

NEW PLAT AND SHELL ELEMENTS FOR NALTRAN
By R. Narayanaswami*
NASA Langley Research Center

SUMMARY

A new higher order triangular plate-bending finite element is presented in this paper which possesses high accuracy for practical mesh subdivisions and which uses only translations and rotations as grid point degrees of freedom. The element has 18 degrees of freedom (d.o.f.), viz., the transverse displecement and two rotations at the vertices and mid-side grid points o: the triangle. The transverse displacement within the element is approximated by a quintic polynomial; the bending strains thus vary cubically within the element. Transverse shear flexibility is.taken into account in the stiffness formulation. Two examples of static and dynamic analysis are included to show the behavior of the element. Excellent accuracy is achieved in all cases.

This element, designated as $\mathrm{TR}-18$, is demonstrated to be an ideal candidate for generation of a family of plate and shell elements for inclusion into NASTRAN. The following elements are specifically mentioned in this context, viz., (i) triangular plate element, (ii) quadrilateral plate element, (iii) curved triangular shell element, (iv) curved quadrilateral shell element and (v) plates with membrane-bending coupling and muililayered plates. The present paper describes the detailed theoretical derivations for the aforementioned elements. In addition, the behavior of the TR-18 element and associated quadrilateral plate element is illustrated by two sample problems. Comparisons with existing elements in the literature and the present NASTRAN quadrilateral elements are shown.

INTRODUCTION

NASTRAN presently (Level 15.5) has, in all, a total of nine different forms of plate elements in two different shapes (triangular and quadrilateral). The present NASTRAN basic bending element, TRBSC, the basic unit from which the bending properties of the other plate elements are formed, uses a cubic displacement field (with the $x^{2} y$ term omitted). This constrains the normal slope (on the exterior edges of the TRPLT bending element) to vary linearly, which in turn makes the element overly stiff. A need thus exists for a more accurate plate bending element for NASTRAN.

A brief review of some of the more important plate bending elements is now made. Formulations of triangular plate bending finite elements were given as long ago as 1966 by Clough and Tocher (ref. I) and by Bazeley et al. (ref. 2). The conforming elements presented therein allow only a linear variation of slope normal to an edge and have since been found to be overly

[^0]stiff, whereas the nonconforming element given in ref. 2 uses a cubic polynomial for transverse displacement and is not of very high accuracy. Improvements to these elements have been made by using higher degree polynomials for transverse displacements; indeed elements of very high accuracy have been reported by Argyris (ref. 3), Bell (ref. 4) and Cowper et al. (ref. 5) using quintic polynomials for the displacements field. But these elements have strains, curvatures and/or higher order derivatives of displacements as grid point degrees of freedom (d.o.f.) which lead to an inconsistency when abrupt thickness or material property variation occur:. That is to say that the continuity of strains and curvatures implied by their use as degrees of freedom at grid points is violated wherever concentrated loads, changes in slope, changes in thickness, or connections to other structures occur. In short, the proper use of elements that assume continuity of strains and curvatures is restricted to regions where discontinuities do not occur. Further, the existence of higher order derivatives makes it difficult to impose boundary conditions on these and indeed the simple interpretation of energy derivatives as "nodal forces" disappears (ref. 6). Bell has also developed another element in ref. 4 , designated $T-15$ by him, which has only displacements and rotations as degrees of frcedom. But it has a major drawback in that not all grid points of the element have the same a.o.f.; consequently, it becomes difficult, if not impossible, to consider connections of this element with other finite elements. Thus the practical use of the $T-15$ element in general purpose programs is severely limited.

A need still exists to develop a new accurate plate bending finite element that has the advanlages of the accuracy associated with a high order displacement polynomia: but does not have the disadvantages discussed above and is therefore suitable for inclusion in general purpose computer programs like NASTRAN.

In this paper, a triangular element and an associated quadrilateral element are developed that use only displacements and rotations as grid point degrees of freedom and use a quintic polynomial for lateral displacement. The quadrilateral element is formed by four triangular elements. The stiffness, consistent mass and load matrices of the separate triangles are evaluated and added by the direct stiffness technique to form the respective matrices for the quadrilateral. The terms associated with the internal grid points are then eliminated by static condensation. None of the elements discussed in referencen l to 5 possess the property of transverse shear flexibility. This has been taken into account in the present paper by a procedure based on that used in NASTRAN (ref. 7).* The components of transvers shear strain are quadratic functions of position. Convergence to the limiting. case of zero transverse shear strain is uniform.

In addition, three elements, viz., (i) a curved triangular shell element, (ii) a curved quadrilateral shell element, and (iii) a multilayered plate element can be derived from the TR-18 element. Together with the quadrileteral plate element, these elements constitute the TR-18 family of elements.
*A similar procedure for incorporation of transverse shear flexibility into a quartic element was communicated to the author by Dr. R. H. MacNeal of MacNeal-Schwendler Corporation.

In this section of the paper, the derivation of the stiffness matrix, consistent load vector and consistent mass matrix of the triangular plate element is given. The procedure for the derivation is described in detail in reference 3 , and hence only essential details arc presented here.

The element has 18 d.o.f., the transverse displacement and 2 rotations at each vertex and at the mid-point of each side. Three additional conditions are introduced, viz., the slope normal to each edge (hereinafter cailed normal slove) varies cubically along each edge. This establishes 3 constraint equation between the coefficients of the polynomial for displacemerts, which, together wi the 18 d.o.f., uniquely determine the 21 coefficients in the quintic polynomial. The variation of deflection along any edge is a quintic polynomial in the edgewise co-ordinate; the six coefficients of this polynomial are uniquoly determined by deflection and edgewise slope at the 3 grid points of the edge. Displacements are thus continuous between two elements that have a common edfe. The normal slope along each edge is consurained to vary cubically; however, since the norma. slopes are defined only at 3 points along an edge, there is no normal slope continuity between 2 elements that have a common edge. The element thus belongs to the class of non-conforming eiements. The development of this element follows closely that of Cowper et al. (rof. 5).

