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Abstract

Antiresonance theory is the principle

underlying nonresonant nodes in a struc-

ture and covers both nonresonant nodes

occurring naturally and those introduced

by devices such as dynamic absorbers and

antiresonant isolators. The Dynamic

Antiresonant Vibration Isolator (DAVI)

developed by Kaman Aerospace Corporation

and the Nodal Module developed by the Bell

Helicopter Company are specific examples

of the applications of transfer anti-

resonances. A new and convenient tech-

nique is presented to numerically calcu-

late antiresonant frequencies. It is

shown that antiresonances are eigenvalues

and that they can be determined by matrix

iteration.

Novel applications of antiresonance

theory to helicopter engineering problems,

using the antiresonant eigenvalue equation

introduced in this paper, are suggested.

Notation

f force vector

K stiffness matrix

M mass matrix

y response vector

Z impedance matrix

8 antiresonant eigenvector

forcing frequency

_r antiresonant frequency

Presented at the AHS/NASA-Ames Special-

ists' Meeting on Rotorcraft Dynamics,

February 13-15, 1974.

in _uau_u vibratlo_s =** antircson_nce

or "off-resonance node", is that frequency

for which a system has zero motion at one

or more points. A nodal point in a normal

mode is a special case of an antiresonance.

Driving point antiresonances have a

readily grasped physical interpretation

since they are the resonances of the

system when it is restrained at the

driving point. However, transfer anti-

resonances are not all real and, in

general, have not been susceptible to

analysis except in special cases. The

eigenvalue equation for antiresonances

used in this paper renders them as amen-

able to analysis as are resonances. The

mathematics for analyzing resonances are
conventional and well-known I.

Although general analytical methods

for transfer antiresonances were not here =

tofore com_nonly used, the existence of

both driving point and transfer antires-

onances in the forced vibration of a

string were described by Lord Rayleigh2. _

The invention of the dynamic vibration

absorber in 1909 gave antiresonances some

practical engineering importance 3. The

absorber is an appendant dynamic system

which has a driving point antiresonance

at its fixed base natural frequency and it
therefore reacts the forces at its base in

the direction in which it acts. Isolating

devices based on transfer antiresonances

were not invented until this decade4.

Sometimes natural fuselage transfer anti-

resonances for major hub excitations

occurred near a critical point and at the_

proper frequency (e.g., the pilot's seat

at blade passage frequency) by fortuity

of helicopter design. Occasionally,

engineers have manipulated transfer

antiresonance frequencies and positions

in design through lengthy trial-and-error

response analyses. However, the industry

has not used a direct analytical method

for calculating the positions and fre-

quencies of natural antiresonances.
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Structures have antiresonances as an

intrinsic "natural" property much as they

have "natural" resonant frequencies.

Natural transfer, or "off-diagonal", anti-

resonances are as important to structural

dynamics engineering as are resonances.

Unfortunately, many of the theorems which

underly conventional analyses do not apply

to transfer antiresonances. The anti-

resonant dynamical matrix is in general

nonsymmetrical and therefore not positive

definite. This results in both left-

handed and right-handed eigenvectors which

are unequal and require a new orthogonal-

ity condition for the calculation of

successive eigenvectors. The antiresonant

frequencies of the transfer antiresonance

determinants are not necessarily real and

the imaginary roots do not have a simple

physical interpretation. These matters,

along with the lack of an engineering

eigenvalue formulation for antiresonances,

may, in part, account for the relatively

little attention given to natural anti-

resonances over the years.
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If the impedance matrix is similarly

partitioned so that the upper left-hand

matrix does not contain the j-th row or

the k-th column, then

z = _-- -_ (5)

It follows from Equations (4) and (5) that

m

= ZA 1 (6)ZA

From Equation (3) we obtain

zAy = o (7)

The steady-state equations of motion

for an undamped spring-mass system vi-

brating in the vicinity of equilibrium

are:

(E - _2M)y = f (i)

where the impedance matrix is defined as

Z = [_fi/3Yj] = (E- _2M) (2)

Let all the forces be zero except the

force acting at the k-th generalized

coordinate and further impose the re-

straint of zero motion for the j-th

generalized coordinate. The resulting

eigenvalues are jk antiresonances of

Equation (i). Since Z is real and

symmetric the antiresonance eigenvectors

are real and the jk and kj antiresonance

eigenvalues are real (positive or nega-

tive) and equal.

Partition Equation (i) so that the

kj-th element of the impedance matrix

appears in the lower right-hand corner.

n # j l__m____ I ___ _j 0

where

A kj antiresonance is defined such

that for a force at k alone, the response

at j is zero. Normalizing y and sub-

stituting for Z A in Equation (7) results

in the antiresonance eigenvalue equation.

