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SUMMARY

A model for the kinematic eddy viscosity has been developed which accounts for

the turbulence produced as a result of jet interactions between adjacent streams as

well as the turbulence initially present in the streams. In order to describe the turbu-

lence contribution from jet interaction, the eddy viscosity suggested by Prandtl has

been adopted, and a modification has been introduced to account for the effect of den-

sity variation through the mixing layer. The form of the modification was ascertained

from a study of the compressible turbulent boundary layer on a flat plate. A kinematic

eddy viscosity relation which corresponds to the initial turbulence contribution has been

derived by employing arguments used by Prandtl in his mixing length hypothesis. The

resulting expression for self-preserving .flow is similar to that which describes the

mixing of a submerged jet.

Application of the model has led to analytical predictions which are in good agree-

ment with available turbulent mixing experimental data.

INTRODUC TION

In the analytical treatment of turbulent shear flows, the local shear stress may be

expressed as the product of an eddy viscosity and the local velocity gradient by analogy

with the laminar flow representation. However, while the molecular viscosity for lami-

nar flow depends only on the fluid properties, the eddy viscosity is related to the struc-

ture of the turbulence in the shear flow. At present, turbulent flow phenomena are not

well understood, so that empirical hypotheses are utilized to create a mathematical

basis for the investigation of turbulent motion. These phenomenological theories lead

to a formulation of the kinematic eddy viscosity (eddy viscosity divided by local density)

which may be used with the equations of motion and a suitable equation of state to deter-

mine the local time-average conditions throughout a flow field.

The constant exchange coefficient hypothesis for the kinematic eddy viscosity sug-

gested by Prandtl is widely used in analytical studies of the mixing layer formed at the

boundary between adjacent fluid streams. In this hypothesis the kinematic eddy viscos-

ity is taken to be proportional to the product of the mixing-layer width and the difference

between the velocities at the edges of the mixing layer. Application of this formulation
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to the investigation of the mixing of incompressible streams of the same fluid, for exam-

ple, the classical analysis conducted by C-Srtler (ref. 1), has yielded results which have

been verified experimentally. Recent studies of compressible jet mixing (refs. 2 and 3),

however, have shown that Prandtl's relationship is not valid when the fluid density varies

through the mixing layer. Moreover, the prediction that turbulent transport will cease

when there is no velocity gradient in the flow is inconsistent with the experimental evi-

dence (refs. 4 and 5). In this case, it appears that the initial turbulence of the fluid

streams plays an important role in jet mixing. As a result of these findings several

new formulations of the kinematic eddy viscosity or equivalent mixing parameter have

been recommended (refs. 5 to 9). Unfortunately, the general validity of these new

expressions has not been satisfactorily demonstrated.

The present investigation was performed to resolve the discrepancies regarding

the effect of density on the kinematic eddy viscosity and the influence of initial jet turbu-

lence. Prandtl's hypothesis is adopted to describe the mixing of isothermal, incompres-

sible streams of the same fluid which results from the turbulence produced by interac-

tions between the streams. The hypothesis is modified to account for density variations

through the mixing layer by making use of flat-plate, compressible turbulent boundary-

layer information. The contribution of initial stream turbulence to the kinematic eddy

viscosity is investigated for a constant turbulent intensity and an intensity which decays

in the flow direction. In the latter case, use is made of the initial period decay law

which characterizes turbulent flow downstream of grids.

SYMBOLS

a constant

b transverse extent of mixing layer, m (ft)

C1,C2,C3 constants

C D drag coefficient

D diameter, m (ft)

d characteristic dimension of jet nozzle, m (ft)

e exponent for two-dimensional (e = 0) or axisymmetric (e = 1) flow

gc conversion factor, 32.2 lbm-ft/lbf-sec2
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j_t

M
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ml

N

n

n 1

Re

rl/2

T

U

U

U T

U T

V T

X

intensity of turbulence defined by equation (33)

mixing length, m (ft) (see eq. (2))

fluctuating mean free path of fluid particles, m (ft)

