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INTRODUCTION

A question which invariably arises when one considers the calculationof turbu-

lent shear flows is, "How complex a model should be used to calculate such motions?"

Available at the present time are models varying in complexity from very simple

eddy-transport models to models in which all the equations for the nonzero second-

order correlations are solved simultaneously with the equations for the mean vari-

ables. For this reason, itmight be instructiveto present a discussion of the rela-

tionship between these two models of turbulent shear flow. Two types of motion will

be discussed: first,turbulent shear flow in a stratifiedmedium and, second, the

motion in a turbulent linevortex. These two cases are instructivebecause in the

firstexample eddy-transport methods have proven reasonably effective,whereas in

the second, they have led to erroneous conclusions.

R is not generally appreciated thatthe simplest form of eddy-transport theory

can be derived from second-order closure models of turbulent flow by a suitably lim-

itingprocess. This paper will discuss this limRing process and the suitabilityof

eddy-transport modeling for stratifiedmedia and line vortices.

SYMBOLS

a_b model parameters

Cp specific heat at constant pressure

D operator

g gravitationalacceleration

gi' gk general acceleration vectors

* This work was supported in part by the Air Force Office of Scientific Research
(AFSC), under Contract F44620-69-C-0089; and in part by NASA, under Contract
NASw- 1868.
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i, j,k indices

man

N

proportionality constants

stability parameter (eq. (90))

NRi

P

Richardson number

parameter (eq. (49))

Q

q

r,q_,z

r e

T

pressure

turbulent energy, (UU + W + WW) 1/2

scalar velocity, [(ui)'u_ 1/2

cylindrical coordinates

vortex core radius _ig. 7)

temperature

t time

U,V,W nondimensional second-order velocity correlations

U,V,W mean velocity in r-, _b-, z-direction, respectively, for two-dimensional line

vortex; mean velocity in x-, y-, z-direction, respectively, for atmospheric

motion

X, y, Z Cartesian coordinates

Ct length scale proportionality constant

F vortex strength

A difference

breadth of layer under consideration
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6ik Kronecker delta

local deformation in vortex

K Yon K_m_.n's constant

A1,A2,A3 length scales

dissipative scale

viscosity

P kinematic viscosity

P density

"rij

rt

Subscripts:

stress tensor

turbulent shear stress

char characteristic

crit critical

max maximum

o undisturbed, adiabatic atmosphere

Bars over a quantity indicate mean values.

fluctuation of the quantity from its mean value.

Primes indicate the instantaneous

A SECOND-ORDER CLOSURE MODEL FOR TURBULENT SHEAR FLOW

In reference 1 the author presented a discussion of the development of an invariant

second-order closure model for turbulent shear flow in an incompressible medium. The

basic equations of this model are
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m=0

oxj

o_ i •
0-t-- + uJui, j = _1 P,i

(1)

(2)

-Uik ,, "7-7 8 0 ,, 8
+ _J = -uju k +,j _- ujui_ 2q uiuk+_ uiul

8 "7-7 _ ++ + _
8-_k ujui _k 3q _xj ) axj /

"-7"-7"

_(_ _) _ u_u__ __ +_::_u_u_-_ (3)

with

(4)

and

q E_] 1/2 (5)

In this model, the length scales A1, A2, and

another. The dissipative scale _ is given by

_2: AI2 (6)
+(bpqA1/_)

From a rather lengthy parameter search to determine the values of the quantities a, b,

A1, A2, and A 3 that are to be used in the calculations, it was found that good results

were obtained by using

A 3 are assumed to be proportional to one

a=2.5

b = 0. 125

A2 0.1
A1

A_3 = 0.1
A1

(7)
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It was further found that the remaining free parameter A 1 was approximately equal to

0.6 times the longitudinal integral scale of the motions studied in the parameter search.

