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SUMMARY

The recent introduction of special crack-tip singularity elements,

usually referred to as cracked elements, has brought the power and flexibility
of the finite-element method to bear much more effectively on fracture mechan-

ics problems. This paper recalls the development of two cracked elements and

presents the results of some applications proving their accuracy and economy.
Judging from the available literature on numerical methods in fracture mechan-

ics, it seems clear that the elements described have been used more extensive-

ly than any others in practical fracture mechanics applications.

INTRODUCTION

The study of crack growth behavior by classical continuum linear fracture

mechanics has been limited primarily to simple structural configurations and
loadlngs. Because of the ease with which the finlte-element method handles

discontinuous loads and boundary conditions, attempts have been made to use

this method to stady fracture in complex structures. The capability of con-

ventional elements and conventional modeling procedures to predict crack-tip
parameters accurately has been found to be limited and uneconomical. The most

significant and accurate results obtained through use of standard methods are

those which follow the work reported by Chan et. al. (ref. i) and Kobayashi

et. al. (ref. 2). The method followed by Kobayashl, for example, is to use the
crack-openlng displacements to solve a sequence of two simultaneous equations :
relating displacements to the two stress-lntenslty factors, KI and Kll,for the

_ opening and sliding fracture modes, respectively. Thc_c results are then In-

terpreted or extrapolated to predict values at the crack tip. The difficulty
in applying this approach lies in trying to accurately depict the extreme

,'_ stress gradient existing in the near vicinity of a crack tip. The detail re-

:,_> qulred for a model to reasonably characterize this gradient makes the proce-

;_;_:,/ dure expensive and cumbersome. For example, Oglesby and Lomacky (ref. 3) In-
,:' dlcate that the maximum permissible element size necessary to insure acceptable

i,_: " accuracy in the computed stress-intensity factors is of the order of 1/300th
,_ _ of the crack half-length. To achieve detail of this order, substructure
• analyses have usually been used. That is, a coarse model is first analyzed to

obtain boundary conditions which are then imposed on a more refined local
model of the crack region. In some instances results from the second model

_,_.. have been used to analyze a third and even more -finely modeled localized region
'_-°_ of the crack tip. Obviously, considerable modeling and computer efforts are

[_:_ " necessary to carry out such analyses.
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+ i
Another approach, which is similar to that used by Chan and Kobayashi, is !

a combination of finite-element and boundary-collocation analyses. In this

method, displacements and stresses from a conventional finite element model - i
I

which may or may not contain some representation of a crack - are used as i
boundary points in a boundary collocation solution for the crack. This is the !

procedure followed by Freese and KaldJian (ref. 4), for example. The disadvan- !
tage of this combined approach is that it is not easily applicable since con-

siderable experience in fracture analysis and complex variables is required to

, obtain consistently accurate results.

In an attempt to circLunvent the economic problem of the conventional

t approach and the applicability problem of the combined approach, research and

development efforts have been turned toward formulating elements which are7

capable of characterizing the crack-tip stress singularity internally. These
singularity elements - cracked finite elements - provide a new means for com-

_ puting stress-intensity factors and thereby predicting crack growth. Two such
elements h_ve been developed and implememted at the Lockheed-Georgia Company.

,I These elements have received extensive usage in project and contract work and

• have provided considerable substantiation of the accuracy of the approach used

i in their formulation. A description of the formulation and implementation of
these elements follows.