Element Geometry

Rectangular cartesian co-ordinates are used in the formulation. An arbitrary triangular element is shown in figure 1 , where X, Y, and Z are a system of global co-ordinates and x, y, z are the system of local coordinates for the triangular element. The grid points of the element are numbered in counterclockwise direction as show. The following relationship between the dimensions of the triangular element a, b, c, the inclination θ between the X and x axes and the co-ordinates of the vertices of the element can be easily derived (see fig. 1):
where

$$
\begin{align*}
& \cos \theta=\left(X_{3}-X_{1}\right) / r \quad \sin \theta=\left(Y_{3}-Y_{1}\right) / r \tag{1}\\
& r=\left\{\left(X_{3}-X_{1}\right)^{2}+\left(Y_{3}-Y_{1}\right)^{2}\right\}^{1 / 2} \tag{2}\\
& a=\left(X_{3}-X_{5}\right) \cos \theta-\left(Y_{5}-Y_{3}\right) \sin \theta \\
&=\left\{\left(X_{3}-X_{5}\right)\left(X_{3}-X_{1}\right)+\left(Y_{3}-Y_{5}\right)\left(Y_{3}-Y_{1}\right)\right\} / r \tag{3}
\end{align*}
$$

$$
\begin{align*}
& b=\left\{\left(X_{5}-X_{1}\right)\left(X_{3}-X_{1}\right)+\left(Y_{5}-Y_{1}\right)\left(Y_{3}-Y_{1}\right)\right\} / r \tag{4}\\
& c=\left\{\left(X_{3}-X_{1}\right)\left(Y_{5}-Y_{1}\right)-\left(Y_{3}-Y_{1}\right)\left(X_{5}-X_{1}\right)\right\} / r \tag{5}
\end{align*}
$$

Displacenent Function

The deflection $w(x, \because)$ within the triangular element is assumed to vary as a quintic polyromial in the local co-ordinates, i.e.,

$$
\begin{align*}
w(x, y)= & a_{1}+a_{2} x+a_{3} y+a_{4} x^{?}+a_{5} x y+a_{6} y^{2}+a_{7} x^{3}+ \\
& a_{8} x^{2} y+a_{9} x y^{2}+a_{10} y^{3}+a_{11} x^{4}+a_{12} x^{3} y+a_{13} x^{2} y^{2}+ \\
& a_{14} x y^{3}+a_{15} y^{4}+a_{16} x^{5}+a_{17} x^{1}+a_{18} x^{3} y^{2}+a_{19} x^{2} y^{3}+ \\
& a_{20} x y^{4}+a_{21} y^{5} \tag{6}
\end{align*}
$$

There are 21 constants, a_{1} to a_{21}. These are evaluated as follows:
The eierent has 18 d.o.t. At each gria point there are 3 displacement components as d.o.f., viz., w, displacement in z-direction, a, rotation abust the x-axis and B, rotation about y-axis. The rotations α and B are obtained from the definitions of transverse shear strains $\gamma_{x z}$ and $\gamma_{y z}$, i.e.,

$$
\left.\begin{array}{l}
\gamma_{x z}=\frac{\partial w}{\partial x}+\beta \tag{7}\\
\gamma_{y z}=\frac{\partial w}{\partial y}-\alpha
\end{array}\right\}
$$

It can be show (ref. 8) that $Y_{x z}$ and $Y_{y z}$, and hence α and β, at any grid point can be expresred in terms of the constants a_{1} to a_{21}. Thus 18 relations between grid point displacement values and the constants are obtained. Three constraints among the coefficients in the above polynominl (eq. (6)) are now introduced so that the normal slope varies cubically along each edge. It is clear that the thr se constraint equations will involve only the coefficients of the fifth degree terms in equa.ion (6), since the lover degree terms satisfy the condition of cubic normal slope automatically. Moreover the con-
ditions depend only on the direction of an edege and not on its position. Alonp the edge defined by grid points 1 and 3 , where $y=0$, the condition of cubjc normal slope requires that

$$
\begin{equation*}
a_{17}=0 \tag{8}
\end{equation*}
$$

It can be shown (ref. 8) that the condition for cubic variation of normal slope alonic edge $1-5$ is
$5 b^{4} c a_{16}+\left(4 b^{3} c^{2}-b^{5}\right) a_{17}+\left(3 b^{2} c^{3}-2 b^{4} c\right) a_{18}+\left(2 b c^{4}-3 b^{3} c^{2}\right) a_{19}+$
$\left(c^{5}-4 b^{2} c^{3}\right) a_{20}-5 b c^{4} a_{21}=0$
and the condition for cubic variation of the normal slope along the edgo 3-5 (see fig. l) is
$5 a^{4} c a_{16}+\left(-4 a^{3} c^{2}+a^{5}\right) a_{17}+\left(3 a^{2} c^{3}-2 a^{4} c\right) a_{18}+\left(-2 a c^{4}+3 a^{3} c^{2}\right) a_{19}+$
$\left(c^{5}-4 a^{2} c^{3}\right) a_{20}+5 a c^{4} a_{21}=0$

The 18 relations between grid point displacements (w, α and B at eash of the six gris points) and the coefficients of the polynorial, together with the three constraint equations (8), (9), and (10!, uniquely determine the coefficients a_{1} to a_{21}. The following equations can therefore be written:

$$
\begin{equation*}
\{\delta\}=[Q]\{a\} \tag{11}
\end{equation*}
$$

and
$\{\mathrm{a}\}=\{\mathrm{S}]\{\delta\}$
where [Q] is the 18×21 matrix involoing the co-ordinates of grid points substituted into the function w (eq. (6)) and the eppropriate expressions of a and $B ;\{a\}$ is the column vector of coefficients a_{1} to a_{21}, and [S] is a 21×18 matrix and consists of the first 18 colums of the inverse of an augmented matrix of $[Q]$ and the three constraint equations (\mathcal{S}), (9), and (10).