Mach number

ratio of external stream velocity to centerline velocity

velocity ratio fixed by turbulence level

characteristic dimension of grid, m (ft)

ratio of external stream density to centerline density

density ratio fixed by turbulence level

Reynolds number

distance from tube centerline, m (ft) (except where indicated)

half thickness of jet, m (ft)

temperature, K (degree R)

velocity of stream approaching grid, m/sec (ft/sec)

velocity in longitudinal direction, m/sec (ft/sec)

longitudinal velocity fluctuation, m/sec (ft/sec)

friction velocity, m/sec (ft/sec) (see eq. (7))

average velocity defined in equation (24), m/sec (ft/sec)

transverse velocity fluctuation, m/sec (ft/sec)

axial distance, m (ft)
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X c

x 1

Y

7i

7

Subscripts:

e
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length of core region, m

axial distance at which

transverse distance, m

(ft)

m = m 1, m (ft)

(ft) (except where indicated)

transverse distance from centerline to inner boundary of mixing layer, m

distance from wall, m (ft) (except where indicated)

constants in equations (15) and (16)

constant in equation (41)

ratio of specific heats

boundary-layer thickness, m (ft)

kinematic eddy viscosity, m2/sec

mass fraction of species j

centerline decay exponent

constant in equation (3)

parameter defined by equation (13)

density, kg/m3 (lbm/ft 3)

spreading parameter (see eq. (22))

shear stress, N/m2 (lbf/ft2)

(ft2/sec)

centerline

external stream

(ft)



r

jet stream

denotes value for incompressible submerged jet

reference

totalcondition

w wall

asymptotic value

KINEMATIC EDDY VISCOSITY MODEL

When a jet discharges into a quiescent or flowing external stream, a distinctive

flow field develops which may be divided into two principal regions. (See fig. 1.) In the

initial region or "core" region, a mixing layer of finite thickness with a continuous dis-

tribution of velocity, temperature, and species concentration forms at the boundary between

the two streams. For the idealized system shown in figure 1, the velocities of the jet and

external streams uj and ue are uniform, the jet nozzle with characteristic dimension

d has infinitesimally thin walls, and the pressure is constant throughout the flow. The

mixing layer gradually broadens in the direction of flow and ultimately extends to the

centerline of the jet at x = Xc, which marks the end of the initial region. In the devel-

oped region, the velocity on the centerline u¢_ decreases while the width of the layer

continues to increase.

The equations of motion, modified according to the usual boundary-layer assump-

tions (ref. 10), are used in the analytical treatment of jet mixing. For turbulent jets, the

local shear stress is related to a kinematic eddy viscosity E according to the Boussinesq

hypothesis

_i (I)
gc T = p_ 3Y

Thus, once the kinematic eddy viscosity is specified,all local conditions throughout the

flow fieldmay be determined for selected boundary conditions.

Prandtl proposed two formulations to characterize the rate of mixing resultingfrom

jet-induced turbulence. In the earlier mixing-length hypothesis, Prandtl suggested the

relation

.91 ou I (2)
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in which the mixing length _ may be thought of as the transverse extent of an identifi-

able lump of fluid (i.e., an eddy). In Prandtl's new theory, referred to as the constant

exchange coefficient hypothesis, it is assumed that the kinematic eddy viscosity varies

in the axial direction only. From considerations of flow similarity, for example, that the

ratio of the mixing length to the transverse extent of the mixing layer b is constant

throughout the flow, it can be shown that

e= e(x) = Kblu¢ - Ue] (3)

where K is a universal constant in each region of the jet for a given geometry. Analyt-

ical studies conducted by Tollmien (ref. 11) with equation (2) and GSrtler (ref. 1) with

equation (3) produced the velocity distributions through a mixing layer presented in fig-

ure 2. As very little difference between the profiles can be discerned, the formulations

of equations (2) and (3) can be considered to be equivalent for practical purposes, and

hence the ratio of _/b may be considered to be a constant in an incompressible free

jet mixing layer. Equation (3) is simpler to use, however, and for this reason it is

adopted as the basic relation in the present model.