TECHNICAL DEVELOPMENT

The Williams' series of stress functions (refs. 5 and 6)* is the basis

for all boundary collocation and cracked finite-element schemes to estimate

stress-intenslty factors. This series gives the following familiar expressions

for the in-plane stresses for the plane crack problem illustrated in figure i.

n

n= 1

E '" ) ?2," + a g(n)(n+2) sin _ + i 0 - (n-6) sin - i 0

_ CO n

_;: n=l.+,

_-""_. * An error in reference 5 was subsequently corrected by Williams in
-_+,, reference 6.

t

]97400647:3-528



: 9 It :, I

and

n

- n _-1 .Fs ; /n ' \ I
Tr@,r,@ ) = _.' _ r \ n ',_(n+2) sin \_ + 1 ) @ - f(n)(n-2) sin ",2 - 1)8 ;_

n=l

+ an _ (n)(n+2) cos \2 + I 8 - (n-2) cos - 1 8

in which

l n

_+1
fCn) =

n n

2 + (-I)

_ and (2)J

n . (l_n

} g(n) -
| m n

The independent constants associated with the symmetric (even in e) and anti-

symmetric (odd in 8) parts of the Williams' series have been denoted in equa-

tion (i) by s n and an, respectively. Even though an expression for the second

antlsymmetzic term has been formally written, it should be noted before pro-

ceeding that it never contributes to any of the stresses. Thus in the usual

flnite-element description, a 2 is not a legitimate generalized coordinate.

The leading terms in equation (i) are singular like r-i/2; all subsequent

terms are nonsingular. The coefficients sI and a I are related to the opening .

and sliding mode stress-lntenslty factors K I and KII by the following formulas: ,_

(r,O) =3 s 1

?_: (3)

tim ,rre(r,o) = "l -:

The strains corresponding to the stresses in equation (1) are obtained through
Hooke's law. The straln-dlsplacementequations in plane polar coordinates can
then be integrated for the radial and tangential displacement components u (r,O)r

and u0 (r,0), respectively. See, for example, reference 7 and the subsequent

correction. The resulting displacement components are

"F
g
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Ur(r,e) -- K cos 0 + F. sin e
?

oo n

, _ ( !+ ,} 1 2 _s _-(n+2)cos n- )e; _ _ r _ n + I 8 - f(n)(6-8_-n) cos _ i"

! n--I
i

I r [n ) /n )_+ a (n+2) g(n) sin \_ + i O + (6-8o-n) sin \_ - 1 8 (4)n ,.

i and

Ue(r,e)= Fr + H cos 8 - K sin 8
t

n

/n (_n _Oj' + _rl 2 Istn '(n+2) sin 'k_ + i @ - f(n)(6-8c-_n) sin ,2 - 1 ,

) n=l
, %

+ a [(n+2)g(n)cos (2 + i)O-(6-8_+n) cos (2" l)OJ_

' in which F, H, and K are rlgld-body displacement parameters and G is the shear

modulus. The dimensionless elastic constant _ is given by

I _ ffiIi_v (for plane strain)

(for plane stress)

where _ is Poisson's ratio. "_

Most cracked finite elements developed to date (c.f. refs. 8-11) incorpo-

rate only the leading sy, metrlc terms in equations (i) and (4). Creager, at the

'4 Lockheed-Callfornla Comp_my in 1970, attempted to include subsequent terms in

the Williams' series put _as unsuccessful due to inadequate element geometry. !

/_ This was successfully accomplished by Wilson (ref. 12) with a sym_netric ele-

-::,. ment, which makes use of the first four terms. Wilson's element, however, has
.,, ,,., , the disadvantage of being semicircular and, hence, is awkward to use in con-

"_,. " " junction with conventional elements which almost always have straight bound-

,,,.... aries. Moreover, the Wilson element (as well as some others previously

, " referenced) has fewer degrees of freedom than are needed for independence of

I[_ the nodal displacements. At best this requires that the stiffness matrix of

the cracked element receive special attention in forming the stiffness matrix

of the assembly.

_ At Lockheed-Georgla, the decision was made at the outset to develop a
', " cracked finite element that is a high-order element in that it

,' ;. 534
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_ (i) incorporates many of the terms in the Williams' series;

_ (li) has a perfect balance between actual degrees of freedom and number
. :_ of nodal displacements; a_d

_r (iii) has a convenient shape for interfacing with conventional elements.

