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In the classical rotating Laplacian-type nebula, pressure gradients can develop

radially to the protosun because of central radiation, particle ejection, and magnetic-

field expansion or because of radial temperature or total gas density gradients. Except

for the last two effects, the acting central acceleration for the gas is reduced from the

gravitational value; the pressure gradient in the gas caused by temperature or density

gradients may either add to or subtract from the gravitational acceleration, depending on

the sense of the pressure gradient. Planetesimals in the nebula may thus experience

tangential accelerations (+ or -) with respect to the gas because of the differential

radial accelerations acting on the particles and the gas. As a consequence, the plane-

tesimals may spiral outward or inward with respect to the protosun. The present paper

deals with growing planetesimals and a range of drag laws depending on the Reynolds

number and on the ratio of particle size to mean free path.

Particles spiral in the direction of positive pressure gradient, thus being concentrated

toward toroidal concentrations of gas. The effect increases with decreasing rates of

particle growth, i.e., with increasing time scales of planet formation by accretion. In the
outer regions, where evidence suggests t/tat comets were formed and Uranus and Neptune

were so accumulated, the effect of the pressure _adient is to clear the forming comets

from those regions. The large mass of Neptune may have developed because of this

effect, perhaps Neptune's solar distavce was reduced from Bode's "law," and perhaps
no comet belt exists beyond Neptune. in _roid belt, on a slow time scale, the effect

may have spiraled planetesimals toward Mars and Jupiter, thus contributing to the lack

of planet formation in this region.

BASIC PRINCIPLES

ET US ASSUME TItAT DURING PLANETARY
FORMATION in our solar system, gas and dust

grains constitute a Laplacian-typc ncbular disk

rotating about a central mass, roughly that of the

Sun today. The grains or planetesimals are

generally accrcting in all size ranges from atomic

and molecular to large bodies. For smaller bodies,

the gas, presumed to be approximately a solar

mix, acts as a buffer against high velocities of

encounter that might cause eollisional destruc-

tion. The motions are fairly circular, cdntrolled by

a nearly invcrse-square law of central force, while

the gas and, at first, the grains are spread about

the fundamental plane, held by the gas pressure

against the surface gravity in the plane and the

perpendicular component of the central force.

In such a system the gas pressure varies from
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point to point, depending on gravity and possible

magnetohydrodynamic effects if a plasma is

present. Radial variations in gas pressure affect

the net central radial acceleration on the gas,

causing the gas to deviate from the motion appro-

priate to the local gravitational acceleration and

therefore appropriate to the motions of the solid

grains, as shown in figure 1. The grains thus meet a

resisting medium and tend to move in toward the

protosun or are accelerated radially outward,

depending on the sense of the effective radial

acceleration acting on the gas.

Let Ag be the deviation from the central gravita-

tional acceleration acting on the gas, whether

caused by spiraling magnetic fields or by a radial

pressure gradient in neutral gas, dP/dr, where

P is the total gas pressure and r is the radial
distance to the center of the protosun. For a gas of

density p, the radial correction to the central

acceleration is, by the classical formula,

1 dP
hO = + - -- (1)

pdr

Note that in equation (1) the sign is reversed

from that for stellar interiors because the gas in

the nebula is held in radial equilibrium by its
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EFFECT OF GAS PRESSURE GRADIENTON PARTICLE MOTION

FIO_E 1.--Effect of gas pressure gradient on particle

motion.

motion in the central gravitational field for

dP/dr= 0. A positive pressure gradient outward
from the center increases the effective central

acceleration from that of gravity alone and causes
the gas in equilibrium motion to rotate more

rapidly. In that case, the gas accelerates the grains
in their near-circular motion and causes them to

move radially outward. The opposite is true for
dP/dr<O.

To determine the quantitative motion of the

grains, note that the near-circular velocity change

AV in the gas under a central acceleration g
follows from the velocity law

V=gt_r tn (2)

by differentiation, to the form

AV- rt_Ag (3)

A sphericM grain of radius s, density p,, and

muss m will experience u drag (-) or accelerating

(+) force F by interaction with the gas at relative

velocity v, where v < AV. The drag equation in a

neutral gas is formally stated as

= ? _rs_pv_ (4)F

where Cv is the dimensionless drag coefficient
dependent on the Reynolds number R, if the mean

free path L of the gas atoms or molecules is small

compared to s.

For gases the Re,molds number is defined by

2pvs
R.- (5)

where n is the viscosity of the gas, given approxi-
mately by _=_#L, in which _ is the mean

kinetic speed of the atoms or molecules.

