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NEW PLATF AND SHELL ELEMENTS FOR NASTRAN

By R. Narayanaswami¥*
NASA Langley Research Center

SUMMARY

A new higher order triangular plate-bending finite element is presented
in this paper which possesses high accuracy for practical mesh subdivisions
and which uses only translations and rotations as grid point degrees of free-
dom. The element has 18 degrees of freedom (d.o.f.),viz., the transverse
displecement and two rotations at the vertices and mid-side grid roints o the
triangle. The transverse displacement within the element is approximated by
a quintic polynomial; the bending strains thus vary cubically within the
element. Transverse shear flexibility is,taken into account in the stiffness
formulation. Two examples of static and dynamic analysis are included to
show the behavior of the element. Excellent accuracy is achieved in all cases.

This element, designated as TR-18, is demonstrated to be an ideal candi-
date for generation of a family of plate and shell elements for inclusion into
NASTRAN. The following elements are specifically menticned in this context,
viz., (i) triangular plate element, (ii) quadrilateral plate element,

(iii) curved triangular shell element, (iv) curved quadrilateral shell element
and (v) plates with membrane-bending coupling and muitilayered plates. The
present paper describes the detailed theoretical derivations for the afore-
mentioned elements. In addition, the behavior of the TR-18 element and
associated quadrilateral plate element is illustrated by two sample problems.
Comperisons with existing, 2lements in the literature and the present NASTRAN
quadrilateral elements are shown.

INTRODUCTION

NASTRAN presently (Level 15.5) has, in all, a tctal of nine different
forms of plate elements in two different shapes (triangular and quadrilateral).
The present NASTRAN basic bending element, TRBSC, the basic unit from which
the bending properties of the other plate elements are formed, uses a cubic
displacement field (with the x2y term omitted). This constrains the normal
slope (on the exterior edges of the TRPLT vending element) to vary linearly,
which in turn makes the element overly stiff. A need thus exists for
& more accurate plate bending element for NASTRAN.

Thewr A0S a6

A brief review of some of the more important plate bending elements is
now made. Formulations of triangular plate hending finite elements were
given as long ago as 1966 by Clough and Tocher (ref. 1) and by Bazeley et al.
(ref. 2). The conforming elements presented therein allow only a linear
variation of slope normal to an edge and have since been found to be overly
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stiff, whereas the nonconforming element given in ref. 2 uses a cubic pely-
nomial for transverse displacement and is not of very high accuracy. Improve-
ments to these elements have been made by using higher degree polynomials for
transverse displacements; indeed elements of very high accuracy have been
reported by Argyris (ref. 3), Bell (ref. I) and Cowper et al. (ref. 5) using
quintic polynomials for the displacements field. But these elements have
strains, curvatures and/or higher order derivatives of displacements as grid
point degrees of freedom (d.o.f.) which lead to an inconsistency when abrupt
thickness or material property variation occur:. That is to say that the con-
tinuity of strains and curvatures implied by their use as degrees of freedom
at grid points is violated wherever concentrated loads, changes in slope,
changes in thickness, or connections to other structures occur. In short, the
proper use of elements that assume continuity of strains and curvatures is
restricted to regions where discontinuities do not occur. Further, the ex-~
istence of higher order derivatives makes it difficult to impose boundary con-
ditions on these and indeed the simple interpretation of energy derivatives

as "nodal forces" disappears (ref. 6). Bell has also developed another element
in ref. L, designated T-15 by him, which has only displacements and rotations
as degrees of freedom. But it has a major drawback in that not all grid points
of the element have the same d.o.f.; consequently, it becomes difficult, if
not impossible, to consider connections of this element with other finite
elements. Thus the prectical use of the T-15 elemernt in general purpose
programs is severely limited.

A need still exists to develop a new accurate plate bending finite element
that has the advaniages of the accuracy associated with a high order displace-
ment polynomia_ but does not have the disadvantages discussed above and is
therefore suitable for inclusion in general purpose computer programs like
NASTRAN.