_i The first feature permits accurate estimates of stress-lntensity factors
with relatively coarse finite-element grids, while the second and third fea-

i _: tures allow the numerical analyst to add the cracked element to an assembly

in the same way that he adds a conventional element.

Because many fracture mechanics problems are symmetric about the plave of i
: the crack, two elements were developed at Lockheed-Georgia. One takes only

i the symmetric terms in the Williams' series and, hence, is applicable only to
symmetric problems (KII = 0); the other makes use of both syn_aetrlc and anti-

synnuetrlc terms and is applicable to unsyn_etrlc or mixed mode (K_ and KII)

problems.

Plane-Deformatlon Symmetric Element

Figure ? shows the elght-node-symmetric element. The elemental coordinate

system has its origin at the crack tip. The element is rectangular with a

three-to-one aspect ratio. Placement of the nodes relative to the rectangle is

pre-determined with a node at each corner plus nodes at the one-third points !
of each of the long sides. The choice of the symmetric element's shape - three I

equal squares - was considered convenient since the use of regular mesh spac-

ings is common in finite-element models. This geometry has also proven to be i
effective when used with constant-strain triangles. The lower side (nodes 6,

7, 8, and I) is coincident with the crack direction and presumed axis of sym- f/ :

metry. Nodes 6 and 7 are on the free crack face. Nodes 8 and I ar_ on the :
prolongation of the crack. They are constrained rigidly as to vertical dis-

placemtent and are free of shear forces - conditions consistent with symmetry. _"
._

The elemen_ has sixteen displacement degrees of freedom - two per node .... :

corresponding to the in-plane displacement components. Thus, in keeping with _

feature (ll) mentioned previously, it incorporates the first thirteen s>_met- °_
ric terms of the Williams' series plus the three displacement degrees of free- _"

dom associated with rlgld-body displacement in the plane. In the following, ...._/..

the thirteen Williams' coefficients and the three rlgid-body parameters are i_referred to as the sixteen generalized coordinates of the element. The _
stresses and displacements correspondin_ to these sixteen generalized coordin- _-_

ares are evaluated on the boundary of the element. Products of .'tress and dis- _/_

placement contributing to boundary work are formed and integrated. The result .i,__
is a homogeneous quadratic form in the generalized coordinates, and the co- _
efficient of each term is an element of the cracked element's stiffness matrix _

with resp, t to the generalized coordinates. :_

_Y
Once the stiffness matrix relative to generalized coordinates is deter-

mined, the stiffness matrix relative to nodal displacements is formed using

equation (4). '_

-d,

I
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To date this element has not failed to substantiate any reliable stress- a

intensity factor to within 2% difference. And more often than not, this was

accomplished with a relati_el 7 coarse finite-element grid. Results obtained

with the symmetric element will be discussed later in the section "Applications."

Plane-Deformation Unsy_uetric Element

The ten-node unsymmetric element is shown in figure 3. The elmnent is

square with equally spaced nodes around its boundary. As before, the shape

: (4 equal squares) and relative location of the nodes are fixed, and were

chosen to provide modeling convenience. Again, the actual size of the element

and its elastic constants dictated by the particular application are input

parameters. The generalized coordinates correspond to the first nine symmet-

? ric terms and first eight antisymmetric terms of the Williams' series plus the

i three rigid-body displacement parameters. The stiffness matrix was again

i generated by integration around the boundary.

i Results obtained with this element are presented in the following section.
' Although sufficient, the accuracy obtained with this unsy_uetric element is

i not as impressive as that obtained with the symmetric element previously dis-

! cussed. Thl_ i_ understandable in light of the fact that the unsyu_uetric ele-

i ment has fewer degrees of freedom that it can bring to bear on each mode. Of I_ course, it can be used in a much wider class of crack problems and is more i
practical for industrial applications. In the following section some exmuples
are given which show the accuracy and applicabilities of both the symmetric I
and unsy_netrlc elements.