In any general formulation of the kinematic eddy viscosity it is necessary to con-

sider the turbulence initially present in the streams, that is, the "preturbulence," as

well as the turbulence produced as a result of the interactions between the streams.
u e

When the velocity ratio m - _ differs significantly from unity, the growth of the
mixing layer is controlled by jet interaction since shearing stresses of large magnitude

occur, which induce high-intensity turbulent activity. As m approaches unity, how-

ever, the preturbulence contribution may become the dominant factor. Thus, in a jet

mixing situation where mx= 0 << 1, the initial spread of the mixing layer depends on jet-

induced turbulence, while far downstream, after appreciable decay of the centerline veloc-

ity, the effect of preturbulence may become important. It should be noted, however, that

when mixing aids such as vortex generators or mixing "fingers" are present in the noz-

zle supplying the fluids or when the fluids to be mixed are introduced into the main flow

through angled injectors, the preturbulence contribution to the eddy diffusivity might pre-

dominate even for m << 1. Two classes of mixing phenomena may therefore be consid-

ered to stem from the two sources of turbulence identified above: (1) The turbulence

level is initially set by the jet turbulence and then gradually decays to the background or

"preturbulence" level; (2) the jet turbulence level is below the background level at x = 0

and the "preturbulence" is the controlling parameter over the full extent of the mixing

region.

Effect of Density Variation

As noted in the introduction, the results presented in references 2 and 3 indicate

that equation (3) is not suitable when there is a significant density variation in the mixing
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layer. Unfortunately, the available compressible mixing layer data are not sufficiently

extensive or reliable to indicate how equation (3) should be modified for this effect. How-

ever, since the free-shear mixing layer and the wake or outer region of the turbulent

boundary layer are described by the same system of equations, it is suggested that the

influence of compressibility for zero pressure gradient can be ascertained by examining

the behavior of the compressible boundary layer on a flat plate for which comprehensive

information exists. In order to implement this approach, an expression must be obtained

which relates e to parameters which characterize the boundary layer. Thus, if equa-

tions (1) and (2) are combined to eliminate the velocity gradient, the result is

e = _ (4)

which may be written in the expanded form

In equation (5) 5 is the boundary-layer thickness and the subscript w denotes condi-

tions at the plate surface. It was shown in reference 12 that neither the ratio of the local

shear stress to wall shear stress nor the parameter f/5 displays a great sensitivity to

either the Mach number or the Reynolds number. Therefore, it may be concluded that

e = f(y/5) (6)

where the friction velocity u_ is given by

(7)

Equation (6) implies that the normalization of the kinem_ttic eddy viscosity with the pro-

duct 5uT(pw/p)l/2 results in a universal parameter, which is a function of only the

dimensionless transverse distance through the boundary layer. This has been verified

by using the calculation procedure described in reference 12, with the exception that a

value for the exponent on the density ratio pw/p of 0.4 fits the data better than the
derived value of 0.50. Results of the calculation are given in figure 3 for Mach numbers

of 0, 2.0, and 5.0.

By applying the analogy between the wake region of the turbulent boundary layer and

the turbulent mLxing layer, _+._is _..._-_ +h_t_..__equation (a_,v,may _ -_ ....... _++_-._.._""_..._h_ mixing

layer in the following form:
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e = f 1(Y/b)

where Pr and U%r are jet reference conditions and b is the extent of the mixing

layer in the direction normal to the jet axis. Furthermore, since the kinematic eddy

viscosity is independent of y for an incompressible jet, or shear layer, the form of

fl is then known and the relation may be written as

e = Constant

buT,r(Pr/P) 0"4

(8)

for both compressible and incompressible mixing layers. Assuming the existence of

velocity and temperature profile similarity, it may be deduced that

U2,r :_gcTr =e au I ~e luc-- uel
Pr _YYr b

(9)

Thus,

/p \0.8

= bluc--Ue{ (10)

which generalizes equation (3) to include density variations. It still remains, however,

to specify the ratio pr/p. It should be noted that this ratio must reduce to unity when
there is no density variation through the mixing layer and that it must reflect the experi-

mentally observed decrease in the mixing rate when the Mach number of a supersonic,

submerged jet is increased at constant static temperature (refs. 13 and 14). A possible

representation is

Pr = f. PC_+ Pe (11)