In this paper, a triangular element and an associated quadrilateral
element are developed that use only displacements and rotations as grid
point degrees of freedom and use a quintic polynomial for lateral displace-
ment. The quadrilateral element is formed by four triangular elements. The
stiffness, consistent mass and load matrices of the separate triangles are
evaluated and added Ly the direct stiffness technique to form the respective
matrices for the quadrilateral. The terms associated with the internal grid
points are then eliminated by static condensation. None of the elements
discussed in referencer 1 to 5 possess the property of transverse shear
flexibility. This has been taken into account in the present paper by a
procedure based on that used in NASTRAN (ref. 7).* The componenti.s of transvers
shear strain are quadratic functions of position. Convergence to the limiting ,
cage of zero transverse shear strain is uniform.

In addition, three elements, viz., (i) a curved triangular shell element,
(11) a curved quadrilateral shell element, and (iii) a multilayered plate
element can be derived from the TR-18 element., Together with the quadrileteral
plate element, these elements constitute the TR-18 family of elements.

*A similar procedure for incorporation of transverse shear flexibility
into a quartic element was communicated to the author by Dr. R. H. MacNeal of
MacNeal-Schwendler Corporation.
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LIST OF SYMBOLS

Column vector of coefficients
Dimensions of triangular element in local co-ordinates (fig. 1)
Coefficients of quintic polynomial

Matrices relating strains and generalized displacements

Row vector relating transverse displacement to generalized
displacement
Matrix relating bending stresses and bending strains

Plate flexural rigidity, Et3/12(1 - v2)

Blastic modulus

Matrix relating interior grid point displacement to exterior
grid point displacements of quad-element

Matrix relating transverse shear forces and strains

Stiffness matrix

Lengch of side of plate

Consistent mass matrix

Vector of bending «nd twisting moments per unit length

Number of elements per side of plate

Matrix relating grid-point displacement vector and vector of
polynomial coefficients

Augmentzd matrix of Q and constraint relations

Matrix relating vector of polynomial coefficients and grid
point displacement vector

Kinetic energy

Transformation matrices

Thickness of plate

Matrix of transformation of strain components

Strain energy

Vector of transverse shears per unit length

Lateral displacement

Centrel deflection

Co-ordirate axes in the local system

Co-ordinate axes in the global system

Rotation of xz plane at each grid point

Rotation of yz plane at each grid point

Transverse shear strains

Vector of transverse shear strains

Column vectors of grid point displacement in local or global
system

Inclination of material orientation axis to x-axis

Displacement vector of quadrilateral element

Poisson's ratio

Mass density of plate material

Non-dimensional parameter of eigenvalues, pta?Lu/b
Direction cosine matrix of quadrilateral median plane
Circular frequency of plate vibration

Bending strains
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TRIANGULAR PLATE ELEMENT TR-18

In this section of the paper, the derivation of the stiffness matrix,
consistent load vector and consistent mass matrix of the triangular plate
element is given. The procedure for the derivation is described in detail in
reference 3, and hence only essential details arc presented hera.

The element has 18 d.o.f., the transverse displacement and 2 rotations
at each vertex and at the mid-point of each side. Three additional conditions
are introduced, viz., the slope normel to each edge (hereinafter cailed normal
slope) varies cubically along each edge. This establishes 3 constraint equaticn
between the coefficients of the polynomial for displacements, which, together wi
the 18 d.o0.f., uniquely determine the 21 coefficients in the quintic polynomial.
The variation of deflection along any edge is a quintic polynomial in the
edgewise co-ordinate; the six coefficients of this polynomial are uniqnely
determined by deflection and edgewise slope at the 3 grid points of the edge.
Displacements are thus continuous between two elements that have a common edge.
The normal slope along each edge is cons.rained to vary cubically; however,
. since the norma. slopes are defined only at 3 points alcng an edge, there is
. no normal slope continuity between 2 elements that have a common edge. The
element thus belonges to the class of non-conforming eliements. The development
of this element follows closely that of Cowper et al. [ref. 5).
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Element Geometry

Rectangular cartesian co-ordinates are used in the formulation. An
arbitrary triangular element ls shown in figure 1, where X, Y, and Z are a
system of global co-ordinates and X, y, z are the system of local co-

. ordinates for the triangular element. The grid points of the element are
numbered in counterclockwise direction as shown. The following relationship
between the dimensions of the triangular element a, b, ¢, the inclination