APPLICATIONS

To illustrate the capabilities of the two elements, four examples of their

usage follow. These examples were chosen to derJonstrate first, the accuracy !

and econcmy of the elements and second, the capacities of the elements to per- !

form analyses for structural configurations of practical importance. The four
cases are drawn from a wide range of work involving use of the cracked ele-

,F ments and represent typical rather than most favorable results.

The cracked elements are implemented in a standard slngle-precislon

_. _ finlte-element dlsplacement-method program which employs a banded Cholesky

_' decomposition solution procedure. This program, which operates on a Univac
;._, 1106 computer, was used for all four examples.

_ • i Case i: Synunetrlc-Element Test Case

This example, shown on figure 4, was one of the first analyzed with the

sy=metrlc element. However, it exhibits the degree of accuracy which has been

consistently achieved in numerous subsequent problems. The finite-element

_ model has 31 nodes, 35 constant-straln triangles, and i eight-node cracked
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element. The three configurations of single-edge crack, double-edge crack

and center crack were all individually analyzed with this one model for an

a/w ratio of 1/3. The model grid, which is quite coarse, results in the

single-edge crack model having 57 displacement degrees of freedom (DOF) while

the double-edge and center models have 51 DOF each. Comparisons of the

stress-intensity factors computed using these configurations with ASTM values
are shown on figure 4. The accuracy of the finite-element predictions are

impressive (< 1.5% error) for all three cases. Computer time to perform each

analysis was 3 to 4 seconds.

Subsequent work with this finite-element model and others like it showed
tl_ comparable results, with refinements in the grid bringing steady convergence
7 toward ASTM values.

Case 2: Symmetric Cracked Hole

! I The symmetric problem depicted in figure 5 was analyzed in order to asse_

i i the accuracy of the formula!

I =°KI _Bowie _Isida c ._a (5)

I

which is routinely used to estimate stress-intensity factors for this geometry.

In equation (5) BBowie and Blslda are the correction factors, respectively,

associated with Bowle's (ref. 13) analysis for the presence of the hole and
Isida's (ref. 14) analysis for the finlte-width effect. The finite-element

grid as shown in figure 5 was established (i) to permit the location of the

cracked element to be easily changed to simulate growth of the symmetric

crack, and (ii}to permit the width of the plate to be readily cha_,ffedby re-

moving columns of constant-straln triangular elements from the right edge. The

stress-intenslty factors computed in this parametric study are listed in
table i. An important conclusion to be drawn from these results is that the

value predicted by equation (5) seems adequate for short cracks, but becomes

quite inaccurate and nonconservative as the crack grows long.

i i Such parametric analyses are of practical value, however, only if they

can be quickly and economically accomplished. The use of the symmetric crack-
ed element made it possible for a relatively coarse model (figure 5) to give
accurate answers. The analysis of this coarse model required 28 000 words of

. computer storage and approximately 20 seconds of computer time. The total

, stud_which includes model conception, data input, and 21 separate
analyses, required less than 1 man-day of engineering effort and 7 minutes of

computer time. Subsequent studies of other parameters, e.g. fastener loads

or fastener interference, could now ve accomplished with even less effort
since the model can be saved and reused.

_ In general, the computer times and storage cited above are economical,_/ and, in addition, are well within the operational limits of most remote access

_!i_ or time-sharing computer facilities. This economy and ready availability in537a ,_,_

I...... i__iZ
I
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remote access mode (Univac DEMAND) havP resulted in widespread application of

cracked elements at the Lockheed-Georgia Company in studies such as the one

: described above.