In case L<s, following the approximations by

Probstein and Fassio (1969),

Cv = 24R; -z for R,<I (6a)

C_=24Ri -m for I<R,<10 _ (6b)

Cv = 56 for R,> 10_ (6e)

where equation (6a) represents Stokes' law of drag

and (6c) the Newtonian case, which holds fairly

well for supersonic velocities (v> _).

For the subsonic case when L>s, the drag
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equation becomes generally complicated, but for

v<<_, the Epstein approximation has some

validity:

F(Epstein) = A Vps2v (7)

where A_-_47r/3 if the accommodation coefficient

of atoms or molecules on the moving sphere

is unity.

For our purposes, the various forms of the drag
equation can be simplified by the introduction of

the quantity slopping lime le, which is the ratio of

the body's speed to the absolute value of the

deceleration from drag. Equations (6a), (6b),

(6c), and (7), respectively, can the_ be expressed
as follows:

2p, s_
Re<l t,- (6'a)

97

23/Sp,SS/5
1 <Re< 103 l,= (6%)

9_31_p215v2i_

6p88
Re> 10_ re--- (6'c)

pv

Epstein t_- ms_ (7')
pv

where for all, the drag law becomes simply

F(v) .
,n = _ (S)

In the case of equations (6'b) and (6'c), te has

been changed from the e-folding decay time by a

factor of less than 2 to produce the generality of

equation (8), which is correct for all cases. Stokes'

law (eq. (6'a)) attains an error of only a factor of

3 up to R, = 102.

The motion of the. spherical grain or plauetesimal
in the solar nebula under influence of the gas

"wind" is generally complicated. The present
paper will deal in detail with only two extreme

and simple illustrative cases: (A) where the

"drag" force F for v_AV is large so that the grain

at velocity AV with respect to the gas would be

stopped in a small fraction of the period of revolu-

tion Tp, i.e., t,<<Tp/2T; and (B) where the grain

or planetesimal at relative velocity v = AV would

not be stopped for a time comparable to or greater

than the period of revolution, i.e., te>>Tp/2_r.

In case A, where t_<<Tp/2_-, the grain will

largely follow the rotational motion of the gas and

thus experience a central acceleration reduced or

increased by hg. Hence, it will execute a radial

motion at velocity v with respect to the gas

derived from F(v)."-_m Ag.

In ease B, where b>>T_/2*r, the much larger

grain or planetesimal will experience a tangential

drag or an accelerating force at velocity _-_AV
and slowly spiral radially in or out with respect

to the rotating system of gas according to the

modified equations of motion in a central force.

EQUATIONS OF MOTION

Case A._Grains carried along with the gas,

te<<T_/2_r. The relative velocity v of the grain in

the gas is smaller than AV and very much smaller

than the speed of sound. Thus, ca.se A divides into

only two subcases: ease A1, when the mean free

path L is larger than the particle radius s, requiring

Epstein's law (eqs. (7), (7'), and (8)) ; and case

A2, when L<_s and R_ is small, requiring Stokes'
law (eqs. (6'a) and (8)).

Case AI.--v<</_V, v<<_, L>s, and te<<Tp/2t.

For a grain (radius s, mass m, density p,) the
terminal radial speed in the cloud under the

acceleration Ag becomes from Epstein's law

(eqs. (7') and (8))

dr = le Ag = p.S_Ag (9)
dt pv

where Ag is given by eq. (1) for a radial pressure

gradient in the gas or by the effect of a radiM

acceleration on the gas from some other source

such as a magnetic fidd.

Case A2.--v<<AV, v<<_, L <_s, and te<<T_/2_r.
Here the terminal radial speed of the grain is

derived from Stokes' law (eqs. (6'a) and (8)), so
that

dr 2pes 2 Ag
-- =te,_g= -- (10)
dt 9_

where n is the viscosity of the gas.

Equation (10) is independent of the gas density

so long as L<s and holds fairly well to Re= 10 and
within a factor of 3 to R_= I0 _.

Case B.--Grains and planetesimals meeting a

resisting medium at v_AV<<V. Here, re_>Tp and

generally L<s, v<<O, while R_ may become
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appreciable for large bodies, although in most cases

of interest R, is small. Tisserand (1896) solved

this two-body problem for small orbital eccen-

tricity e and constant v=AV<<V. To the first

order in e, de�dr = O, so that a small orbital eccen-

tricity is retained either under resistance or

acceleration for gas in nearly circular motion.

For circular velocity V of mass m at distance r

from the effective center of mass M, and a re-

sisting or accelerating force F, the classical two-

body solution takes the form

1 dr 2F(AV) 2AV 1 Ag
...... (11)
r dt mV t_V te g

by equations (2), (3), (5) and (8).