0 between the X and x axes ané the co-ordinates of the vertices of the

o element can be easily derived (see fig. 1):
. cos 0 = (X3 - Xl)/r sin 6 = (Y3 - Yl)/r (1)
i 5 . 1/2
where r = [(x3 - Xl) + (Y3 - Yl) ] (2)

as (x3 - XS) cos 6 - (YS - Y3) sin 0

= {(x3 - xs)(x3 - X+ (Y3 - YS)(Y3 - Yl)}/r (3)

1
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sund similarly,

T vegrer,

) + (Y

{(x

o
1]

- xl)(x3 - X - Yl)(Y3 - Yl)}/r (W)

5 p)

{(x

0
[}

- xl)(y5 - Yl) - (Y )(x5 - Xl)}/r (5)
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Displacenent Function

i The deflection w(x, ;") within the triangular element is assumed to vary
as a quintic polyromial in the local co-ordinates, i.e.,

2 2 3
R} = +
w(x,y) a, +ax + a5y * a4 Bgxy +agyt o+ ax +

2 2 3 L 3 2 2
asx y + agxy + aloy + allx + 312x y + 813x y +

3 A 5 ! 3.2 23
B XYt 8y gY B X tagX, e gy e Xyt

' +a.y (6)

€50 21Y

There are 21 constants, &y to 8y These are evaluated as follows:

The element has 18 d.o.t. At each grid point there are 3 displacement
components as d.o.f., viz., w, displacement in z-direction, a, rotation
about the x-axis and B, rotation about y-axis. The rotations a and 8
are obtained from the definitions of transverse shear strains vy and

sz, i.e., Xz
ow
Yez = ox + 8
(1)
v
Yys 5y ~ ©
1t can be shown (ref. 8) that A and sz, and hence a and P, at any
grid point can de expresred in terms of the constants 8y to 8, Thus 13

relations between grid point displacement values and the constants are obtained. .
Three constraints among the coefficients in the above polynomial (eq. (6)) are

now introduced so that the normal slope varies cubically along each edge. It

is clear that the thr:e constraint equations will involve only the coefficients

of the fifth degree terms in equa.ion (6), since the lover degree terms

satisfy the condition of cubic normal slope automatically. Moreover the con-
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ditions depend only on the direction of an edee and not on its position. Along
the edge defined by srid points 1 and 3, where y = 0, the condition of cubie
normal slope requires that

a =0 (8)

¢ can be shown (ref. 8) that the condition for cubic variation of normal slope
alon; edgz 1-5 is

23

+ (3b“c 3.2

8 + (2bch - 3¢ da.  +

32
c 19

so'c a g+ (b - bs)al - 2btc)a

1

T 1

5 23 L -
(e” ~ L4b%¢ )a20 - Sbe ay = 0 (9)

and the condition Tor cubic variation of the normal slope along the edge 3-5
(see fig. 1) is

Sahc 8¢ + (-ha3c2 * as)a + (3a203 - 2ahc)a18 + (-2 ach + 3a3c2)a

1 17 19"

5 23 L _
(c” - La®¢”) 8,9 + Sac a8, = 4) {1n)

The 18 relations between grid point displacements (w, a and B at each
of the six grid points) and the coefficients of the polynor.ial, together with
the three constraint equations (8), (9), and (10!, uniguely determine the

coefficients &, to 851 The following equations can therefore be written:

{6}

Q] {a} (11)

and {a}

[s) {8} (12)

where [Q] is the 18 x 21 matrix involvring the co-ordinates of grid points
substituted into the function w (eq. (6)) and the sppropriate expressions
of a and B; {a} is the column vector of coefficients a; to a,, and (8]

iz a 21 x 18 matrix and consists of the first 18 columns of the inverse cf an
augmented matrix o” [Q] and the three constraint equations (), (9), and (10).
Stiffness Matrix

The following relationships are obtained from the theory of deformation
for plates (ref. 9). In the presernt notation, the curvatures are defined by
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(i =0 =y (13)
28
L*xy ( ox - 9y

C) )
MX XX

<My >= [D]< Xy > (k)
LMX:YJ \Xxy.)

there [B] is, in general, a full symmetric matrix of elastic coefficients.