P 2pc-

where f* is an empirical parameter equal to unity for incompressible jet mixing, which

may vary with Mach number for example (ref. 15). Introducing equation (11) into equa-

tion (10) leads to

K[., pc-+ pe_0.8
E= (12)
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Comparison of Modified Formulation With Experimental Jet SpreadingData

The spreading parameter a is usually reported in the results of jet mixing stud-

ies. This parameter may be thought of as a scaling factor in the transformation from the

x-y physical coordinate system into a system with the single independent variable

defined as

m

= a Y - Y (13)
X

Under conditions of profile similarity, there is a value of

profiles

that will allow all velocity

u - u e
= (14)

u¢_ - u e

to be collapsed to a single curve.

Another consequence of profile similarity is the existence of a unique relationship

between the spreading parameter a and the extent of the mixing region b for a given

flow situation. The extent of the mixing region may be defined as the transverse distance

between the points at which

and

u - u e = (_l(U¢_- Ue)= u 1 - u e (15)

u- u e=ot2(uc_-ue) =u 2-u e

where a 1 and ol2 are arbitrary but universal constants and U 1

velocities at the extrema of the mixing region located at Yl and

From equation (14) (the similarity law) it follows that

=F( I) --F

and

_2 = F(_2)= F(aY2x-Y)

(16)

and U 2 are the

Y2' respectively.

(17)

(18)

From the definition of the extent of the mixing region,

b=Yl- Y2 =(Yl - Y")- (Y2 - Y') (19)
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and hence

 Yi-Y Y2-Y"
T = x _ _ = _1 _2 (20)

Therefore, for any arbitrary nondimensional profile function F, it is seen that

ab:x F-l(°ll) - F-l(a2): Constant (21)

where F-1 is the inverse of the profile function of equation (14) and the constant depends

only on the form of the profile function once the values of al and _2 have been chosen.

Hence, it is seen that the spreading parameter is proportional to the cotangent of the

spreading angle of the mixing region, and if a is a constant, then b must vary lin-

early with x.

Investigations of incompressible jet mixing systems have shown that the lateral

extent of the mixing region b does vary linearly with x, for example, in the core

region, or in a fully developed region, where the external stream is quiescent. It may

be further shown that in this case the kinematic eddy viscosity is related to the spreading

parameter by the equation

and hence the spreading parameter is proportional to the square root of the turbulent

Reynolds number of the jet, which is also a constant. In equation (22) e = 0 for a two-

dimensional jet, e = 1 for an axisymmetric jet, and _ is the characteristic velocity

given as

(22)

= uc- + u e
2 (23)

For the present consideration of density variation through the mixing layer, it is reason-

able to extend the validity of equation (22), at least for moderate variations in density, by

employing a suitable definition of the characteristic velocity, and the kinematic eddy vis-

cosity determined in equation (12). The following expression for the characteristic veloc-

ity proposed by Yakovlevskiy (ref. 16) for the range of 0.3 __<Pe-- -<2 will be adopted:
PC_-

= PeUe + pc-uc- (24)

Pe + PC-
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u e
Then, introducing equations (12) and (24) into equation (22) and defining m -- --

uc-Pen ------ result in
PC_'

and

I (1 + mn)(_._/- 1"8 11/2

which pertains to compressible jet mixing flows in which b/x is constant.