Stiffness Matrix

The following relationships are obtained from the theory of deformation for plates (ref. 9). In the presert notation, the curvatures are defined by 460

$$
\left\{\begin{array}{c}
x_{x} \tag{13}\\
x_{y} \\
x_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
-\frac{\partial \beta}{\partial x} \\
\frac{\partial \alpha}{\partial y} \\
\frac{\partial \alpha}{\partial x}-\frac{\partial \beta}{\partial y}
\end{array}\right\}
$$

3ending and twisting moments are related to curvatures by

$$
\left\{\begin{array}{c}
m_{x} \tag{14}\\
m_{y} \\
m_{x y}
\end{array}\right\}=[D]\left\{\begin{array}{l}
x_{x} \\
x_{y} \\
x_{x y}
\end{array}\right\}
$$

where [D] is, in general, a full symmetric matrix of elastic coefficients.
Shear forces (and hence shear strains) are proportional to the third Werivatives of the displacements. Since the displacement within the element is assumed to vary as a quintic polynomial, shear strains are expressed by a quadratic polynomial as follows:

$$
\left.\begin{array}{l}
r_{x}=b_{1}+b_{2} x+b_{3} y+b_{4} x^{2}+b_{5} x y+b_{6} y^{2} \tag{15}\\
r_{y}=c_{1}+c_{2} x+c_{3} y+c_{4} x^{2}+c_{5} x y+c_{6} y^{2}
\end{array}\right\}
$$

The shear forces ${ }^{\prime} x$, V_{y} are related to γ_{x}, γ_{y} by

$$
\left\{\begin{array}{c}
v_{x} \tag{16}\\
v_{y}
\end{array}\right\}=t^{*}[G]\left\{\begin{array}{l}
r_{x} \\
r_{y}
\end{array}\right\}
$$

where G is in general a full 2×2 symmetric matrix and t^{*} is an effective thickness of the element.

It can be shown that b_{1} to b_{6} and c_{1} to c_{6} can be expressed in terms of the coefficients a_{1} to a_{21} (ref. 8) and hence $\left\{\begin{array}{l}\gamma_{x z} \\ \gamma_{y z}\end{array}\right\}$ can be
expressed as

$$
\begin{equation*}
\{\gamma\}=\left[B_{1}\right]\{a\} \tag{17}
\end{equation*}
$$

where $\left[B_{1}\right]$ is as given in reference 8. The curvature $\{v\}$ is now split into 2 parts, i.e.,

$$
\begin{equation*}
\{x\}=\left\{x_{1}\right\}+\left\{x_{2}\right\} \tag{18}
\end{equation*}
$$

where

$$
\left\{x_{1}\right\}=\left\{\begin{array}{c}
\frac{\partial^{2} w}{\partial x^{2}} \tag{19}\\
\frac{\partial^{\prime} w}{\partial y^{2}} \\
2 \frac{\partial^{2} w}{\partial x \partial y}
\end{array}\right\} \quad\left\{x_{2}\right\}=\left\{\begin{array}{c}
-\frac{\partial \gamma_{x z}}{\partial x} \\
-\frac{\partial \gamma_{y z}}{\partial y} \\
\frac{\partial \gamma_{x z}}{\partial y}-\frac{\partial \gamma_{y z}}{\partial x}
\end{array}\right\}
$$

It follows that $\left\{x_{1}\right\}$ is the vector of curvatures in the absence of transverse shear and $\left\{\chi_{2}\right\}$ is the contribution of transverse shear to the vector of curvatures. Now $\left\{x_{1}\right\}$ and $\left\{x_{2}\right\}$ are expressed in terms of generalized co-ordinates \{a\} as

$$
\begin{equation*}
\left\{x_{1}\right\}=\left[B_{2}\right]\{a\} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{x_{2}\right\}=\left\{B_{3}\right]\{a\} \tag{21}
\end{equation*}
$$

where $\left[B_{2}\right]$ and $\left[B_{3}\right]$ are given in reference 8. Thus,

$$
\begin{equation*}
\{x\}=\left\{x_{1}\right\}+\left\{x_{2}\right\}=\left(\left[B_{2}\right]+\left[B_{3}\right]\right)\{a\} \tag{22}
\end{equation*}
$$

The gereralized stiffress matrix can be obtained as (ref. 8):
$[K]_{\operatorname{gen}}=\iint\left\{\left(\left[D_{2}\right]+\left[B_{3}\right]\right)^{T}[D]\left(\left[B_{2}\right]+\left[B_{3}\right]\right)+\left[B_{1}\right]^{T}[C]\left[B_{1}\right]\right\} d x d y$

462

The element stiffness matrix in the local co-ordinate system, $[K]$, is, by virtue of equation (12),

$$
\begin{equation*}
[K]_{e}=[S]^{T}[K]_{\text {gen }}[S] \tag{24}
\end{equation*}
$$

The element stiffness matrix in the global co-ordinate system, $[\mathrm{K}] \mathrm{g}$, is

$$
\begin{equation*}
[\mathrm{K}]_{\mathrm{g}}=\left[\mathrm{T}_{2}\right]^{\mathrm{T}}[\mathrm{~K}]_{\mathrm{e}}\left[\mathrm{~T}_{2}\right] \tag{25}
\end{equation*}
$$

where $\left[\mathrm{T}_{2}\right]$ is the transformation matrix of displacenent vectors from global to local co-ordinates of element.