] Shear forces (and hence shear strains) are proportional to the third
Pierivatives of the displacements. Since the displacement within the element
¥is assumed tc vary as a quintic polynomial, shear strains are expressed by a

?guadratic polynomial as follows:

~ 2
+ < +
b bex + b3y + bhx + bsxy b6y

x T 5
(15)
- 2
Yy = cl + c2x + c3y + cux + csxy + c6y
The shear forces ix, Vy are related to Yx’ Yy by
Vx Yx
V'
Y Yy

@.here G is in general a full 2 x 2 symmetric matrix and t* is an effective
thickness of the element.

It can be shown that bl to b6 and cl to 6 can be expressed in

;‘terms of the coefficients 8y to 8 (ref. 8) and hence sz can be
- sz
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expressed as

(v} = i8] {a) (17)

where [Bl] is as given in reference 8. The curvature {y} is now split into

2 parts, i.e.,

{x} = {Xl} + {xg} (18)
where
2 S
ax2 ax
{ 3% § EZX& & (19)
X} = ) ? xpt = T 3
y
" 82w _ anz _ anz
i axayJ L 9y x J

It follows that {xl} is the vector of curvatures in the absence of trans-

verse shear and {x?} is the contribution of transverse shear to the vector of

curvatures. Now k,(l} and {XE} are expressed in terms of generalized co-ordinates

{a} as

1]

{xl} [52] {a} (20)

and

(X} = [8,] (a) (21)

vhere [B2] and [B3] are given in reference 8. Thus,
() = ) + {xp) = (18,1 + [8,]) () (22)

The gerneralized stiffress matrix can be 6btained as (ref. 8):

(Kl gen ‘\[]{KIBQI + [8,1) 01 ([8,] * [3,1) + (17 [c][gll} ax ay (23)
462
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L The element stiffness matrix in the local co-ordinate system, [K]e, is, by
%virtue of equation (12),
x1_ = (51" [k1___ (8] (24)
€ gen °©
¢
t The element stiffness matrix in the global co-ordinate system, [K]g’ is
(K] = (1,)" (K], [T,] (25)
g 2 e 2

where [T2] is the transformation matrix of displacement vectors from global
to local co-ordinates of element.

The evaluation of the elements of the generalized stiffness matrix, [K]gen

i of equatlon (23), in closed form is, though straightforward, very tedious.
This is due to the lengthy expressions involved in +the triple matrix products.
The integration involved in equation (23) is now split into 5 integrals as

follows:

K] = ff [321T [b] [B,] dx av

gen

v IS [321T (D) [B,) ax ay + /f [331T (D1 [B,] dx ay

. 1 [331T (D} [2,] ax ay + 1f {BL]T (0] [B,] ax &
(26)

The first term J[f [B ] [D][B ] dx dy 1is evaluated in closed form; the

olher four terms are e"alua+9d usinz numerical integraticn. The numerical in-

| tegra.tion formulas used are listed in ref. 8. If the plate is assume’ to be

rigid in transverse shear, the matrices [B ] and [B ] are null and the last
four terms of equation (26) vanish.

Consistent Mass Matrix

It can be shown that the generalized consistent mass matrix is (ref. 8)

[M]gen = pt [/ [c]T [C] dx dy (27)
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where [C] = [l x ¥ x2 Xy y2 ..... y 1.

The mass matrix can be transformed to element co-ordinates and global
co-ordinates by the same transformations as those used for stiffness matrix.
Thus,

(517 (M1 [S] (28)

gen

M1

T

L]

1, = (T,)° (], (7] (29)

2 2

where the subscripts e and g on [M] stand for element and global system,
respectively.
Consistent Load Vector

It can be shown that the generalized consistent load vector is, (ref. 8)

[P g, = /Y (01T q dax day (30)

where q 1s the distributed loading.

The consistent load vectn 1 now be transformed to element and glebal
co~ordinates by

_ T
[Pl, = (81" (P] (31)
(vl = 1" [P, (32)

THE QUADRILATERAL PLATE ELEMENT

The quadrilateral element is formed from four of the triangular elements
Just described. Two arrangements of the guadrilateral element are shown in
Figures 3(a) and 3(b).