Typical experimental velocity profiles for incompressible and compressible jets

mixing with quiescent and moving external stream are plotted from references 13, 17,

and 18 in figure 4. The values of a used in figure 4 were determined by matching the

slopes of the experimental velocity profiles with the slope of the profile for the incom-

pressible submerged jet at u - ue = 0.5. As can be seen, the choice of a suitable value
uc-- ue

of _ for each mixing flow system results in essentially exact coincidence of all velocity

profiles, thus lending validity to the similarity assumption of equation (14) upon which the

validity of equation (25) rests. Equation (25) may be put into a more useful form by form-

ing the ratio _/#o, where _o is the spreading parameter for an incompressible, sub-

merged jet (i.e., m = 0, n = 1) having a value of approximately 11.0 in the core region

(ref. 17). This results in the expression

___ = (1 + mn) (26)

°'° (1___q)1"811 " mlf *0"8

For an incompressible jet discharging into a moving external stream,

f* = 1, and hence equation (26) reduces to

n = 1 and

cr = 1 + m (27)
% II-ml

which is in general agreement with experimental measurements taken from references 16,

17, 19, and 20. (See fig. 5.) For compressible submerged jets (i.e., m = 0),

o" (1 + nl- 1"8(f,/-0'8
\-y-) , (28)
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which may be written as

Ii y¢-- IM_21''8

a =(f.) -0.8 ____+'--2--

+ 4 M_-2/

(29)

for constant static pressure and molecular weight throughout the mixing layer. Equa-

tion (29) is compared with data from references 11, 13, 14, 17, and 21 to 27 in figure 6

for various assumed variations of f* with jet Mach number. A value of unity for f*

over the Mach number range 0 to 3.0 appears to result in fair agreement with most of

the data points. In particular, the choice of f* = 1 is predictive of the comprehensive

experimental studies of Maydew and Reed (ref. 13) and Olson and Miller (ref. 14).

Accordingly, the parameter f* will be taken as unity in the remainder of this work.

Experimental data from two-stream mixing studies in which there exists a density

variation through the mixing layer provide the most important test of equation (26). Such

data, obtained from references 28 and 29, are compared with equation (26) in figure 7.

The agreement between measured and calculated values is very satisfactory except for

velocity ratios greater than about 0.50. This discrepancy will be investigated in some

detail in subsequent sections. A listing of the test conditions and jet widths from refer-

ences 29 and 30 as well as the calculated results from equation (26) is also given in

table I.

Effect of Initial Turbulence

As a result of recent experimental studies, it has been suggested (ref. 5) that initial

turbulence becomes the controlling factor in jet mixing at values of the velocity ratio m

near unity. This breakdown of the jet interaction mechanism, exemplified by equation (12),

is also apparent from some of the data presented in figures 5 and 7 for m > 0.4, which

deviate from the analytical result (eq. (26)). When preturbulence controls, it appears

that the spreading parameter becomes independent of m, at least for n = 1.0, so that

equation (26) is no longer valid.

For the purpose of developing a formulation of the kinematic eddy viscosity for the

preturbulence mechanism, it is convenient to begin with the basic expression (ref. 30)

e = -v'_--r (30)

Equation (30) relates the kinematic eddy viscosity to a parameter associated with the eddy

size of the turbulence field _' and the transverse velocity fluctuation v'. In the spirit
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of Prandtl's mixing length hypothesis (ref. 20), it is assumed that the mean of the product

of fluctuating quantities is proportional to the product of the means of the absolute values

of these quantities, that is,

"with 0 < a < 1 (a ¢ 0). Although nothing is known about the numerical parameter a, it

may be inferred that it is related to a correlation factor which is descriptive of the tur-

bulent field. As shown in reference 30, [_7[ may be taken to be proportional to the mix-

ing length, which for similar flows is also proportional to the width of the mixing region.

Hence,

e ~ bI_ (32)

in which the turbulent intensity I is defined as

which for situations involving isotropic turbulence is identical with the conventional defi-

nition of intensity and where _ is given by equation (23). Noting that the longitudinal

gradient of the mixing layer width varies directly with the turbulent intensity (ref. 20),

as in the case of jet-induced turbulence, then,

px

b=b i+C lj. Idx (34)
x i

It follows from equation (32) that

(35)

where C2 is a constant.

In general, the turbulence will decay from some initial value starting a small dis-

tance downstream from x = 0. The decay will continue with distance in the flow direc-

tion until a value of intensity commensurate with the background turbulence level is

attained.