The evaluation of the elements of the generalized stiffness matrix, [K]gen of equation (23), in closed form is, though straightforward, very tedious. This is due to the lengthy expressions involved in the triple matrix products. The integration involved in equation (23) is now split into 5 integrals as follows:

$$
\begin{align*}
{[K]_{\text {gen }}=} & \iint\left[B_{2}\right]^{T}[D]\left[B_{2}\right] d x \text { ay } \\
& +\iint\left[B_{2}\right]^{T}[D]\left[B_{3}\right] d x d y+\iint\left[B_{3}\right]^{T}[D]\left[B_{2}\right] d x d y \\
& +\iint\left[B_{3}\right]^{T}[D]\left[B_{3}\right] d x d y+\iint\left[B_{1}\right]^{T}[G]\left[B_{1}\right] d x d y \tag{26}
\end{align*}
$$

The first term $\iint\left[B_{2}\right]^{T}[D]\left[B_{2}\right] d x$ dy is evaluated in closed form; the olher four terms are evaluater using numerical integration. The numerical integration formulas used are listed in ref. 8. If the plate is assumed to be rigid in transverse shear, the matrices $\left[B_{1}\right]$ and $\left[B_{3}\right]$ are null and the last four terms of equation (26) vanish.

Consistent Mass Matrix

It can be shown that the generalized consistent mass matrix is (ref. 8)

$$
\begin{equation*}
[M]_{g e n}=\rho t \iint[C]^{T}[C] d x d y \tag{27}
\end{equation*}
$$

where $[C]=\left[\begin{array}{lllll}1 & x & y & x^{2} & x y \\ y^{2} & \ldots & y^{5}\end{array}\right]$.
The mass matrix can be transformed to element co-ordinates and global co-ordinates by the same transformations as those used for stiffness matrix. Thus,

$$
\begin{equation*}
[M]_{e}=[S]^{T}[M]_{\operatorname{gen}}[S] \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
[\mathrm{M}]_{\mathrm{g}}=\left[\mathrm{T}_{2}\right]^{T}[\mathrm{M}]_{e}\left[\mathrm{~T}_{2}\right] \tag{29}
\end{equation*}
$$

where the subscripts e and g on [M] stand for element and global system, respectively.

Consistent Load Vector
It can be shown that the generalized consistent load vector is, (ref. 8)

$$
\begin{equation*}
[P]_{\text {gen }}=\iint[C]^{T} q d x d y \tag{30}
\end{equation*}
$$

where q is the distributed loading.
The consistent load vectr, n now be transformed to element and globel co-ordinates by

$$
\begin{align*}
& {[P]_{e}=[S]^{T}[P]_{g e n}} \tag{31}\\
& {[P]_{g}=\left[L_{2}\right]^{T}[P]_{e}} \tag{32}
\end{align*}
$$

THE QUADRILATERAL PLATE ELEMENT

The quadrilateral element is formed from four of the triangular elements just described. Two arrangements of the quadrilateral element are shown in Figures $3(a)$ and $3(b)$.

The quadrilateral element has eight grid points on its edges. In the arrangement of the quadrilateral element shown in Figure 3(a), which will be designated as QUADl, the quadrilateral is divided, first into 2 triangles by one diagonal and then again into 2 more triangies by the other diagonal. In

46;:
each case one additional grid point, at the mid-point of the diagonal, is introduced; the stiffness, mass and load matrices of the triangles are evaluated and added and the terms associated with the internal grid point are eliminated by static condensation. The stiffness, mass and load matrices of the quadrilateral element are obtained by adding one-half the contribution of each case. In the arrangement of the quadrilateral element shown in Fig. 3(v), designated as QUAD5, five additional grid points are introduced internally so that the quadrilateral is divided into four triangular elements. The eight grid points on the edges are numbered 1 to 8 . Grid point 9 is located at the intersection of lines joining mid-points of opposite edges. Grid points 10 to 13 are located at the middle of the lines joining grid point 9 to each of the corners of the quadrilateral. The stiffness, mass and load matrices of the triangular elements are evaluated, as described previously, and added by the direct stiffness technique to form the respective matrires for the quadrilateral. The internal grid points are then eliminated by static condensation.

In a preliminary operation, the grid points of the quadrilateral are adjusted to lie in a median plane. The median plane is selected to be parallel to, and midway between, the diagonals of the quadrilateral. The adjusted quadrilateral is the normal projection of the given quadrilateral on the median plane. The short line segments joining the corners of the original and projected quadrilateral elements are assumed to be rigid in bending and extension. The quadrilateral element and its projection ento the median plane is shown in Fig. 3(c).

FORMULATION AND SOLUTION OF EQUATIONS

The global stiffness matrices, load vectors, and mass matrices for the complete structure modeled by these elements are assembled from the corresponding matrices of the individual elements by standard methods (ref. 6) to form the matrix equation

$$
\begin{equation*}
[K]\{U\}=\{P\} \tag{33}
\end{equation*}
$$

Because the d.o.f. at grid points consist of dispiacements and rotations, it presents no difficulty to specify the appropriate geometric boundary conditions at any irregular ana/or complex boundary. After the boundary conditions are applied, the matrix equation (33) is solved by Gaussian elimination to obtain the global displacement vector $\{U\}$.