In reference 2, this model was extended to the case of turbulent motion and trans-

port in the earth's boundary layer. The case considered is that when the scales of the

mean distributions of velocity and temperature are not greatly different and the Prandtl

and Schmidt numbers are 1. The resulting equations, written in Cartesian tensor nota-

tion, are

aUi
--=0

Oxi
(8)

% _ _ (__i_j_ _uiuj1 -
D_=-_x_÷_oN\N +N/ _xj +%g_T

(9)

DT 02T 0uiT'

D-Y"= Vo ax 2 axj

Dub,i< --_,_ _,<+,(,,, ,,) o _A/_
=-ujul_- ujui _x_ _ iuk'r+gkui'r +_ L2q\

(10)

+ :?-:t"u'-

+%
i f

uiuk
(11)

ouT/<,--_x__<'_x_/-<u__'+_o_x_
u_T'

2VO
(12)

D(-_ 2_ 8_T__+ a__.lA2q a(_l a2(T.___')2

- J _xj %L % ] +v° ox_
(13)
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In these equations,

D a L (14)
]5"[= 8-_ + uJ axj

T o and vo are the local temperature and kinematic viscosity, respectively, in an undis-

turbed adiabatic atmosphere; T is the departure of the mean temperature from the

adiabatic temperature To; and T' is the instantaneous fluctuation of the temperature

about its mean.

For the two cases of motion considered herein, equations (1) to (14) reduce to the

following:

For the case of a two-dimensional line vortex in cylindrical coordinates r,_,z

with velocities u,v,w, equations (2) and (3) result in

--.... Ja2V 1 8V (15)OF 8U'V' 2 U'V' + +

8t ar r \Sr 2 r 8r

Ou'u' 4V u'v' + 3 8 2A2q OV'V' +
0t =_-- _-r\--2 q 0r ]- r 0r r 0r

4 A2q (v-";_'v' u-'_u' )
+ -_\

(_ _) _(_P) °(_P) _._Avvuu)

+_'_ _)_ _1_ __ r2 _ k-2
(16)

3A2q ov-_v' 2 °(A2qv-_v')0vv- OF"-- =- +_] +O 2q Or / r Or r Or

+F + +T + -Or -_-_u u - Or

(17)
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_°_ _qo_/ _--

,,f_a2_-'_' 1_w'w--_ 2_-_'_ (18)

aU'V--"T rV---(2v-';_'v' u--V_u')- _ _ +2 _r/A2 q au-'_'v'/at = - ar / - r ar

8A2q IA au-_v' _r'_" _+_ 3q ar /

,._(_3q_) A_ o_ _3_u'v_
+

r ar r ar r 2_

- v a2u-_Tv' 1 au'v-'_
qu--q-rv'+ lo-_-_ +A I r or

(19)

For the atmospheric motion considered herein, in which only a mean velocity _ in

the horizontal direction x exists and in which the mean lateral and vertical velocities

V and W in the directions y and z, respectively, are zero, the appropriate equations

derived from equations (8) to (13) are

_" = - _x Vo az 2 az (20)

oT a2T
aT'w (21)

aT = Vo az2 az

ou,u =-2u'w'_+_-z 2q az /" - +v°_- 2Vo7 (22)

a"_--:a'_ 2qaz ]-A_ - +VOaz-'_--- (23)

_";WTW'/ + 2..-_-..._ oA3q a-_-..-.. /2--_-gw--'_+3a#'_ 2qaz / PoOf'---- = T o

/ _i °2w--_w' 2% w'w'-'--r-q(w-_w'-., ,+_o_. -7 (_.4_
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-- -_+To +2_z 2 q az /+_oo oA3q

q u,w'---T a2u-T_W' u'w'
- A1 + vo 2v oaz 2 X2

au'T' _ -u-'_w' aY _ w'T' a5
at _'Z "_ +a'z 2q az ]- A_U-_+v o Oz--_

M

u'T'

2Vo X2

- G G )aw'T' _ -w'w' a_ g._g_(T,)2 a _v'T'_ 1 8 8w'T'
at -_-+To +2_-_ 2qa--E-----/ +Voo_- _ oA3qa--_ -----

(25)

(26)

w'W___L'a2w-_'T' 2v o (27)
- A_l w'T' + Po az 2 X2

a(T') 2 _2w,T---'78T O a(T') a2(T') 2 (T') 2
at = _" + "_z 2q a-'_'---J+ Vo -- 2vo -- (28)az 2 X2

For most people who practice the art of predicting turbulent flows, the equations

for the line vortex (eqs. (15) to (19)) and for the flow in the atmospheric boundary layer

(eqs. (20) to (28)) are of a familiar form. If distributions on the dependent variables are

given at time t = 0, the development of the motion at subsequent times can be computed

by simultaneous solution of the appropriate coupled sets of partial differential equations.