An interesting special case of equation (35) results if it is assumed that the mean

absobate value of the transverse velocity fluctuation always varies in direct proportion to

the average flow velocity. In this event, that is,
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it follows that

and

~_

I = Ix= 0

b_x

for b i = 0 at x = 0. Introduction of this assumption implies that the shear flow induced

by the preturbulence is self-preserving, in that the distribution of the nondimensional tur-

bulent shear stress across the shear region is similar at any cross section. The turbu-

lent (Reynolds) stress is given by

but

gc__Z= _u,v--=~
_2 _-2 _2

following Prandtl (ref. 31). Therefore,

gc _" ~ 1x'2=0

as required. Verification of this behavior for plane jets in most of the developed region

is provided by measurements presented in reference 32.

The spreading parameter for a constant turbulent intensity is obtained by taking

I = Ix= 0 and combining equations (22) and (35) with the result

P (l-e) F_ + -_- 1/2

which is independent of the local velocity ratio. For a free jet where the mixing is ini-

tially controlled by jet-induced turbulence, there must exist some distance x = Xl, at

which the velocity ratio attains a value m 1 and the spreading parameters given by

equations (25) and (36) must coincide. Thus,
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I1- ll(1 +.i)11+ °'8
C2 x=O= i (37)

so that the appropriate value of the velocity ratio m 1 at which the mixing becomes con-

trolled by the preturbulence mechanism may be obtained, in principle, from the main-

stream turbulence level. The mixing downstream of the position x 1 is controlled by

the preturbulence mechanism, and the appropriate kinematic eddy viscosity relation is

obtained by combining equations (35) and (37), that is,

K(12_nl)0"Sbll m lu _l++nl_{l+n]\l + mn _1
e = - 1{ _L\ 1 mlnl]j (38)

It is interesting to note that equation (38) corresponds to the expression describing the

mixing of an incompressible submerged jet since the factor in the brackets is only a

slowly varying function of m and n.

Far downstream from the origin of jet mixing, m and n approach unity and the

asymptotic kinematic eddy viscosity for the turbulent jet becomes

/1 1+ nl l/1+ n1/0"8en=m= I =eoo = Kb[l- ml[u__ + mlnl]\------_--- ]
(39)

This expression may be compared with the asymptotic relation given in reference 2, that

is,

%o = 0"04r 1/2u__ (40)

which was used to correlate data from a study involving the mixing of coflowing hydrogen

and air at nearly equal stream velocities. In equation (40)

the jet centerline and the transverse position at which

b _- 2rl/2, equation (40) may be rewritten as

e_ _ 0.02but_

which is identical in form to equation (39).

Initial turbulence levels are generally low in jets which are produced by expanding

a gas through a nozzle. However, if there are blockages inthe flow as in the case of a

ducted fan engine or if mixing aids such as vortex generators are deliberately introduced

into the flow, high levels of turbulence can result. In these cases, the initial turbulence

rl/2 is the distance between

u- u e=0.5(uc_-ue). Since
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level cannot be sustained in the jet flow, and it is expected that [_[ will-decay with dis-

tance downstream. Although the nature of this decay is not known, it is of interest to

apply the initial period decay law found for isotropic turbulence downstream of grids to

the present problem. The decay law

v,2

has been verified by a number of authors including Batchelor and Townsend (ref. 33) for

grid Reynolds numbers from 640 to 5600, Webb (ref. 34) for grid Reynolds numbers from

2000 to 12 000 at various pressures with argon, helium, and air, and Kistler (ref. 35) for

high Reynolds numbers. In equation (41) fl is an absolute constant, 1 pU2CD is the

drag of unit cross-sectional area of the grid, and N is an effective unit of length, which

depends on the spacing of the grid elements. The ratio Xo/N , which has a value between

5 and 15, corresponds to the station at which the decay begins.