1

MAC r = _ KASr

r

(8)

A jk antiresonance eigenvalue equation is

similarly defined by considering Equation

(5) and making use of Equation (6).

_sTM A = 1 ~8sTK A

u s

(9)

Equations (8) and (9) constitute a

set of right-handed and left-handed eigen-

vectors. Since Z A is not symmetrical,

the jk eigenvectors are not orthogonal

but instead are biorthogonal with the kj

eigenvectors I. Premultiply Equation (8)

by _ T, postmultiply Equation (9) by 8 r,
s

and subtract to obtain

(--_ - _)SsTKASr = 0

r s

(i0)

when s _ r we have

8sTKASr = 0 (ii)

Thus, the kj antiresonance eigenvector is

biorthogonal to the jk antiresonance
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When s = r the corresponding gen-

eralized'mass and stiffness are defined as

8rTKA8 r

= s (12)
r

= K (13)
r

Successive antiresonance _igenvectors are

found by applying the biorthogonality

condition and using classical matrix

iteration techniques. The (n + 1)st jk

antiresonant eigenvector is obtained from

Equation (14) ,

n 8.8 T.

- 1
(KA-I Z i i )MASn+ 1 = _ 8n+l (14)

i=l Ki _n+l

which establishes the method of sweeping. 5

Discussion of Theory

Each antiresonant eigenvector con-

sists of a pair which is biorthogonal with

respect to both mass and stiffness. For

driving point antiresonances (j = k), the

two eigenvectors are, obviously, th_ same.
An N-degree-of-freedom system has N

possible antiresonant eigenvectors cor-

responding to all possible forcing and

response coordinates.

Since the mass and stiffness matrices

are nonsymmetric in the antiresonance

eigenvalue problem and consequently not

positive definite when j # k, the anti-

resonant generalized masses and stiff-

nesses may be either positive or negative.

In other words, the antiresonance fre-

quencies are not necessarily real. When

j = k the antiresonant mass and stiffness

matrices are SYn_etrical and positive

definite, resulting in at least N-!

positive real antiresonences. As shown

in Reference 6 the driving point anti-

resonances lie between the natural

resonant frequencies.

Applications of Antirmsonance. Theory

To illustratethe practical potential

of antiresonance theory, consider a ten-

degree-of-freedom beam specimen with

springs to ground at stations" 3 end 9 and

mass and stiffness parameters simulating

a 9000 pound helicopter. Antiresonances

are continuous functions of frequency and

position end Figure i presents a typical

position spectrum plot of the specimen

forcing at station 3 alone. The dashed

vertical lines are thenatural resonant

frequencies determined conventionally.

When an antiresonance line crosses a

natural frequency line there is a nodal

point in the "natural mode".
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Figure 1. Antiresonance Lines Forcing at Station 3

With the same techniques of altering

masses and stiffnesses to avoid undesir-

able natural resonances, the engineer can

manipulate natural antiresonances. The

stiffness between Stations 2 and 3 was

increased by 11.8% in the K2_ term of the

stiffness matrix and Figure 2 illustrates

this effect in the natural frequencies

and antiresonance lines. Similar changes

in the mass of the structure have a sim-

ilar effect. This possibility for _e- .

sponse control indicates a profitable"

area for further exploration.
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FigUre 2. Antiresonance Lines with Stiffness Change

Forcing at Station 3

L.

Conventional Use of the D_namic Absorber

A dynamic absorber is an appendant

dynamic system attached to a helicopter,

usually at a point, as shown in Figure 3.

When we eliminate the i-th row and column,

corresponding to the 'attachment point

(see Figure 3) we obtain two uncoupled

systems.
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The antiresonant eigenvalue equation is

obtained from Equation (15) as

[Kaa-iMaa]0r 1= _ B r

r

(16)

which is of the form of Equation (7).

If the absorber system were attached

at I points, instead of one, we would

eliminate the I rows and columns corres-

ponding to the attachments and find the

simultaneous antiresonant frequencies of

all I points.

Unconventional Use of the D_namic Absorber

In some instances there may be only

one significant unreacted force on the

helicopter as, for example, when an in-

plane isolation system or in-plane hub or

flapping absorbers leave small hub moments

but a relatively large vertical oscilla-

tory force. We can use a dynamic absorber

in the fuselage at some point i as a

"resonator" to shift antiresonance lines

so that there exists an antiresonance at

another point j (e.g., the pilot's seat)

for the one remaining large force or

moment along the k-th generalized coor-

dinate. This is creating a jk antires-

onance by manipulation of a "resonator"

at point i. The jk antiresonant frequency
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is not at the tuned frequency of the

"resonator" and does not necessarily

produce an antiresonance-at j for

excitations along generalized

coordinates other than k.