This is the general approach of second-order modeling.

The older and still widely used method of treating these problems is to consider

only the equations for the mean variables and to assume that the second-order correla-

tions which appear in them might be represented by empirically determined eddy-transport

models patterned after the transport of the appropriate quantity by molecular means. The

section which follows will examine what information can be gleaned from the equations for

the second-order correlations about the nature of such eddy-transport models.

SUPEREQUILIBRIUM MODELS

To determine how to obtain information about the nature of eddy-transport models

from the model or rate equations for the appropriate second-order correlations, one must

consider what is implied when it is assumed that a turbulent flow can exhibit an eddy vis-

cosity or an eddy diffusivity.
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First, it is apparent that if the turbulent transport of a quantity depends only on the

local gradient of that quantity and a scale length associated with the mean flows at the

location under consideration, the turbulent transport cannot have a "memory" of its past

history along the streamline. This is tantamount to the assumption that at each point in

the flow the turbulent-transport correlations can track their local equilibrium values.

These local equilibrium values can be obtained from the rate equations for the correla-

tions by setting the left-hand sides of the equations, as they are given in the preceding

section, equal to zero. Thus it is assumed that the rate of change of a transport correla-

tion as it follows the mean motion is small compared with the production, dissipation, and

diffusion terms which occur at the point in question.

Second, the notion of an eddy-transport coefficient is one which does not allow the

behavior of the turbulent transport at one point in the flow to affect directly the turbulent

transport at another point. This notion is equivalent to the neglect of the diffusion terms

in the equations for the second-order correlations, for it is these terms which link the

generation of transport correlations at one point in the flow to the transport correlations

at another point.

Finally, the use of an eddy-transport model is a practice generally restricted to

flows with high Reynolds numbers. Therefore, the high Reynolds number limit of the

equations for the second-order correlations can be taken if it is desired to derive a sim-

ple form of eddy-transport model from these equations.

If the three rules set forth above are followed, it should be possible to derive from

the equations for the second-order correlations a simple theory of eddy transport. As

discussed above, this theory represents the equilibrium, nondiffusive, high Reynolds num-

ber limit of a second-order closure model. For reasons of brevity, this limit has for

some time been referred to by the author as the "superequilibrium" limit.

By following the three rules set forth, the following equations are found to be the

superequilibrium equations for a line vortex:

0-- ÷ ÷

/ rV)-O= -2 O_'+ u'v' - (1+2b) _+T

q w--'_'w' q30 -- -(1 + 2b) + -_-

(30)

(31)
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For atmospheric motion, onefinds

q { ) q3 (33)= -2u'w' af 1 + 2b u-'_u' + -A-0
0z

q3
0 = - q (1 + 2b)v-_Tv' + -_ (34)

q3
2g w'T' - q(1 + 2b)w'w' +-_ (35)

0 = -w'w' _'z +T-ooaf g u'T' - q (1 + 2b)u'w' (36)

m

0 = -uw' ' _-0T _ w'T' 0-'_0__ q(1 + 2b)u'T' (37)

0=-ww' ' _'z-+_oo0Tg (T') 2 - q(1 + 2b)w'T' (38)

m

0T q(T,)20 = -2w'T' -_- - 2b (39)

In writing these equations, A 1 was taken equal to A.

EDDY TRANSPORT IN THE ATMOSPHERE

It is instructive to carry out the solution of equations (33) to (39). These equations

are algebraic for all the nonzero correlations. The solution of equations (33) to (39) can

be obtained if the following definitions are introduced: Let (for 0fi/0z > 0)

= UUA12\0z/

= VVA12 \0z /

w'w' = WWAI 2 \0z/

UWAI 2 _.0f_ 2

u,T''"_ = UTA12 _)5 OTOz 0z

w'T' = WTA12
Off oT
0z 0z

(T,)-----2= TTA12 _OT/2
_z /

q2 = QQA12 \oz/

(40)

and note that

QQ=Q2=UU+VV+WW (41)
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Substitution of the definitions given in equations (40)and (41) into equations (33) to (39)
results in