DISCUSSION OF RESULTS

The triangular and quadrilateral elements are used to solve two problems in staties and dymamics of thin isotropic plates. Only the results for the simply supported plate are presented here; the interested reader may consult ref. 8 for details. The problem analyzed is that of the statics and dynamics
of a square plate with edges simply supported. All calculations were carried out on the CDC 6400/6600 series of computers with SCOPE operating system of the Langley Research Center. Single precision arithmetic was used vhroughout. A value of Poisson's ratio of 0.0 is used in all problems. It is mentioned in this context that other finite-element analyses in the literature use 0.3 as the value of Poisson's ratio.

Static Analysis of a Square Plate

The arrangement of the finite elements in a quarter of the square plate is shown in Fig. 4. The number of subdivisions of the edge of the square is denoted by N. Due to symmetry, only one-quarter of the plate is analyzed. The calculated values of the deflection at the center of the simply supported plate are given in Table 1 and compared with the exact solution given by Timoshenko (ref. 9). These values together with other known finite element analyses available in the literature (refs. 3, 4, 5 and 10) are also compared in Figures 5 and 6 in plots of deflection versus mesh size using a linear scale for N^{-1}.

As seen from table 1 , the " Q " arrangement is found to give better results than the " P " arrangement for the uniformly distributed loading; however, the "P" arrangement is found to be better, in general, for concentrated loads. For the clamped plate, the "P" arrangements are found to be slightly better than the " Q " arrangements, as noted from ref. 8. For the quadrilateral element, QUADI is found to be superior to QUAD5.

The high accuracy achieved with the present elements (triangular and quadrilateral), even for the coarsest mesh, is evident from Table 1 and Figures 5 and 6 for the simply supported plate. In the case of the clamped plate, the results for the coarsest grid are not as accurate as in the case of the simply supported plate (ref. 8); however, as the element size is decreaced the values of deflection obtained with the present elements approach very rapidly the exact results.

Free Vibration of a Square Plate

The natural frequencies of a simply supported square plate wer letermined using the triangular and quadrilateral elements. The non-dimensional eigenvalues are

$$
\begin{equation*}
\lambda=\rho t \omega^{2} L^{4} / D \tag{34}
\end{equation*}
$$

```
\rho= mass density
t = thickness of plate
\omega= circular frequency
```

$L=$ length of side of square plate
$D=E t 3 / l 2\left(1-v^{2}\right)$, the flexural rigidity of the plate.
The exact eigenvalues for the simply supported plate are given by

$$
\begin{equation*}
\lambda=\left(r^{2}+s^{2}\right)^{2} \pi^{4} \tag{35}
\end{equation*}
$$

where r and s refer to the number of half-waves parallel to the edge directions.
The lowest 6 values obtained using the present elements and the exact results are shown in Table 2. The eigenvalue problems were solved using a Jacobi routine that produced the complete set of eigenvalues and eigenvectors. Consistent mass matrix was used for treatment of inertia. It is seen that the lowest eigenvalue is calculated to within I\% of exact result. Good agreement is noticed for higher eigenvalues as well.

THE TR-18 FAMILY OF ELEMENTS

A number of finite element formulations for doubly curved shells are presently available, the notable among them being the works of Ahmad, Irons and Zienkiewicz (Ref. 11), Bonnes, Dhatt, Giroux, and Robichand (Ref. 12), Strickland and Loden (Ref. 13), Key and Beisinger (Ref. 14), Dhatt (Ref. 15), and Olson and Lindberg (Ref. 16). Some of these have neglected transverse shear deformaiions whereas some others use sub-triangles and/or second and higher order derivatives of the displacements of the element as degrees of freedom, thus complicating the formulation. A need still exists for an accurate shell element that has only translations and rotations as d.o.f.

Such shell elements can be derived using the TR-18 plate element; the formulation presented here is simple and includes transverse shear deformations; it is based on the linear shear deformation theory of thin shells as given by Washizu (Ref. 17).

Using shallow shell theory, flat plate elements can be easily converted to curved shell elements. The iinear strain triangular membrane element, known as TRIM6 in the literature, can be combined with the TR-18 plate element to develop a doubly curved shallow shell triangular element. The surface of the shell will be approximated by a quadratic polynomial of the position coordinates of the base triangle. By a procedure analogous to that discussed for the quadrilaterul plate element, a quadrilateral shallow shell element can be developed. Multilayered plates, and plates with coupled membrane and bending deformations, can be designed using TR-18 plate elements.

Fig. 7 shows a differential element $d A$ on the middle surface of the doubly curved shell with orthogonal curvilinear surface co-ordinates ξ_{l}, ξ_{2}, ξ_{3}. A right handed cartesian co-or te system X, Y, Z is also shown. In Fig. 8 and Fig. 9 the curved triangular shell element is shown in basic and local coordinate systems. The differential surface element is expressed as

$$
\begin{equation*}
\mathrm{dA}=\alpha_{1} \quad \alpha_{2} \mathrm{~d} \xi_{1} \quad \mathrm{~d} \xi_{2} \tag{36}
\end{equation*}
$$

where α_{1} and α_{2} are the Lamé parameters.
If the surface $z(x, y)$ of an element is shallow, the following relations are valid

$$
\begin{equation*}
(z, x)^{2} \ll 1 \quad(z, y)^{2} \ll 1 \quad\left|z, x^{z}, y\right| \ll 1 \tag{37}
\end{equation*}
$$

where

$$
z, x=\frac{\partial z}{\partial x} \quad z, y=\frac{\partial z}{\partial y}
$$