The appropriate expression for t_ can be chosen

from equation (6'a), (6'b), or (6'c), depending

on the value of R_ for v= AV (eqs. (5) and (4)).

Since the spiraling rate is extremely small for

large bodies with large values of R o only the

Stokes' law (eq. (6'a)) equation will be presented

explicitly, viz:

dr 9nr Ag
(12)

dt- 2p,s 2 g

The intermediate case between A and B, when

L,-._Tp/2% has been solved by F. Franklin (private

communication) for Epstein's and Stokes' laws,

the drag being proportional to v. The maximum

rate of orbital change is dr/dt=O.5AV at te=

0.8T_/2_. When L = T_, dr�dr equals 0.8 the value

given by equation (11), approaching equation

(11) as a limit for larger values of t_. For t_< Tp/30,

equations (9) and (10) are correct within about

20 percent and improve for smaller t,. The inter-

mediate case thus gives values of dr/dt varying

from 0.3AV at /_=Tp/30 to a maximum of

0.55V at L=Tp/8 and dropping to 0.3AV at

L= T_,. Near but outside these limits, equations

(9) and (10) or equation (11) gives fairly satis-

factory values for dr/dr.

EFFECTS OF GRAIN GROWTH ON

RADIAL MOTION

We Msh to consider grains that are groMng by
the accretion of atoms and molecules from the

nebula. For atoms or molecules that can "freeze"

on the grain, constituting a fraction fl of the total

density by weight, with an accommodation

coefficient a_, a mean molecular velocity Oi, and a

mean diffusion coefficient D;, a spherical grain of

radius s and density p, grows at a rate

ds aif,_ip(1 + _is_ -1dt 4.. 4-Dd (13)

The second term becomes significant when the

grain has reached such a size that for a velocity v

through the gas small compared to _, grain growth
is inhibited by gas diffusion of the appropriate

atoms and molecules. Approximately, D_ = 1.4,TJp,

where _ is the viscosity appropriate to the "freez-
ing" atoms and molecules. Hence, from the second

term of equation (13), the grain growth rate slows

when s>>5.6_/_p, and is given by

ds 1.4a_ f(q,
(14)

dt p,s

becoming independent of the general gas density

and varying inversely as the radius of the grain.

The transition from rapid grain growth (first

term of eq. (13) ; e.g., Kuiper, 1951) to diffusion-

limited grain growth (eq. (14)) begins when the

mean free path L_ becomes small compared to s,

or roughly when the drag law at low grain veloci-

ties changes from the Epstcin law (eq. (9)) to

Stokes' law (eq. (10) or (12)). Hence, for the

Epstein case (A1) we keep only the first term in

equation (13), so that a very small grain grows to

radius sl in time t_ given by

4p,
tl- sl (15)

a_ f _O_p

Again for the Epstein case, by equations (9)

and (15), the change in radial distance from r0 at
t = 0 to r_ at h and s_ becomes

a_f_ Ag 2p, _ hgsl _
rl-- ro= tl: - (16)

8_ a_ f _p2

applicable when v<<_, L<<T_/2r, and L<_s and

when changes in p and g with r are neglected.

Equation (16) applies well in the assumed low-

density region of the solar nebula beyond Uranus,

where cometary accretion is expected. Note that

exhaustion of condensable gas slows the growth

rates and thereby increases the total amount of

spiraling.

Within Jupiter's orbit, the relatively high gas

density usually assumed and the consequent rapid

growth rates carry the grain through the regimes
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of Epstein's and Stokes' laws rather quickly. Thus,
equation (12) can be used if applicable, and we

will introduce the equations for large Reynolds

numbers (t, from eq. (6'c) and dr/dt from eq.

(11)) and larger bodies, even though the relative

velocity AV (eq. (3)) may be small. On this basis,
the slow growth from s_ to s3 will take place by

equation (14) in time h-h given by

while

p, (s__- s_2)
h-t2 = (17)

2.8a _f _ i

1 dr p(_V) 2 1
.... (18)
r dt 3p, V s

where the sign of dr/dr is that of 2W, given by

equation (3), _V = 2-_rU2g --1I_ ,Sg.