Q(I+2b)UU= 3_-- 2UW

Q3
Q(I + 2b)VV = -_-

Q(I + 2b)UW = -WW + NRiUT

Q(I + 2b)UT = -UW - WT

Q(1 + 2b)WT = -WW + NRiTT

Q(2b)TT = -WT

(42)

(43)

(44)

(45)

(46)

(47)

In these equations, NRi is the Richardson number given by

m

g aT
T O 8z

NRi= (48)
\_z/

It is immediately obvious from equations (42) to (47) that all the nondimensional second-

order correlations are a function only of the Richardson number and the parameter b

from the second-order closure model. It will be remembered that the value of b deter-

mined in the parameter search reported previously is 0. 125.

It is convenient to express the solution of equations (42) to (47) in terms of the

)211/21 - (4 + 15b)NRi + + 2(2 - 9b)NRi + (4 + 9b)2(NRi

P = 6 (49)

parameter

In terms of this parameter, the various correlations may be written

Q2= 1 p

b(1 + 2b) 2
(50)
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UU =
(P÷ +(1+4b NR +2b +(1+

3(1,2b)(P,bNRi)EP*(1*4b)NR_
Q2 (51)

VV= 1 Q2
3(1 + 25)

(52)

WW = P + (I + 2b)NRi Q2

3(1 + 2b)EP + (1 + 4b)NRi_

(53)

UW = _b P + (1 + b)NRi Q3 (54)

+

UT = b 2P + (1 + 2b)NRi Q2 (55)

WT = - b Q3 (56)

3_, (1,4b)NR_

TT = 1 Q2 (57)

3[P. (1,4b)NRi_

It is clear from these equations that when the parameter P = 0, there is no turbu-

lence (Q2 = 0) and all the second-order correlations vanish. The critical value of the

Richardson number for which this occurs is a function of b and is given by

( ) 1 + b (58)NRi crit = 4b(1 + 3b)

For b = 0.125, the critical Richardson number is

(NRi)cri t = 1.636 (59)

All the nondimensional second-order correlations as functions of the Richardson

number are plotted in figures 1 to 5. From these figures, the profound difference between

turbulence and turbulent transport in stable and unstable atmospheres is obvious. Note

particularly that the nondimensional vertical transport of matter and heat falls off far

more rapidly than do the nondimensional turbulent energy components when a stable

atmospheric situation is approached. In fact, above a Richardson number of 1, vertical

turbulent transport has almost ceased to exist although there is still some atmospheric

turbulence.
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It shouldbe noted that the superequilibrium results just obtained specify the non-

dimensional values of second-order correlations. For example, if the value of b = 0.125

is assumed to be correct, a Richardson number of 0.10 would give

uw = -0.2 t2 (60)

WT = -0.2631 (61)

The transports of momentum and heat would then be given by (for

-PoU-'_'rw' = 0.2712PoA2(0_)2

a /oz > o)

(62)

m

,-"--7 0.2631PoA2 0F ST-Po(CP)o w T = az 8z
(63)

It is clear from these expressions that the actual transport is not defined until the length

scale A is known. This is a difficulty with atmospheric flows, for unless A is deter-

mined at a given altitude and the local Richardson number specified there, the transports

are not known. In general, A will depend at a given altitude on the Richardson number

but can assume a range of values depending on the past history of the motion. Although

this range of values is limited so that the order of magnitude of the transport might be

determined, there will always be a variation in transport proportional to the square of the

variation in A at any fixed Richardson number.

For classical laboratory flows, this problem does not exist. In this case, it is gen-

erally found that A is proportional to the characteristic breadth of the layer under con-

sideration while the gradients are proportional to a characteristic velocity, temperature,

or concentration difference divided by this characteristic breadth. Thus, for the classi-

cal shear flows,

A12\Sz] : _') = Const(A_char) 2

and, likewise,

(64)

I

A12 a_sT Const - ---_ -_- = &Uchar ATchar (65)

For each type of flow, these constants are well defined. This type of simplicity is, alas,

not true of the atmosphere.
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It is instructive to compare the results of superequilibrium theory with certain

well-known results from classical turbulent-transport theory for the case when no grav-

itational effects are involved. To do this, the Richardson number is placed equal to zero

in the expressions given in equations (49) to (57), and for b = 0.125, the following expres-

sions are obtained:

