not adequately modeled.

To illustrate this method, the nonlsotropic

hub case was analyzed using the smearing approach.

The results from these calculations are shown in

Figure 9. Note that although mode 3 becomes

lightly damped the system remains stable through-

out the rotor speed range considered. The fact

that mode 3 approaches instability is attributable

to the fact that this mode was not heavily damped

in the original calculaticms. A run of the iso-

tropic hub case, where all the modes were origi-

nally well damped, indicated that the smearing

technique resulted in well damped modes for c_e

blade damper removed. The smearing technique is

thus not reccm_nended for treating the one blade

damper inoperative situation since it leads to

unconservative results.

Since c_e way for eliminating the classical

mechanical instability is to increase the blade

damping s it was decided to attempt this approach

on the instability indicated in Figure 6. The

approach was to leave the damping identically zero

on one blade and increase the damping on the

remaining three blades. The results of this series

of calculations are shown in Figure lO where the

region of instability is presented as a function

of blade lag damping and rotor speed. As can be

seen from the figure, increasing the blade damping

on three of the blades has very little effect on

the stability boundaries when one blade has zero

damping. This result was somewhat expected since

from the previous calculations it was observed
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that the blade with zero damping responds more or

less independently of the other blades in the

rotor.
l.

During the increased damping calculations no

attempt was made to determine whether or not the

nature of the instability had changed. That is,

whether the instability had changed from one 2.

involving both blade and hub motion to one con-

sisting of primarily blade motion with only small

amounts of hub motion. Further delving into pos-

sible corrective actions for the instability which

occurs with one blade damper inoperative was

beyond the scope of this paper and thus more 3.

research is needed to determine how the instability

may be eliminated.

Conclusions

There are several conclusions which may be

_-_ .... _ _ +_ preceding results, w4_=+ _? =11

the fact that a helicopter is free from mechanical

instability with all blade dampers working does

not guarantee that it will be free of instabilities

with one blade damper inoperative. The instability

encountered with one blade damper inoperative may

be a blade mode instability or it may be the

classical mechanical instability.

The Floquet Transition Matrix method can be

used effectively in examining the mechanical sta-

bility characteristics of helicopters wlth one

blade damper inoperative. When both the hub and

rotor are considered to be nonisotropic, the equa-

tions of motio_ contain periodic coefficients and

the Floquet approach provides an efficient means

for dealing with this situation. Since the

Floquet approach yields the stability character-

istics directly, it furnishes a more desirable

approach to stability problems than time history

calculations.

Time history calculations can lead to erron-

eous conclusions relative to the determination of

syst_n stability. The erroneous conclusions stem

primarily from the fact that the time history

calculations require considerable computer time

and the tendency is to integrate over as short a

time period as possible. Thus, if the initial

conditions are not chosen properly, the time

history traces may still contain transients when

the integration is terminated. The time history

approach to stability problems is thus recommended

only when no other recourse is available, and then

several different combinations of initial condi-

tions and integration periods should be examined

before making a conclusion regarding stability.

References

The smearing approach which has been used in

the past for treating the one blade damper inop-

erative situation leads to unconservative results.

Therefore, this method is considered to be an

unacceptable means for determining stability under

these conditions.

Coleman, R. P., and Feing61d, A. M., THEORY

OF SELF-EXCITED MECHANICAL OSCILIATIONS OF

HELICOPTER ROTORS WITH HINGED BIADES, NACA

Report 1391, 1958.

Donham, R. E., Cardinale, S. V., and Sachs,

I. B., GROUND ANDAIR RESONANCE CHARACTERISTICS

OF A SOFT IN-PLANE RIGID-ROTOR SYST_, Journal

of the American Helicopter Soci_qiet_, Vol.l_,

No. _, October 1969, PP_ 33 -41.

Lyt_jn, R. T., Miao, W., and Woitsch, W.,
AIRBORNE AND GROb-ND RESONANCE OF HINGELESS

ROTORS, Journal of the American Helicopter

Society, Vol. 16, No. 2, April 1971, pp. 2-9.

4. Peters, D. A., and Hohenemser, K. H., APPLICA-

TION OF THE FLOQUET TRANSITION MATRIX TO

PRO=T_/-_EMSOF _ _OTOR S_-_!LITY, Jourp_!

of the American Helicopter Society, Vol.

No. 2, April 1971, pP. 25-33.

9. Hohenemser, K. H., and Yin,_S. K., SOME

APPLICATIONS OF THE M_THOD OF _/LTIBLADE

COORDINATES, Journal of the American Helicoptel

_, Vol. 17, No. 3, July 1972, pp. 3-12.

6. Carnahan, B., Luther, H. A., and Wilkes, J. O.j

Applied Numerical Methods, John Wiley & Sons,

Inc., New York, 1969.

7. Meirovitch, L., _Analytical Methods in Vibra-

tlons_ The Macmillan C_npany, New York, 1967,

Appendix

If the rotor is considered to be isotropic

the periodic coefficients appearing in the equa-

tions of motion can be eliminated through the use

of multiblade coordinates similar to those

described in Reference 1. These coordinates

essentially transform the blade degrees of freedom

into a fixed reference frame. The transformations

are given by

_I = _ _i sin $i
i=l

(A1)

_II = _ _i cos _i
i=l

Differentiating these expressions leads to

the establishment of the following identities

N

iisin*i= - t
i=l

N

i=l (A2)
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N

i=l

N ..