APPLICATION IN THE

"COMETARY REGION"

Let us arbitrarily definc the "cometary region"

at r = 25 AU, with a typical density in the plane

of 10 -n'4 g cm-3, T= 55 ° K, P = 10-2-1 dyn cm -_,

giving a total areal density across the plane of

102_ gcm -2 (2X 10-5 solar mass per square AU)

for a solar mixture by weight of gases (H, He, Nc,

Ar) 0.9803, ices (C, N, O plus H) 0.0175, and

Earthy materials (heavy elements) 0.0022. The

corresponding viscosity will bc n--lO -4._ cgs,

_= I04.s_ cm s-L for a mean molecular weight of
2.34, and _= 104.4_cm s-_ for the ices plus Earthy

material of mean molecular weight 18.4 and a
mass fraction f_ = 0.0197.

The peak of the gas pressure and density will

have been farther out, near r = 30 AU at Neptune's

present solar distance, but the order-of-mag-
nitude calculations at r = 25 AU will illustrate the

nature of the spiraling phenomena caused by a

negative pressure gradient outward near the edge
of the nebula. Suppose the pressure falls linearly

with r to 0 at. 50 AU. Then dP/dr = -10 -j_-7 egs,

while Ag=10 -_.3 cm s--_ by equation (1) and

AV= 10_.-_ em s-_ by equation (3) for a central

solar mass. A forming icy grain of radius s and

density 0.1 gcm -3 thus meets a resisting veloeity

of 16 m s-_, small compared to molecular veloci-

ties. The Reynolds number for equation (5)

becomes R_= 10 -_._ s (era), so that we are in the

realm of Epstein's and Stokes' laws of drag up to

"eonmtesimals" of radius 100 m or larger at great
solar distances. Correspondingly, the mean free

path of the gas molecules is of the order of 1 m or

more so that little error is made in applying
Epstein's law up to perhaps s= 10 m, while to

about the same limit the diffusion slowing of the
accretion rate by the second term of equation

(13) can be neglected. Hence, by equation (15),
the time t_ for a tiny grain to grow to a radius s_
becomes

h = 6.3s_ (cm) yr (t9)

if we accept an accommodation coefficient a;= 1.0.

Thus, our cometcsimal will grow to a radius of

10 m in some IIY yr. Its loss of solar distance from

r0 to r_, given by equation (16), then becomes

ro--rl = 1.2× 10-_ sl_ AU (20)

so that the comctesimaI spirals in "nominaIIy
12 AU" by the time it has grown to a radius of

10 m, neglecting significant changes in density

and other quantities depending on solar distance.

Note that the time varies inversely as the nebu-

lar density p and that the amount of spiraling

varies as p-_, so that the inward spiraling for a
constant Ag=dP/dro is increased for cometesi-

reals of a given size at greater solar distances or at

lower solar densities, even though the time scale

increases as p-_. Reduction in growth rates by any

causc increases the total amount of spiraling for

a given gas density and gradient.

The sizable magnitude of the spiraling rate for

cometesimals groMng at. the edge of the solar

nebula may explain thrce facets of the present

solar system: (a) the comparable masses of

Neptune and Uranus, (b) the reduction of

Neptune's solar distance from Bode's "law," and

(c) the still unobscrvable "comet belt" beyond
Neptune, e.xpected by the writer (Whipple, i964).

If we a_ume (Kuiper, 1951; Cameron, 1962;

Whipple, 1964) that Uranus and Neptune arc

aggregates of cometcsimals, then it is otherwise

surprising that there should have been enough
material at Neptune's distance to make a planet

as large as Uranus. The spiraling effect, however,

could bring in the eometesimals to a solar distance

where the pressure gradient was smaller and pile

up the cometary material from greater distances

for accretion at Neptune, producing no sizable
planet (Pluto?) beyond. Neptune's mean solar

distance may also have been reduced. Thus, my
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expectation of a comet belt beyond Neptune is

perhaps unwarranted. In fact, the observations
indicate that less than one Earth mass exists in a

ring beyond Neptune to a solar distance of 50 AU

(Harold, Marsden, and Whipple, 1968).

APPLICATION IN THE

ASTEROIDAL REGION

We may take a "typical" asteroidal region at

r = 2.5 AU, with density in the plane of 10 -s-4 gcm -3

or a pressure of 10 -4.t atm, T= 550 ° K, P = 10 +t-Q

dyn cm -_, giving a total areal density across the

plane of 10'-* gcm -2 (2Xl() -3 solar mass per

square AU), 7= 10 -3.s cgs, _= los .u cm s-1, and

_i= 104._s cm s-_ for Earthy molecules of mean

molecular weight 33.5 and a mass fraction f_=

0.0022. The assumed temperature is that derived

by Latimer and Anders (1967), supported by the

further conclusions of Keays, Ganapathy, and

Andcrs (1971) that in 13 chondrites at formation,
T_ _no+s0 ° 10-_2-.o. _s0o K and P= atm. The atmos-
pheric model is here calculated to allow for one

central solar mass plus the additional surface

prcssure derived from the gravitational attraction

of the gas on itself.