P = 0.3333 (66)

Q2_ 1 = 1.7066 (67)
3b(1 + 2b) 2

UU = 1 + 6b = 0.7964 (68)
9b(1 + 2b) 3

VV = WW = 1 = 0.4551 (69)
9b(1 + 2b) 3

UW = TW=

9(1 + 2b) 3
= -0.2786 (70)

UT = 2 = 0.3413 (71)
3(1 + 2b) 3

TT- 1 = 1.7066 (72)
3b(1 + 2b) 2

Some interesting results are noted from the above comparison. First, superequi-

librium theory indicates that v'v' = w'w' and, further, that

u'u' _ u'u' =U--U-U= U..__U_U= 1 +6b= 1.75 (73)
v'v"'-;" w'w''-v VV WW

Second, the value of -u'w'/q2,-j which Bradshaw, Ferriss, and Atwell (ref. 3) assume to

be a constant equal to 0.15, is defined by superequilibrium theory to be

=0.163 (74)
q2

This is a rather surprisingly accurate result in view of the fact that the value of b was

determined from very different considerations in the development of the second-order

closure model.
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The value of Von _rm_n's constant

near a surface may also be derived from superequilibrium theory:

_t-- "Pu'w''-r= PK2Z2(_) 2

From the present results,

K in his expression for the turbulent shear

(_2 3V_ pA12(a_2
vt=-pUWAI2_oz/"9(1:_)3 _'z/

In reference 1 it was found that near a surface, A is of the form

the parameter search is found to be 0.7. Letting

A = 0.7z

equation (76) gives

rt = 9(1 + 2b) 3 pz2

Comparison of equations (75) and (78) reveals that

__0.49 _0.137
9(1 + 2b)3

(75)

or

(76)

A = olz, where _ in

(77)

(78)

(79)

K = 0.37 (80)

The value of Von K_rm_.n's constant is actually 0.4. Again, the agreement between results

obtained by taking the equilibrium, nondiffusive limit of the present second-order closure

model of turbulent shear flow and the classical mixing-length theory is rather remarkable.

EDDY TRANSPORT IN A VORTEX?

If a scheme such as that pursued in the previous section for the superequilibrium

equation for a line vortex is followed, the following definitions are introduced into equa-

tions (29) to (32):
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uuA2 rV--)2

2 oV

_,v---_=UVA2__ _ _._ v--)

(81)

(82)

(83)

(84)

(85)

From this substitution,the following equations are obtained:

Q3
Q(1 + 2b)UU = -_- + 4UVN

Q3
Q(1 + 2b)W = -_- - 2UV - 4UVN

Q(1 + 2b)WW : QA
3

Q(1 + 2D)UV = -UU + 2(VV - UU)N

(86)

(87)

(88)

(89)

In these equations N is a stability number defined as

V/r
OV V

_r r

(90)

248

The solutionof equations (86)to (89)in terms of the parameters

Q2 {.1 _ 4bN)

Q2 _1 N)VV = __ + 2b + 4b

WW= Q2
3(1 + 2b)

b and N is

(91)

(92)

(93)



UV = -bQ 3 (94)

wRh

Q2=UU+W+WW= 11_ 21b(1 + 2b) 2 - 8bN - 16bN
(95)

R is clear, since Q2 is positive definite, that under the assumptions made here

turbulence is impossible if

(96)

or if

For the value of b used herein (0. 125), these limits become

Figure 6 shows the behavior of the quantities UU, VV,

(97)

N<-0.729 and N>0.229.

WW, UV, and Q2 with

variations of the stability parameter N for b = 0. 125. The results are plotted in terms

of the ratios of the quantities to their values for N = 0, namely, (UU)o, (W)o , and so

forth. Thus, figure 6 shows the ratios of u'u', v'v', w'w', u'v', and q2 in a vortex

to these quantities in a parallel shearing motion having the same mean deformation rate

and scale.

It may be seen from figure 6 that the turbulent energy and shear have the same

value for N=-1/2 as they do for N=0. Between N=-1/2 and N=0, the turbulent

energy and shear are larger than they are in a parallel shearing motion. For N < -0.729

and N > 0.229, as mentioned previously, no locally sustained turbulent flow is possible.