The quadrilateral element has eight grid points on its edges. 1In the
arrangement of the quadrilateral element shown in Figure 3(a), which will be
designated as QUADL, the guadrilateral is divided, first into 2 triangles by
one diagonal and then again into 2 more triangies by the other diagonal. 1In

L6k
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each case one additional grid point, at the mid-point of the diagonal, is intro-
duced; the stiffness, mass and load matrices of the triangles are evaluated and
added and the terms associated with the internal grid point are eliminated by
static condensation. The stiffness, mass and load matrices of the quadrilateral
element are obtained by adding one-half the contribution of each case. In the
arrangement of the quadrilateral element shown in Fig. 3(b), designated as
QUADS, five additional grid points are introduced internally so that the quad-
rilateral is divided into four triangular elements. The eight grid voints on
the edges are numbered 1 to 8. Grid point 9 is located at the intersection

of lines joining mid-points of opposite edges. Grid points 10 to 13 are
located at the middle of the lines joining grid point 9 to each of the corners
of the quadrilateral. The stiffness, mass and load matrices of the triangular
elements are evaluated, as described previously, and added by the direct stiff-
ness technique to form the respective matrirec [or the quadrilateral. The
internal grid points are then eliminated by static condensation.

P ey o~ eem

—a

justed to lie in a median plane. The median plane is selected to be parallel
to, and midway between, the diagonals of the guadrilateral. The adjusted quad-
rilateral is the normal projection of the given quadrilateral on the median
plane. The short line segments joining the corners of the original and pro-
jected quadrilateral elements are assumed to be rigid in bending and extension.
The guadrilateral element and its projection cnto the median plane is shown in

Fig. 3(c).

In a preliminary operation, the grid points of the quadrilateral are ad-

P TN

FORMULATION AND SOLUTION OF EQUATIONS

The global stiffness matrices, load vectors, and mass matrices for the
complete structure modeled by these elements are assembled from the correspond-
ing matrices of the individual elements by standard methods (ref. 6) to
form the matrix equation

(k)] {u} = {p} (33)

2]

»
it presents no difficulty to specify the appropriate geometric boundary
conditions at any irregular and/or complex boundary. After the boundary
condiiions are applied, the matrix equation (33) is solved by Gaussian
eliminetion to obtain the global displacement vector {U}.

DISCUSSION OF RESULTS

The triangular and quadrilateral elements are used to solve two problems

in statics and dAynamics of thin isotropic plates. Only the results for the

simpl

e
i
supported plate are presented here; the interested reader may consult
ref. £

Yy
8 for details. The problem analyzed is that of the statics and dynamics

T T A R S

et Al

. ll!
' ' Because the d.o.f. at grid points consist of displacements and rotation
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of e squarc plate with edges simply supported. All calculations were carried
out on the CDC 6400/6600 series of computers with SCOPE operating system of
the Langley Research Center. Single precision arithmetic was used throughout.
A value of Poisson's ratio of 0.0 is used in all problems. It is mentioned
in this context that other finite-element analyses in the literature use 0.3
as the value of Poisson's ratio.

Static Analysis of a Square Plate

The arrangement of the finite elements in a quarter of the square plate
is shown in Fig. 4. The number of subdivisions of the edge of the square is
denoted by N. Due to symmetry, only one-quarter of the plate is analyzed.
The calculated values of the deflection at the center of the simply supported
plate are given in Table 1 and compared with the exact solution given by
Timoshenko (ref. 9). These values together with other known finite element
analyses available in the literature (refs. 3, 4, 5 and 10) are also compared
in Figu{es 5 and € in plots of deflection versus mesh size using & linear scale
for N-+.

As seen from table 1, the "Q" arrangement is found to give better results
than the "P" arrangement for the uniformly distributed loading; however, the
"P" arrangement is found to be better, in general, for concentrated loads. For
the clemped plate, the "P" arrangements are found to be slightly better than
the "Q" arrangements, as noted from ref. 8. For the quadrilateral element,
QUAD1 is found to be superior to QUADS.