Case 3: Pin-Loaded Lug

The structural member shown on figure 6 is a lug and occurs frequently in

aerospace structures The lug's lack of geometric symmetry greatly hampers

the use of approximate methods to adequately estimate its stress-intensity

i factors KI and KII when a crack appears. Such cracked geometry is easily

handled, however, with the unsymmetric cracked element. The lug and the pin
loading it are modeled with constant-strain triangles and a cracked element as

T shown on figure 7. The unsyn_etrlc cracked element is shown in its initial

i } position. As in the previous example, the model grid was constructed to per-

! mit the position of the cracked element to be easily changed to simulate the

growth of the crack. Results of the analyses are given in Table 2. The small

| value of KII relative to K I for the initial position indicates that the be-
. havior of the crack is primarily mode I or opening mode from the beginning.

i Figure 8 depicts the mode I behavior as the crack progresses from the hole tothe outer edge.

t !
This analysis, which is considered to be in error by less than 3 percent,

was accomplished at the cost of i man-day and 4 minutes of computer time in

35 000 words of computer storage.

Case 4: 45-Degree Slanted Crack Test Specimen

This last example demonstrates the use of cracked elements to calibrate

" test configurations for accurate reduction of test data. The specimen shown

by figure 9 contained an initial 45° center crack, and was subjected to a

constant-amplitude tension-tenslon load, The maximum tension to minimum

tension ratio was 0.I. The specimen was modeled with constant-straln trian-

gles and an unsymmetric cracked element as shown by figure I0. The path taken

by the crack during the cyclic test was simply traced on the flnite-element

model. The center section of the model was reconstructed seven times to ac- •

.'. comodate the cracked elements for dimensionless projected crack lengths _ = i

a/w of 0.3, 0.35, 0.4p 0.5, 0.6, 0.7, and 0.8. The steel loading pins for the

"_: test were modeled by spring elements spread over the approximate bearing sur-
, faces as shown.

"_ The results from th __ analyses of this model are shown on figure 11. The

,:_ ; curves on figure 11 are considered accurate within 2 percent. These results

i show an interesting and potentially significant feature not found in similar

work reported by Iida and Kobayashi (ref. 15). For 0.5 < A < 0.75 the mode I

stress-intensity factor KI is greater than KI for a straight crack of the same

projected length. This increase in KI (the "hump" in figure 11) occurs when
KII goes to zero and could easily account for the increased crack-growth rates

observed for this type of specimen. However, the significant point to this

analysis is that an accurate knowledge of K I and KII for test articles permits i
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" a :oncise reduction of crack-srowth-rate data for later design usage. " i_
!

l_leanalysis of this case required approximately 80 seconds of computer [
time for each configuration. The total for all seven configurations, including !

" data input and modifications, was 9.4 minutes.

CONCLUSIONS i".

' IB_.i_ The incorporation into NASTRAN and other finite element codes of cracked i
_ elements appears to be both a tlmely and practical effort, for there is a grow-

i! ing concern among those involved in aerospace design with being able to per-

i form reliable fracture analyses of damaged or flawed structures. This concern
arises partly from anticipation of dlfficultias of meeting certain design
"fracture criteria" imposed by procuring agencies for new aerospace vehicles

and partly from recent experiences with existing airplanes. For whatever

reasons, the fact is that fracture mechanics and fracture analyses have become

.. significant and necessary steps in the design and modifications of aerospace

structur_. Thus, there is a pressing need for accurate production analysis
tools to enable designers to apply new fracture criteria. Cracked finite

elements, such as those discussed in this paper, are such tools. Their ease
• of application makes it possible for analysts and designers not extensively

_ trained in fracture mechanics but familiar with finite element methods to com-

pute accurate stress-intensity factors.

i
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Table 2. Results fr_ _alysis of the L_ Model

! h h_

0.1112 2.770 0.123

0.3335 1.796 -0.002

0.5559 1.586 0.004

0.7782 1.775 0.004

crack length = a

hole radius = r

mean bearing stress = aB
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Figure 2.- Eight-node element for symmetric problems.
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Figure 3.- Ten-node element for unsvmmetric IJroblems.
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j °rFigure 8.- Stress-intensity factor versus crack length for the lug model.
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_:__ Figure 9.- Tension specimen with a 45° center crack.
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