Thus, for -0.729 < N < -0.5, locally self-sustained turbulence is possible, although the

turbulence is damped by centrifugal effects. For 0 < N < 0.229, turbulence is also pos-

sible, but here again it is damped by the action of centrifugal forces.

What sort of flows does each of these regions represent? First, note that when

8V/Or = 0, N = -1. Thus at the core radius of a vortex (defined here as the radius where

8V/Sr = 0), a turbulent vortex is stable. Near the center of a free vortex, the tangential

velocity V is of the form V=mr - 2nr 2 so that as r-0, N--_. Also, for afree

vortex, V - r/2_r as r -* _ and one finds then that as r -* % N -* -1/2. Thus for

the classical vortex distribution,
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(98)

The flow in the outer regions of the vortex exhibits an eddy diffusivity similar to a par-

allel flow. As the core of the vortex is approached, the flow becomes more and more

stable. It becomes completely stable somewhat outside the core of the vortex. Indeed,

the flow is stable at the point of maximum deformation 0V V This behavior of the
Or r"

stability parameter N for the classical vortex is shown in figure 7.

The region of increased turbulence and shear between N = -1/2 and N = 0 can

be understood if it is noted that the stability parameter may be written

N = V/r (99)
1 OF 2V
2_ 0r r

Thus the region -1/2 < N < 0 represents flows for which dF/dr is negative. These

are, of course, flows which exhibit the well-known Taylor instability (ref. 4).

The region 0 < N < 0.229 is representative of flows occurring between two cylin-

ders rotating in the same direction, so that F at the outer cylinder is larger than F

at the inner cylinder when the centrifugal forces due to the general level rotation cannot

completely stabilize the flow.

For a free vortex, it may be surmised from this analysis that the core regions of

vortices are locally stable. Regions outside the core are unstable and can generate tur-

bulence. If the core regions of vortices are to exhibit a turbulent shear, this must be

caused by turbulence which has diffused into the core region from outer regions which

are unstable or by turbulence which has been generated by a shear in the axial direction

that is not considered in this analysis. This fact, namely, that the turbulent shear -pu'v

in a vortex is not directly related to the local deformation Ov v0r r' would lead one to

believe that it would be impossible to establish any general rules for determining an eddy

viscosity for a vortex. To calculate such flows reliably, it will probably be necessary

to use the full power of second-order closure methods.

It might be noted, in this connection, that if one were to use an energy method on

such flows, much of the physics of the problem would be lost. This may be seen by con-

sidering the sum of equations (86) to (89) with UU = VV as the governing equation of the

flow. In this case, the parameter N disappears from the equations and the essential

physics of the problem have been lost.
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CONCLUDING REMARKS

This short paper has tried to exhibit the relationship between a full second-order

closure model for turbulent flow and the older eddy-viscosity models of such flows. It

has been shown that classical eddy-transport theory can be obtained from a consideration

of the equilibrium, nondiffusive, high Reynolds number limit of the equations of a second-

order closure model.

The nature of such limits has bee n discussed for the flow in sheared stratified

media and for a line vortex. The limitations of an eddy-transport model of turbulence

in a line vortex have been discussed through the use of the equations derived by the lim-

iting process described herein.
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Figure 7.- Behavior of the stability parameter

line vortex (see eq. (98)).
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DISCUSSION

G. L. Mellor: We just finished an experiment at Princeton a year or so ago which is a

boundary layer on a flat wall followed by a curved wall and we did a complete set of tur-

bulent measurements. It was very dramatic indeed; we could see the turbulence nearly

shut off on the convex side of the wall. And then we did try to develop an expression for

the eddy viscosity by balancing production with dissipation using these equations. You

can, as you did, find a correction for the eddy viscosity in terms of the proper curvature

parameter and it works very well. So I'll just put in two cents here that it seems to work

well and it seems to compare with the rather dramatic measurements that we've devel-

oped in the last couple of years.

C. duP. Donaldson: One of the points to be made here is that if you are going to do some

trick flow like this, it is best not to shortcut and just use, say, the energy and stress

equations with some trick for guessing what is missing because you may overlook the

physics of the problem. If you use all the equations, you get the physics right.