N [ico_*i__n -a2_n÷ 2_i
i=l

It can be seen from these identities that the

transformatic_ is made by multiplying the blade

equations, Equations (6), by either sin _i or

cos *i and adding the equations. Crucial to this

ration is the ability to remove the Si and

from the stmm_tions. This cam cmly be dune
if all the blades h_¢e id_-n.tie_%l l_g _ngs -_ud

lag dampers. If use or mere of the blades taye

differing characteristics, the _i and/or _i
cannot be factored frum the summaticm and hence

the identities above cannot be applied. Thus, if

one or more of the blades are permitted to have

different lag springs or lag dampers, the periodic

coefficients cannot be eliminated using the pro-

cedure described in this Appendix.

If Equations (6) are first multiplied by

cos _i and summed and then m_Itiplied by sin *i

and rammed, the following equations are obtained

after introduction of the identities (A2)

KII + _i_ll - [£2(i- V2o) - _1_ii + 2_ I

i=l

- Yh _ c°s2 *

i:l

-[
- anion -"(_/e) IC sin2 *i

i=l

-Yh _ sin,ioos,
i=l

Making the following observations that for

N

_ sin *i cos *l = 0
i=l

N N

I_ cos2 *i = _ sine *i = _/2
i=l i=l

(A3)

N>2

the equations becume

+ _i_l = -(1_2/2e)__o' "h

+ _i

,i i-[o2(1_
(A4)

."_-ese two eq1__tions describe the rotor motions in

the fixed frame of reference. In terms of the

variables described by EquatioDs (A1) the hub

equations, F_uations (14), become

\

Cm÷ ÷Ox%÷ = I CAS)
(my + Nmb) % + c_ + k r7h -%_II

The stability of the rotor-hllb systea cs_

be determined using Equations (A_) and (AS) which

have constant coefficients. This set of equ_tlc_is

or a set similar to it is the c_e normall_ used in

helicopter mechanical stability s_lalyses.

As a final observation, note that if the

blade equations, Equatluss (6), are simply summed,

the following equation

[o+ .i_o+c_ + _%,o2)%=o (A6)

is obtained, where

N

t° = i_l= _i (A7)

This equ_ticm represents the rotor collective mode

and it may be observed that this equ_ticm is com-

pletely decoupled frum the hub degrees of freedum.

Hence, the collective mode cannot influence the

stability of the system and it is therefore not

normally included in the mechanical stability

analysis.
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TABLE 1. PARAMETERS USED IN THE SAMPLE CALCULATIONS

Number of blades

Blade mass, m b

Blade mass moment,

Blade mass mcment of inertia,

Lag hinge offset, e

Lag spring, k i

Lag damper, ci

X

Hub mass, m
Y

Hub spring, k
X

Hub spring, k
Y

Hub damper, c
x

Hub damper, c
Y

4

6.5 slugs (94.9 kg)

65.0 slug-ft (289.1 kg-m)

800.0 slug--ft 2 (1084.7 kg -m2)

1.O ft (0.3048 m)

0.0 ft-lb/rad (0.0 m-N/rad)

5000.0 ft-lb-sec/rad (4067.5 m-N-s/rad)

550.0 s_ugs (8026.6 kg)

225.0 slugs (3283.6 kg)

85000.0 ib/ft (_40481.8 N/m)

850OO.0 lb/ft (1240481.8 N/m)

3500.0 ib-sec/ft (91078.7 N-s/m)

1790.0 Ib-sec/ft (25539.3 N-s/m)

|rHUB _._ci//

- T '-LAGH,NGE

-x ky_ ._Cy y_

Figure i. Mathematical representation of the rotor

and hub.
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Figure 2. Modal damping and frequencies for iso-

tropic hub, all blade dampers working. Fre-

quencies plotted in the rotating system.
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Figure 3. Modal damping and frequencies for iso-

tropic hub, one blade damper inoperative. Fre-

quencies plotted in the rotating system.
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Figure 5. ]@_,Z ds_]0ing and _re_eles for non-

isotropic hub, all blsde dampers working. Fre-

quencies plotted in the fixed system.
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Figure 4. Time history caleulaticas for isotropic

hub, one blade damper inoperative s _ = 175 rpm.
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Figure 6. Modal damping and frequencies for n_-

isotropic hub, oae blade damper inoperative.

Frequencies plotted in the fixed system.



EIGENVALUE : 0.32588 +i 8.04396

I'ODOL_.500 2

BLADE b..,...=====_ _._ _ _.._ _3

PESPONSE 0 L _ _ _ "" _ _ _'-'---_4

-.500_ 1
-1.1!00

1.:f• /__Y

HUB 0 _ _-- -- -- -----------.-.._X

 ESP SE
-1.000 I 1 1 L I I I I I k__

0 .050 .100 .150 .200 .250 .300

TIME. sec

Figure 7. Modal functions for nonisotropic hub_
one blade damper inoperative, fl= 299 rpm.
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Figure 8. Time history calculations for noniso-

tropic hubj (me blade damper inoperativej
n = 255 rpm.
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Figure 9. Modal damping and frequencies obtained
for nonisotropic hub, one blade damper inopera-

tive 2 using the smearing technique.
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Figure i0. Instability region as a function of
blade lag damping for the nonisotropic hub and

one blade damper inoperative.