The set of orthogonal curvilinear co-ordinates ($\xi_{1}, \xi_{2}, \xi_{3}$) over the surface of the shallow eiement $d A$ can be replaced by a set of shallow cartesian co-ordinates (x, y, z) where

$$
\begin{equation*}
\xi_{1}=x \quad \xi_{2}=y \tag{38}
\end{equation*}
$$

and Lamé parameters

$$
\begin{equation*}
\alpha_{1}=\alpha_{2} \approx 1 \tag{39}
\end{equation*}
$$

From eq. (36), (38) and (39), $\quad d A=d x d y$

The curvatures of the shallow element can then be approximated by

$$
\begin{align*}
& \frac{1}{R_{I I}}=-2, x x \tag{41}\\
& \frac{1}{R_{22}}=-2, y y \tag{42}
\end{align*}
$$

```
    #}=-2
```


whse $\left\{\begin{array}{l}\Lambda_{0} \\ Y_{0} \\ Z_{0}\end{array}\right\}$ is the vector from tie origin of tis basic co－criniate syster．to
the oripin of the local co－ordinate system．The iistances x_{0}, Y_{0} ，Jo are
not involved in the calculation of the stiffness matrix of the element sinse only the differences of co－ordinates are used；hence they are discarded．The inversion of equation（44）yields

$$
\left\{\begin{array}{l}
x \tag{45}\\
y \\
z
\end{array}\right\}=\left[\begin{array}{lll}
\lambda_{11} & \lambda_{21} & \lambda_{31} \\
\lambda_{12} & \lambda_{22} & \lambda_{32} \\
\lambda_{13} & \lambda_{23} & \lambda_{33}
\end{array}\right] \quad\left\{\begin{array}{l}
\lambda \\
y \\
7
\end{array}\right\}
$$

It may be seen that $\lambda_{11}, \lambda_{21}$ and λ_{31} are components in X, Y and Z directions of a unit vector along the x direction；and so on for $\lambda_{12}, \lambda_{13}$ ，etc．

An analyiical description of the surface of the element suitable for application of shallow shell theory is obtained by assuming that the elevation of the shell middle surface may be expressed as a quadratic polynomial in the local co－ordinates of the element，i．e．，

$$
\begin{equation*}
z(x, y)=f_{1}+f_{2} x+f_{3} y+f_{4} x^{2}+f_{5} x y+f_{6} y^{2} \tag{46}
\end{equation*}
$$

This implies that the shell element has constant curvatures and is consistent with the approximations of shallow shell theory. Knowing the co-ordinates x, y, z of the six points of the triangular lement, the constants f_{1} to f_{6} can be evaluated.

Symbolically
or

$$
\begin{equation*}
\{z\}=\left[Q_{1}\right]\{f\} \tag{47}
\end{equation*}
$$

$$
\begin{equation*}
\{\because\}=\left[Q_{1}\right]^{-1}\{z\} \tag{48}
\end{equation*}
$$

where $\left[Q_{1}\right]$ is a 6×6 matrix of the co-ordinates of the six points of the element substituted into equation (46).

Degrees of freedom and assumed displacement function.- The element has 30 degrees of freedom (d.o.f.), with 5 d.o.f. per grid point. These are the three translations u, v, w in the x, y, and z directions and the rotations of the $x z$ and $y z$ planes, α and β. The displacements u, v, w are positive in the positive co-ordinate directions; the slopes are positive when they cause compression at the top of the surface. The u and v d.o.f. ars assumed to vary cuer the element by a full quadratic polynomial of local co-ordinaten, as follows:

$$
\begin{align*}
& u=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} x y+a_{6} y^{2} \tag{49}\\
& v=a_{7}+a_{8} x+a_{9} y+a_{10} x^{2}+a_{11} x y+a_{12} y^{2} \tag{50}
\end{align*}
$$

The deflection w will be defined by a quintic polynomial as in equation (6). The coefficients a_{1} to a_{21} of equation (6) will be renumbered a_{13} to a_{33}... respectively. The 33 coefficients a_{1} to a_{33} can be uniquely determined from the 30 d.o.f. of the shell element (5 d.o.f. each at six grid points) together with the 3 constraint equaticas (8), (9), and (10).

Strain-displacement relations.- The expressions for transverse shear strains and bending strains for the curved shell element are the same as those for the TR-18 element (eqs. (7) and (13)). The membrane strains are

$$
\left.\begin{array}{l}
e_{x}=\frac{\partial u}{\partial x}-w \frac{\partial^{2} z}{\partial x^{2}} \\
e_{y}=\frac{\partial v}{\partial y}-w \frac{\partial^{2} z}{\partial y^{2}} \tag{51}\\
e_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}-2 w \frac{\partial^{2} z}{\partial x \partial y}
\end{array}\right\}
$$

Stiffness matrix.- The stiffness matrix can be evaluated by the standard procedures (ref. 6). The element can then be tested against other elements (refs. 11 to 16) for suitability as well as accuracy. At the time of writing of this paper, the calculations for the element have not been completed.

Curved Quadrilateral Shell Element
A curved quadrilateral shell element can be constructed from the curved triangular shell elements by a procedure analogous to that of the construction of the quadrilateral plate element from the TR-18 element.