The high accuracy achieved with the present elements (triangular and
quadrilateral), even for the coarsest mesh, is evident from Table 1 and
Figures 5 and 6 for the simply supported plate. In the case of the clamped
plate, the results for the coarsest grid are not as accurate as in the case of
the simply supported plate (ref. 8); however, as the element size is decreaced
the values of deflection obtained with the present elements approach very
rapidly the exact results.

Free Vibration of a Square Plate

The natural frequencies of a simply supported square plate wer. letermined
using the triangular and quadrilateral elements. The non-dimensional eigen-
values are

A = ptaPI/D (34)

mass density

©
ft

t
]

thickness of plate

€
"

circular frequency

466




S R I

~a e

B PP S ngenatie 5 o Gpgra

L = length of side of square plate

i

D = Et5/12(1 - v2), the flexural rigidity of the plate.

1}

The exact eigenvalues for the simply supported plate are given by

A= (22 + 89)2 o (25)

" where r and s refer to the number of half-waves parallel to the edge directions.

—omen e e

The lowest 6 values obtained using the present elements and the exact
results are shown in Table 2. The eigenvalue problems were solved using a
Jacobi routine that produced the complete set of eigenvalues and eigenvectors.
Consistent mass matrix was used for treatment of inertia. It is seen that the
lowest eigenvalue is calculated to within I% of exact result. Good agreement
is noticed for higher eigenvalues as well.

THE TR-18 FAMILY OF ELEMENTS

A number of finite element formulations for doubly curved shells are
presently available, the notable among them being the works of Ahmad, Irons
and Zienkiewicz (Ref. 11), Bonnes, Dhatt, Giroux, and Robichand (Ref. 12),
Strickland and Loden (Ref. 13), Key and Beisinger (Ref. 14), Dhatt (Ref. 15),
and Olson and Lindberg (Ref. 16). Some of these have neglected transverse
shear deformacions whereas some others use sub-triangles and/or second and
higher order derivatives of the displacements of the element as degrees of
freedom, thus complicating the formulation. A need still exists for an
accurate shell element that has only translations and rotations as d.o.f.

Such shell elements can be derived using the TR-18 plate element; the
formulation presented here is simple and includes transverse shear deforma-
tions; it is based on the linear shear deformation theory of thin shells as
given by Washizu (Ref. 1T).

Using shallow shell theory, flat plate elements can be easily converted
to curved shell elements. The linear strain triangular membrane element,
known as TRIM6 in the literature, can be combined with the TR-18 plate element
to develop a doubly curved shallow shell triangular element. The surface of
the shell will be approximated by a quadratic polynomial of the position
coordinates of the base triangle. By a procedure analogous to that discussed
for the quadrilaterul plate element, a quadrilateral shallow shell element
can be developed. Multilayered plates, and plates with coupled membrane and
bending deformations, can be designed using TR-18 plate elements.
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Curved Triangular Shell Flement

Fig. 7 shows a differential element dA on the middle surface of the
doubly curved shell with orthogonal curvilinear surface co-ordinates gl, E?,
g3. A right handed cartesian co-or ce system X, Y, Z 1s also shown.

In Fig. 8 and Fig. 9 the curved triangular shell element is shown in basic and
local coordinate systems. The differential surface element is expressed as

dA = o) a, dgl d£2 (36)

where o and a, are the Lamé parameters.

If the surface z{x,y) of an element is shallow, the following relations
are valid

(z,x)g <1 (2,y)° <1 |2, x2,y] <1 (37)
where
_ 92 _ 9z
Z,x T 3x 2,y " oy

The set of orthogonal curvilinear co-ordinates (El, 52, 53) over the surface

of the shallow element dA can be replaced by a set of shallow cartesian
co-ordinates (x,y,z) where

£, =x £, =V (38)
and Lamé parameters a, =0, ~1 (39)
From eq. (36), (38) and (39), dA = dx dy (k0)

The curvatures of the shallow element can then be approximated by

1
-R—l—l- = -7‘,)0( (hl)
1
iR (k2)
468
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- wWhore YO is the vector from the origin of trz: basic co-crdinate system to