In order to adapt the decay law for use in equation (35), it is convenient touse the

following modified form of equation (41):

1 1 /3x

Vx2=0= U-_CDN
(42)

or

-1

l1 _v'2\

2 v" x=N/Y'
(43)

Furthermore, by assuming that

v,2 2
(44)

the eddy diffusivity for the preturbulence mech_nJ.sm following the decay law of equa-

tion (42) takes the form

__NU2C _(1 + 0) 1/2

e=C4\ _ i1: 0) 1/2
(45)
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where b i has been taken to be equal to zero, and

0 - _xvx2=0

U2CD N
(46)

The integral in equation (45) may be evaluated immediately to yield

o>- (47)

for the core and asymptotic regions, as _ is constant for these cases. Moreover,

since /7 = 100 and C D _ 1 (ref. 33) and expected turbulence levels are such that

v,2
0.05 - m < 1.0, 0 becomes large relative to unity a small number of grid spacings

U 2=

downstream of the initial station. In this event,

e= 2C3_ _- 7 = Constant (48)

in the core region, while far downstream of the initial station

2C (NU2CD_

The kinematic eddy viscosity formulations derived above cannot be verified at this time

since pertinent experimental information does not exist. It is interesting to note with

respect to equation (48), however, that a constant kinematic eddy viscosity often success-

fully correlates experimental mixing data (ref. 4).

Application of the Model

The principal results of the preceding analysis are embodied in the three expres-

sions for the kinematic eddy viscosity, equations (12), (38), and (47). The choice of

which form to use in a particular mixing study depends on the expected value of ml

and whether the turbulent intensity in the jet streams decays or remains approximately

constant with distance downstream. While a value of m 1 close to unity may be obtained,

in theory, in a very carefully designed experiment, values of m 1 between 0.4 and 0.5

are found to be representative of a major portion of the existing mixing data (ref. 20, also

figs. 5 and 7).
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Somecaution shouldbeexercised in the application of the model to flows in which

the ratio of external to centerline density is very large compared with unity, for example,

the mixing of a central hydrogen jet with an outer air stream when the static temperatures

of the two streams are not too different. As the density ratio increases and/or the veloc-

ity ratio increases above unity, the rate of mixing increases and ultimately leads to the

generation of a significant positive pressure gradient in the initial mixing region and flow

reversal of the inner jet (refs. 36 and 37). According to the data presented in refer-

ence 38, a back-flow vortex is formed at a momentum flux ratio nm2 of 169. Further-

more, characteristics of wakelike flow, for example, centerline velocity initially decreas-

ing, then increasing, are observed for momentum flux ratios greater than about 4. Use of

the models for momentum flux ratios much in excess of 4, therefore, is not recommended.

In summary, when the ratio of velocities at the edges of the mixing layer is less

than ml, equation (12) is used; otherwise, equation (38) or (47) is used. It is recom-

mended that equation (47) be used only in studies in which artificially high levels of tur-

bulence are present because of the introduction of mixing aids into the flow field.

DISCUSSION OF RESULTS - COMPARISON OF THEORY

WITH EXPERIMENTAL DATA

The kinematic eddy viscosity model developed in the preceding sections was used

with the United Aircraft Research Laboratories mixing-combustion computer program

(ref. 38) to generate flow-field information which could be compared with available mea-

surements. A value of ml, treated as a program input, indicated that the kinematic eddy

viscosity was to be calculated from equation (12) for m = m 1 and from equation (38) for

m > m 1. The value of n 1 was calculated in the program at the longitudinal station where

m = m 1. If the initial velocity ratio exceeded ml, n 1 was taken as the ratio of the

external stream density to the initial jet density. For the results discussed below, m 1

was taken to be equal to 0.40. The transverse extent of the mixing zone b was calcu-

lated according to the method discussed earlier (eqs. (15) and (16)) with a 1 = 0.95 and

a2 = 0.05 in the core region. Values of K which were employed are given in table H

(refs. 39 and 40).

The Two-Dimensional Shear Layer

Computed velocity profiles at two axial stations for m = 0.01 and m = 0.10 are

compared with GSrtler's theoretical profile (ref. 1) in figure 8. The excellent agreement

obtained is an indication that the computer program is operating properly.
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Mixing of Coaxial Incompressible Jets

Landis (ref. 28) investigated the mixing of a 0.64-cm-diameter (0.25-in.) heated

air jet with a coflowing annular air stream at room temperature. In certain tests, small

amounts of helium or carbon dioxide were also metered into the central jet. The velocity

of the central jet was about 60 m/sec (200 ft/sec) while the velocity of the external

stream was varied from 15 to 41 m/sec (50 to 135 ft/sec) to change m. The largest

temperature difference between the streams was 180 K (325 ° R).