Plates With : :embrane-Bending Coupling

Plates with coupled membrane and bending deformations and multilayered plates (fig. 10) can be analyzed by means of the elements presented earlier herein. Mustilayered plates will produce coupling between membrane and bending deformations when the plate is not symmetrical with respect to its middle surface. A general form of the coupled stress-strain relationship can be expressed as

(52)
where
$\{F\}$ is a vector of membrane force components $F_{x}, F_{y}, F_{x y}$
(M\} is a vector of bending and twisting moments $M_{x}, M_{y}, M_{x y}$
$\{V\}$ is a vector of transverse shear components V_{x}, V_{y}
$\left\{\varepsilon_{m}\right\}$ is a vector of membrane strain components $\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{x y}$
$\{x\}$ is a vector of curvatures $x_{x}, x_{y}, x_{x y}$
$\{y\}$ is a vector of average transverse shear strain Y_{x}, Y_{y}
[A] is a $3 x 3$ matrix, $\sum_{k=1}^{N}\left[G_{e}\right]\left(t_{k}-t_{k-1}\right)$
[D] is a 3×3 matrix, $\sum_{k=1}^{N}\left[G e \frac{t_{k}^{2}-t_{k-1}^{2}}{2}\right.$
[D] is a $3 x 3$ matrix, $\sum_{k=1}^{N}\left[G_{e} \frac{t_{k}^{3}-t_{k-1}^{3}}{3}\right.$
[G] is a 2×2 transverse sinear matrix
[Ge] is a 3×3 matrix of elastic coefficients
t_{k} is the distance to the outer edge of plate (or layer in a multilayer plate) from reference surface
t_{k-1} is the distance to the inner edge of plate (or layer in a multilayered plate) from reference surface
t* is an effective thrckness for the element
The inplane strain vector at any point is

$$
\begin{equation*}
\{\varepsilon\}=\left\{\varepsilon_{m}\right\}-z\{x\} \tag{53}
\end{equation*}
$$

where z is the distance from the reference surface. The strain energy of the plate element is

$$
\begin{equation*}
U=\frac{1}{2} \rho\left[\{F\}^{T}\left\{\varepsilon_{m}\right\}+\{M\}^{T}\{y\}+\{V\}^{T}\{y\}\right] d A \tag{54}
\end{equation*}
$$

where the integration is carried out over the surface of the element. The stiffness matrix for the triangular and quadrilnteral elements can be evaluated by the usual procedures (refs. 6 and 8).

CONCLUDING REMARAS

New triangular elements and associated quadrileteral elements for plate and shell analysis having oniy displacement and rotations as grid point degrees of freedom are described in this paper. The examples presented ror plate elements demonstrate that high accuracy is achievable using these elements for practical subdivisions.

The effect of transverse shear deformations is included in the elcment formulation. Transverse shear strains vary quadratically within the element; convergence to the limiting case of zero transverse shear strain is uniform. The present elements are expested to give better approximations than most displacement model plate bending elements for solving problems where transverse shrsir effects are significant.

Finally, it is remarked that these elements are ideally suited for inclusion into general purpose computer programs due to (i) simplicity of formulation, (ii) use of only displacements and rotations as grid point degrees of freedom, (iii) high accuracy for practical mesh subdivisions and (iv) inclusion of transverse shear flexibility in the element properties.