ZOJ

the origin of the local co-ordinate system. The distances XO’ YO, :O are
not involved in the calculation of the stiffness matrix of the element since
nnly the differences of co-ordinates are used; hence they are discarded. The

inversion of equation (kL) yields

M1t M
Mo R Ay Y (45)
by

) L3 a3 33 Y

< X
1}

G g

It may be seen that All’ A21 and A31 are components in X, Y and 2

directions of a unit vector along the x direction; and so on for Al?’ X13, ete.
An analytical description of the surface of the element suitable for
application of shallow shell theory is obtained by assuming that the elevation

of the shell middle surface may be expressed as a quadratic polynomial in the
local co-ordinates of the element, i.e.,

2
z(x,y) = fl + fax + f3y + fhx2 + fsxy + f6y (46)
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This implies that the shell element has constant curvatures and is consistent
with the approximations of shallow shell theory. Xnowing the co-ordinates
X, ¥, z of the six points of the triangular -lement, the constants f to

1
f6 can be evaluated.

Symbolically

(z} = 191 (1) (47)

or

(2} = 1017 {2} (48)

where [QI] is a 6 x 6 matrix of the co-ordinates of the six points of the
element substituted into equation {4G).

Degrees of freedom and assumed displacement function.- The element has 30
degrees of freedom (d.o.f.), with 5 d.o.f. per grid point. These are the
three translations u. v, w in the x, y, and 2z directions and the rota-
tions of the xz and yz @planes, o and B. The displacements u, v, w
are positive in the positive co-ordinate directions; the slopes are positive
when they cause compression at the top of the surface. The u and v d.o.f.

ars assumed *o vary cver the element by a full quadratic polynomial of local
co-ordinaten, as follows:

u = a, + 8,% + a3y + ahx2 + &5xy + a6y2 (49)

2 2
\/ —. aT + 8.8)( + a9y + alox + allxy + 812y (50)

The deflection w will be defined by a quintic polynomial as in equation (6).

The coefficients a; to ay; of equation (6) will be renumbered a13 to as3 .
respectively. The 33 coefficients a; to azz can be uniquely determined
from the 30 d.o.f. of the shell element (5 d.o.f. each at six grid points)
together with the 3 constraint equaticus (8), (9), and (10).

Strain-displacement relations.~ The expressions for transverse shear
strains and bending strains for the curved shell element are the same as those
for the TR-18 element (eqs. (7) and (13)). The membrane strains are
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e, T e =W T3 (51)
y 9y ay2
2
= du  3v J 2
exy T 3y * ax 2w axay J

Stiffness matrix.- The stiffness matrix can be evaluated by the standard
procedures (ref. 6). The elemeni can then be tested against other elements
(refs. 11 to 16) for suitebility as well as accuracy. At the time of writing
of this paper, the calculations for the element have not been complzted.

Curved Quadrilateral Shell Element

A curved quadrilateral shell element can be constructed from the curved
triangular shell elements by a procedure analogous to that of the construction
of the quadrilateral plate element from the TR-18 element.

Plates With iiembrane-Bending Coupling

Plates with coupled membrane and bending deformations and multilayered
plates (fig. 10) can be analyzed by means of the elements presented earlier
herein. Muitilayered plates will produce coupling between membrane and
bending deformations when the plate is not symmetrical with respect to its
middle surface. A general form of the coupled stress-strain relationship

can be expressed as

where

r' r r
{FQ (A} §)) 0 i {smﬂ

ﬁ{m}% B’ o | ) (52) .
v} 0 0 tofe] | | (v}

L J L . . é

{F} is a vector of membrane force components Fx’ Fy’ ny
{¥} is a vector of bending and twisting moments M s My, Mxy
{v] is a vector of transverse shear components V_, Vy
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{Em} is a vector of membrane strain components Ex, €, €
X

Yy J

{x} is

®

vector of curvatures ( X
an Xy9 Axy

{y} is a vector of average transverse shear strain Yx’ Y

N
is b 3 i H -t
[A} is a 3 x 3 matrix, Z: [Ce] (tk tk-l)

Yy

k=1
N (2 2
[2] is a 3 x 3 matrix, Z [c,] _1'(_._.2_5:_1
k=1
: . gly‘ ti " ti-l
[D] is a 3 x 3 matrix, ;;l [c,1 3

[G) is a 2 x 2 transverse shear matrix
[Ge] is a 3 x 3 matrix of elastic coefficients

t. is the distance to the outer edge of plate (or layer in a multilayer
plate) from reference surface

t is the distance to the inner edge of plate (or layer in a multilayered
plate) from referencz surface

t* is un cffective thickness for the element

The inplane strain vector at any point is
e} = {e } -2 {x} (53)

where 2z 1is the distance from the reference surface. The strain energy of the
plate element is

U= %f [{F}T{em} + Ty + (VITy)1aa (5h)

whese the integration is carried out over the surface of the element. The
stif'fness matrix for the triangular and quadrilateral elements can be
evaluated by the usual procedures (refs. 6 and 8).