S. I. Pal: I notice that you assume the mixing lengths for velocity and for temperature

are the same. My questions are (1) Do you make this assumption to simplify the analysis

and to obtain some essential features of this problem? and (2) If these mixing lengths are

different, would you expect that your results would be modified considerably?

C. duP. Donaldson: Yes, the same lengths were chosen to simplify the analysis. In this

case, which is the superequilibrium limit, you will begin to see the nature of the problem.

No matter what you choose for your eddy-viscosity model, if you want to see whether you

should really use such a model or not, you can make this kind of limiting argument. It is

true that if you have vastly different scales of the temperature and velocity fields, you

are going to have to do something different. As an example, take a large turbulent pipe

flow in which you know all the pertinent mean quantities, and with the turbulence model

you have, compute all the turbulent characteristics in this flow. Then, if you assume a

tiny pencil of heated air is placed in the center of the tube so as to form a very thin hot

jet in that region and you use the same scale in the ui"7_ and (T') 2 equations as you

use in the u_u_ equation, you will find a remarkable result. The general spread of the

hot material is about as it should be, but a hot spot stays near the center of the tube.

This is a result of using the wrong scale in the u'T'''_ and (T') 2 equations. When the

scales of the mean temperature and mean velocity fields are so disparate, one may not

use the same scales in the equations for the various second-order correlations.

S. C. Lee: I have two questions. First, I haven't seen any of your models compared with

the suggested cases. My question is, have you compared any, and if you did, would we be

able to see any of your comparisons?
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C. duP. Donaldson: The only comparisons made to date were for the cases which were

used to construct the model. In these cases, model parameter searches were made to

try to obtain a best fit to the existing data for a free jet, a two-dimensional shear layer,

and a flat-plate boundary layer. The model was determined to be that one that gave the

best fit to all three cases.

I think I should point out here something that I've said ever since I started making such

calculations; namely, it's pretty hard to calculate better at first blush something that

somebody has been calculating empirically for the last 20 years. That really wasn't my

reason for getting into these second-order closure methods - my real reason was to get

at the calculation of some problem which just can't be done by conventional methods and

for which you just don't known what the answer is at all, such as the vortex and the behav-

ior of turbulence in stratified media.

S. C. Lee: My second question is related to your particular model with which you are

interested in atmospheric conditions for stable and unstable atmospheric conditions.

Have you calculated any of those?

C. duP. Donaldson: Yes.

S. C. Lee: Would those be in the paper?

C. duP. Donaldson: Not in the paper to be published in these proceedings. Some results

have been published elsewhere. I have just finished writing a paper which is to be mailed

out soon to many of the people at this meeting. I think you are on the list.

S. Corrsin: You have identified one necessary condition for the use of an eddy-viscosity

model and you of course know that also there is another kind of necessary condition; that

is, the characteristics length of the mechanism transporting the property you are inter-

ested in must be very small compared with any distance over which the mean property

changes appreciably and this is violated by almost all flows that we ever talk about. So

there is quite a different class of reasons why eddy-viscosity models may be wrong in

principle but work in practice.

C. duP. Donaldson: I understand - valid comment.

G. L. Mellor: I ask Stan, who states this necessary condition - I know it has something

to do with kinetic theory but who states it for turbulent?

S. Corrsin: Well as far as ordinary transport models go there's a book on Transport by

a fellow named Bosworth 1 that was published in the 1940's which is the only textbook I

have seen that actually mentions it. But as far as turbulence phenomena go, in general the

gradient transport term is the first term in an infinite-series approximation and this is

1 Bosworth, Richard Charles Leslie: Heat Transfer Phenomena - The Flow of Heat in
Physical _-'_'_'_........ John Wiley & Sons, L-.c., Fl_5_]u.v_j.
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why, for instance,the Prandtl modified-mixing-length theory with the second-order term

could be better. In fact,ifyour computers get big enough, itmay be better to just put on

higher and higher derivatives in an attempt to make something which is physically mean-

ingfulas well as computable.

C. duP. Donaldson: Yes, that'scertainly true for those cases that you can do likethat.

When, indeed, the flow is completely stable in the superequilibrium sense in the region

where the deformations are largest, you can't do that.
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