The aforementioned system and equa-

tions of motion are shown in Figure 4.

To obtain an antiresonance at j for a

force at k we eliminate the k-th row and

j-th column from the equations of motions.

This results in the antiresonant eigen-

value equation,

z__, f'_J I z. , ] I_z I zl I 0 I
....... _t__k_j_f___k__L_:_I '

I I )

Iz., f /j i z . IZ. J 8
/ lZ 4 il ._ la [=

L o I ai I aa
I°

(17)

which is of the form of Equation (7).
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Figure 4. Antiresonance at Station j from a Resonator at Station i

This technique of using a remote

dynamic absorber as a "resonator" allows

the engineer to obtain an antiresonance,

to a given excitation, at points where

structural limitations prevent installa-

tion of an absorber. When the new res-

onant frequency introduced by the

"resonator" cuts across a natural anti-

resonance line, the shifts are dramatic

as shown in Figure 5. Figure 5 illustrates

the antiresonance lines in the specimen,

forcing at station 3, when an absorber of

77.2 pounds tuned to 7.7 Hz is added to

station 2. The natural frequency intro-

duced by the absorber intersects the

antiresonance line of Figure 1 and pro-

duces new antiresonances at all stations,



forcing at station 3.
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Figure 5. Antiresonance Lines with Dynamic Absorber at

Station 2, Forcing at Station 3

The effect at station 5 of the 77.2

pound absorber located at station 2 and

tuned to 7.7 Hz, in terms of both anti-

resonant frequency and bandwidth, is the

same as the effect produced by a 193 pound

absorber located at station 5 itself and

tuned to 8.0 Hz. Bandwidth is here

defined as the difference between the

antiresonance frequency and the nearest

natural frequency. This comparison is

presented in Figure 6. The approximately

two to or_ reduction in absorber weight

does not imply that such savings are

always obtainable.
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Figure 6. Comparison of Antiresonance Lines
for Two Absorbers

Antiresonant Isolators

Passive antiresonant isolation

devices have received considerable

attention from the industry in recent

years. Notable among these are Bell

Helicopter's Nodal Module, Kaman's DAVI

series, and the Kaman COZID.

Figure 7 illustrates the antiresonant

isolation system and corresponding equa-

tions of motion. The excited structure
105
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Figure 7. Antiresnnance Isolation

is coupled to another structure through,

and only through, the antiresonant

isolation system which has inertial and

elastic elements. Any isolator with a

single input and single output, or a

symmetrical arrangement having the same

effect, has antiresonant frequencies given

by the eigenvalues of

" '1
KOI IKoD J L%II%DJ (l,,,

where I, O, and D represent the input,

output and internal isolator degrees-of-

freedom, respectively. The two-dimen-

sional and three-dimensional DAVIs have,

respectively, each two and three un-

coupled equations of the form of Equation

(18). Two outputs displaced with dynamic

symmetry from a given input, or the con-

verse, are also described by Equation (18)

because the roots are not changed by

transposing a matrix.

It is possible to solve for simul-

taneous antiresonances on arbitrarily

placed multiple outputs for an equal

number of arbitrarily placed multiple

inputs by letting I and 0 be greater than

one in Equation (18). However, such

simultaneous antiresonances will, in the

general case, occur only for those dis-

tributions of input forces given by the

product of the rectangular impedance

matrix of rows corresponding to the forced

degrees of freedom and the vector of dis-

placements. This is the reason why

multiple input-output antiresonant isola-

tors are not used in engineering. It is

observed that the impedance matrix of



Figure 7, is, in general, nonsymmetric

while the impedance matrix of Figure 3

is necessarily symmetric. That is the

mathematically distinguishing feature

between absorbers and antiresonant

isolators.

It is obvious from Equation (18) that

an infinite number of mechanical systems

exist which will produce antiresonant

transmissibilities at more than one fre-

quency. Such systems can be analytically

synthesized using desired antiresonant

frequencies, the biorthogonality con-

dition, and the methods of Reference 7.

However, not all such synthesized systems

will be physically realizable and not all

of the physically realizable synthesized

systems will be practical from an

engineering standpoint.

An immediately practical application

of Equation (18) would be the investiga-

tion of physical multi-input antiresonant

isolators with internal coupling using

simpler engineering arrangements for

multi-harmonic antiresonances than has yet
been achieved.

Conclusion

This paper has presented a solution

to the antiresonant eigenvalue problem.

It has been shown that antiresonances can

be determined by.matrix iteration tech-

niques. Antiresonant nodes introduced by

dynami_absorbers and antiresonant iso-

lators have been discussed to illustrate

the novel application of the theory to

helicopter engineering problems.
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