CONCLUDING REMARKS

New triangular elements and associated quadrileteral elements for plate
and shell analysis having oniy displacement and rotetions as grid point
degrees of freedom are described in this paper. The examples presented ror
plate elements demonstrate that high accuracy is achievable using these
elements for practical subdivisions.
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The effect of transverse shear deformations is included in the elcment
formulation. Transverse shear strains vary quadratically within the element;
convergence to the limiting case of zero transverse shear strain is uniform.
The present elements are expected to give better approximations than most
displacement model plate bending elements for solving problems where trans-
verse shear effects are significant.

Finally, it is remarked that these elements are ideally suited for

1‘ inclusion into general purpose computer programs due to (i) simplicity of

formulation, (ii) use of only displacemznts and rotations as grid point

7@ degrees of freedom, (iii) high accuracy for practical mesh subdivisions and

{iv) inclusion of transverse shear flexibility in the element properties.
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W05, Y5) - MATERIAL ORIENTATION

. AXIS
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(3283, vy)

Z Figure 1.- Geometry of triangular element.
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Figure 2.- Sign convention for moments and shears.
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CASE1 ‘ CASE 2

Figure 3(a).- Quadrilateral element (QUADL) geometry.

3

Figure 3(b).- Quadrilateral element (QUAD5) geometry.
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Figure 3{c).- Median plane for quadrilateral element.
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Figure 4.- Finite element idealization of square plate.
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g Notation Element Refarence
C Bk Shape
5;{,
" T (Q-mesh) | Precent paper
- B P T (P-mesh) | Present paper
&, QA Q Present paper
T E 55] Q Present paper
: ? ACM R 1
e HCT T 1
/ Z T 2
: %% TUBA~6 T 3
< B-2 T (T-18) 4,10
3 B-3 T (T-21) L,10
. - C-N T (Q-mesh) 5
¢ c-p T (P-mesh) 5
& N Q 7
¢ CFQ Q 9
T ~ Triangular; Q - Quadrilateral;
R = Rectangular

PEFF TR

. .
-

T T e s RN A 1y

et s & s v

S ——— e e

130« \
12.0
COEFFICIENT FOR
CENTRAL DEFLECTION,
1000 w,D/PL?
11.0
p /
CFQ,” HCT/
/ /
/ /
10.0 ya L ] | { 0 | J
2 6 8 1216 o

4
NUMBER OF ELEMENTS PER SIDE, N

Figure 5.- Simply supported square plate: central deflection w,
under central point load P.
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Notation Element Reference
Shape
-—
N T (Q-mesh) | Present paper
P T (P-mesh) | Present paper
QU Q Present paper
Q5 Q Present paper
ACM R 1
HCT T 1
2 T 2
TUBA-6 T 3
B~1 T (T-15) b
B~2 T (7-18) 4,10
B-3 T {T-21) 4,10
C~N T (Q-mesh) 5
c-P T (P-mesh) 5
NQ Q 7
CFQ Q 9
7 - Triangular; Q - Quadrilateral;
R = Rectangular

COEFFICIENT FCR
CENTRAL DEFLECTION, /
1000 w_blq 14 391 7 /7 ’
¢ rere acM/ N JHer
/7, /
3.8 / 7 /
/ /
// ’/
3.7 )/ ,’ /
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!/ ,’
3.6 ,’ / '] ) 1 1 J
2 8§ 1216 <

Figure 6.- Simply supported square plate:
under uniformly distributed load Q-
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Figure 7.- Differential element.
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Figure 8.- Curved triangular shell element in basic co-ordinate system.
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Figure 10.- Multiiayered plate geometry.