REFERENCES

1. Clough, R. W.; and Tocher, J. L.: Finite Elemert Stiffness Matrices for Analysis of Plate Bending. Matrix Methods in Structural Mecianics, AFFDL-TR-66.80, U.S. Air Force, Nov. 1966, pp. 515-545. (Available from DDC as AD 646 300.)
?. Bazeley, G. P., et al.: Triangular Elements in Plate Bending - Conforming and Non-Conforming Solutions. Matrix Methods in Structurel Mechanics, AFFDL-TR-66-80, U.S. Air Force, Nov. i966, pp. 547-576. (Available from $D D C$ as $A D 646300$.
2. Argyris, J. H., et al.: Sume New Elements for the Matrix Displacement Method. Proceedings of Second Conference on Matrix Methods in Strunturai Mechanics, AFFDL-TR-68-150, U.S. Air Force, Oct. i 9.
3. Bell, K.: Triangular Bending Elements. Chapter 7 in Finite Element Methods in Stress Analysis, I. Holland and K. Bell, eds., Techn. Univ. of Norway, Trondheim, 1969.
4. Cowper, G. R., et al.: A High Precision Triangular Piate Bending Element. heronautical Report LR-514, National Research Council of Canada, Ottawa, Canada, Dec. 1968.
5. Zienkiewicz, 0. C.: Finite Element Method in Engineering Science, McGrawHill, London, 1971.
6. MacNeal, R. H., ed.: The NASTRAN Theoretical Manual (Level 15). NASA SP-221(01), 1972.
7. Narayanaswami, R.: New Triungular and Quadrilateral Plate-Bendiig Findte Elements. NASA TN D-7407, 1973.
8. Timoshenko, S.; and Woirowsky-Krieger, S.: Theory of Plates and Shells, 2nd ed., McGraw-Hill, New York, 1959.
9. Bell, K.: New Triangular Plate-Bending inite Element. International Journal for Numerical Methods in Engineering, Vol. 1, +49.
10. Ahmad, S.; Irons, B. M.; and Zienkiewicz, O. C.: Curved Thick Shell and Membrane Elements With Particuªr Reference to Axisymmetric Problems. Proceedings of Sceond Conference on Matrix Methods in Structural Mechanis AFFDL-TR-68-150, U.S. Air Force, Oct. 1968.
11. Bonnes, G.; Dhatt, G.; Giroux, Y. M.; and Robichrnd, L. F. A.: Curved Tri. angular Elements for the Analysis of Shells. Proceedings of Second Conference on Matrix Methods in Structural Mechanics, AFFDL-TR-(8-150, U.S. Air Force, Oct. 1968.
12. Strickland, G. E.; and Loden, W. A.: A Doubly Curved Triangular Shell Ele. ment. Proceedings of Second Conference on Matrix Methods in Structural Mechanics, AFFDL-TR-68-150, U.S. Air Force, oct. 1968.
13. Key, S. W.; and Beisinger, Z. E.: The Analysis of Thin Shells With Transverse Shear Strains by the Finite Element Mothod. Proceedings of Second Conference on Matrix Methods in Structural Mechanics, AFFDL-TR-68-150, U.S. Air Force, Oct. 1968.
14. Dhatt, G. S.: Numerical Analysis of Thin Shells by Curved Triangular Elements Based on Discrete-Kirchoff Hypothesis. Proceedings of Symposium on Application of FEM in Civil Engineering, Nashville, Tennessee, N N^{-}19\%.
15. 01son, M. D.; and Lindberg, G. M.: Dynamic Analysis of Shall ww Shells With a Dcubly Curved Triangular Finite Element. J. Sound \& Vib. 19(3), 1971, pp. 299-318.
16. Washizu, K.: Variational Methods in Elasticity and Piasifcity. Pergamon Press, Toronto, Canada, 1968.
TABLE 1


```Mumber of elements per side, I```	Coefficient $1000 \mathrm{w}_{\mathrm{c}} \mathrm{D} / \mathrm{PL}^{2}$ due tc central concentrated load $P$				Coefficient $1000 \mathrm{w}_{\mathrm{c}} \mathrm{D} / \mathrm{q}_{\mathrm{O}} \mathrm{L}^{4}$ due to aniformly distributed load $q_{0}$			
	Triangular element		Quadrilateral element		Triangular element		Quadrilateral element	
	arringement	$\begin{gathered} \mathbf{P} \\ \text { arrangement } \end{gathered}$	QUAD 1	QUAD 5	arrangement	$P$ arrangement	QUAD 1	QUAD 5
2	11.927079	12.064944	11.886797	12.294189	4.080739	4.173045	4.115169	4.177057
4	11.766154	11.705526	11.704203	11.760712	4.066626	4.074954	4.068629	4.078833
6	11.590134	11.647158	11.653533	11.673154	4.064244	4.066794	4.064797	4.068828
8	11.656354	11.627134	11.632881	11.642431	4.063427	4.064620	4.063666	4.065832
12	21.628511	11.612820	11.616516	11.620020	4.062843	4.063288	4.062927	4.063869
Exact (ref. 9)	11.600				4.062			

TABLE 2


Mode,$(r, s)$	Number of elements per side, N								$\begin{aligned} & \text { Exact } \\ & \text { solution } \end{aligned}$
	2				[ 4				
	Triangular element		Quadrilateral element		Triangular element		Quadrilateral element		
		$\frac{\mathrm{P}}{\text { arrangement }}$	QUAD 1	QUAD 5	$\begin{gathered} Q \\ \text { arrangement } \end{gathered}$	P arrangement	QUAD 1	QUAD 5	
$(1,1)$	386.14	384.97	388.10	387.20	388.93	388.74	389.08	388.53	389.64
$(1,2)$	2477.59	2477.59	2558.41	2628.19	2415.26	2415.26	2420.9]	2427.66	2435.23
$(2,2)$	6541.93	6541.94	7997.35	8910.19	6179.56	6179.56	6209.53	6195.16	6234.18
$(1,3)$	$\left\{\begin{array}{l}7149.37 \\ 9922.22\end{array}\right.$	10008.09 10458.52	10116.30 10201.76	10413.34 11160.88	9482.08 9704.72	$933): .84$ 9548.69	9620.47 9620.47	9769.04 9769.04	$\int 9740.91$
$(2,3)$					16144.46	16144.65	16358.12	16436.21	16462.14
$(3,3)$					30843.18	30676.12	31 ¢61.90	31498.11	31560.55



Figure 2.- Sign convention for moments and shears.


Figure 3(a).- Quadrilateral element (QUAD1) geometry.


Figure 3(b).- Quadrilateral element (QUAD5) geometry.


Figure 3(c).- Median plane for quadrilateral element.


Notation	Element   Shape	Reiarence
$\begin{gathered} \ddot{\square} \\ P \\ Q 1 \\ Q 5 \\ A C M \\ H C T \\ Z \\ T U B A-6 \\ \\ B-2 \\ B-3 \\ C-N \\ C-P \\ N Q \\ C F Q \end{gathered}$	$T(Q-m e s h)$ $T(P-m e s h)$ $Q$ $Q$ $R$ $T$ $T$ $T$ $T(T-18)$ $T(T-21)$ $T(Q-m e s h)$ $T(P-m e s h)$ $Q$ $Q$	Precent paper   Present paper   Present paper   Present paper   1   1   2   3 $\begin{aligned} & 4,10 \\ & 4,10 \\ & 5 \\ & 5 \\ & 7 \\ & 9 \end{aligned}$
T - Triangular; Q - Quadrilateral;   R - Rectangular		

COEFFICIENT FOR CENTRAL DEFLECTION, $1000 w_{c}$ D/PL ${ }^{2}$


Figure 5.- Simply supported square nlate: central deflection $W_{c}$ under central point load $P$.

Notation	Element Shape	Referense
N	T (Q-mesh)	Present paper
$P$	T (P-mesh)	Present paper
Q1	Q	Present paper
Q5	Q	Present paper
ACM	R	1
HCT	T	1
2	T	2
TUBA-6	T	3
B-1	T (T-15)	4
B-2	T (T-18)	4,10
B-3	T ( $\mathrm{T}-21$ )	4,10
$\mathrm{C}-\mathrm{N}$	T (Q-mesh)	5
C-P	T (P-mesh)	5
NQ	$Q$	7
CFQ	Q	9
I' - Triangular; Q - \&uadrilateral;		
R - Rectan	ar	



Figure 6.- Simply supported square plate: central deflection $w_{2}$ under unifermly distributed load $q_{0}{ }^{\circ}$


Figure 7.- Differential element.


Figure 8.- Curved triangular shell element in basic co-ordinate system.


Figure 9.- Curved triangular shell element in local cc-ordinate system.


Figure 10.- Multiiayered plate geometry.


[^0]:    *NRC-NASA Resident Research Associate.