Suppose, for illustration, that the gas pressure
doubles in 1 AU toward the Sun so that dP/dr=

- 10-ma cgs, hg = -- 10 -:.gcm s-2 by equation (1),

and AV = 10 '.1 cm s-I by equation (3). In the gas

the mean frcc path is 0.2 cm and R,= 0.64s. This

puts us squarely in the Newtonian range of drag

(eq. (6'c)) and the range of slow grain growth

(eq. (15)) for sizable planetesimals of s>10 m.

Growth to such sizes for #,=3 occurs rapidly,

_-_1.4 cm yr -1, for a short time and then slows. As

we have seen, the radial spiraling ratc for a change

approximately fifty fold in radius by Stoke'

law averages about 0.3 AV or dr/dr= 10 -_-1 AU

yr -1. Thus, the reduction in r is a fraction of 1 AU

while the planetesimal is growing to meter dimen-
sions.

For larger bodies, s>lO m, we can apply

equation (18) (Newtonian drag and the classical

resisting medium) to find the spiraling distance
_r in time &t for constant s (cm)

Ar 1.22
- at(yr) (21)

r 8

Appreciable change of solar distance occurs

when At in years becomes comparable to the radius

of the planetesimal measured in centimeters and

varies directly as the nebular density (eq. (18)).

The growth rate, however, is really quite un-
certain. The assumed value of AV is still small

(less than 1 percent) compared to the orbital

velocity but is some 7 percent of the mean

molecular velocity. Turbulent motion of the gas
might easily produce random relative velocities

of the order of 1 km s-I so that the faster gro_[h

rate might be applicable (first term of eq. (13)).

In that case, the change of r for a further growth
to kilometers might not be significant. The slow

growth rate, however, would make a significant

change in r quite likely.

We may conclude, therefore, that effects of

pressure gradients in the asteroid belt could be

very important in shifting planetesimals toward

Mars or Jupiter, provided the growth rates of the

asteroids are not too rapid. For the basic develop-
ment of the asteroids on a short time scale of 103

to 104 yr, the effect would be minor. However,

should the nebular density be 10 s arm or less in

the asteroid region and the growth time l0 s to

l0 s yr, pressure gradients could well have deci-

mated the asteroid region by spiraling the plane-
tesimals toward Mars or Jupiter, depending on

the distribution of gas and the location of original

grain growth. Possibly this effect contributed to

the failure of an Earth-sized planet to develop

between Mars and Jupiter.

GENERAL REMARKS

My attention was first directed to systematic

interactions between gas motions and gro_qng

planetesimals in a postulated solar nebula by

Hoyle's (1960) theory involving the expansion of

a centrally condensed nebula by the outward

force of spiraling magnctic fields from the Sun. In

this process, the plasma would be pressed outward

from the Sun, carrying with it the neutral gas and,

according to Hoyle, also the planetesimals. In fact

(Whipple, 1964), the reduced effective gravity on

the gas will, following the arguments of this paper,

cause the planctesimals to spiral inward toward
the Sun rather than outward.

Cameron (1969) mentions the effect of a radial

pressure gradient in producing an inward spiraling

of planetcsimals but does not discuss the alterna-
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tive possibility, viz, outward spiraling, should a

positive outward pressure gradient occur. Gen-

erally, if a toroid of higher density occurs in the

solar nebula, the gro_ing planetesimals are drawn
toward it from the inside as well as from the

outside, increasing thc growth rate of an accreting

planet. The importancc of the effect, as we have

materially to Neptune's mass and reducing the

solar distance from Bode's "law." It may have

greatly reduced the comet production in these

regions of space so that no significant comet belt

exists beyond Neptune. Conceivably, the pressure-

gradient effect may have assisted in the building

of Mars and Jupiter, at the expense of the asteroid

seen above, upon

density and the time rates of chemical condensa-

tion. For a short time scale (_-_10 _ to 104 yr) such

as Cameron envisages, the pressure-gradient

effect would not be important.

For long time scales of planetary formation,

l0 s to 10s yr, as are frequently postulated, the

pressure-gradient effect could be highly signifi-

cant. It may well have drawn in the cometary

material from far beyond Neptune, adding

depends mostly the nebular belt. A lower surface gas density between the

regions of Mars and Jupiter might not, in itself,

have prevented the accrction of a sizable terrcstrial

planet between Mars and Jupiter without the

action of the pressure-gradient effect.
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