Measurements of the longitudinal variation of the centerline velocity ratio for vari-

ous tests are compared with calculated results in figures 9 and 10. For the data pre-

sented in figures 9(a) and (b), the initial velocity ratio is 0.25 and the eddy diffusivity is

calculated from equation (12) until m =>0.4. In figure 9(c) and figures 10(a) and (b), the

initial velocity ratio exceeds ml, and equation (38) of the model is employed throughout.

Although the initial values of m and n are identical for both parts of figure 10, the

nonunity value of n for figure 10(a) resulted from a temperature difference of 58 K

(105 ° R) between the jet and external streams, while that in figure 10(b) was caused

principally by the addition of helium to the jet. Thus, the use of a density correction to

account for temperature and/or concentration variations through the mixing layer appears

to be justified.

Subsonic Mixing in a 53-cm-Diameter (21-in.) Tube

In the experiments of reference 41, a Mach 0.3 jet at 733 K (1320 ° R) was brought

into contact with a cold, Mach 0.1 external stream in a duct. The measure of agreement

between calculated and experimental velocity and temperature profiles at two axial sta-

tions is shown in figures 11 and 12. Both magnitudes and trends are seen to be repro-

duced accurately.

Mixing of a Submerged Supersonic Free Jet

Eggers (ref. 42) conducted an analytical and experimental study of the mixing of a

Mach 2.22 air jet with quiescent air. The axisymmetric jet which issued from a 2.56-cm-

diameter (1.00q-in.) nozzle was probed at seven axial stations in the core region and 23

axial stations in the developed region.

Predicted and experimental profiles at three stations are shown in figure 13. In

order to treat this problem with the existing mixing analysis, it was necessary to assume

that the external stream had some velocity. The chosen value of u e = 30 m/sec

(100 ft/sec) is thought to be sufficiently small relative to the jet velocity so as not to

invalidate the comparison. The predicted mixing region is seen to spread somewhat

more rapidly than is indicated by the measurements but the agreement is still consid-

ered to be good.
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Ducted Mixing of a Supersonic Jet With an Annular Subsonic Jet

Isoenergetic mixing of a central Mach 2.6 air jet with a low-velocity external air

stream was investigated in reference 43. Mach number profiles from the cited reference

are shown with the computed results in figures 14 and 15. The effect of a shock system

on the profile at x/D = 2.5 should be noted. Good agreement is obtained at the four

axial locations shown over most of the duct cross section. The lower predicted values

in the vicinity of the pipe centerline in the downstream profiles are to be expected inas-

much as the wall boundary layer was not accounted for. The analytical results and the

data show the interesting phenomenon of the acceleration of the subsonic external stream

to supersonic Mach numbers.

Other Examples

The models presented in this paper have been applied extensively so that numerous

other comparisons with data are available in the literature. Groves (ref. 44) and Cohen

and Guile (ref. 45) have utilized the recommended kinematic eddy viscosity formulations

in a treatment of the mixing and combustion of a supersonic central hydrogen jet with an

outer supersonic vitiated air stream. The momentum flux ratio of the jet mixing system

studied was approximately 1.5. Eggers (ref. 46) studied supersonic hydrogen-air mixing

(nm2 = 2.2 and 7.7) and found that a kinematic eddy viscosity of the form given by equa-

tion (12) satisfactorily correlated his data.

CORRELATION OF EXPERIMENTAL CENTERLINE DECAY RATES

The decay of centerline concentration is generally presented in the form

where x c is the core length. A correlation of existing data (including that from refs. 47,

48, and 49) emerges within the framework of the ideas presented in this paper, when the

observed values of 0 are plotted against the initial jet velocity ratio mx= 0. It is found

from figure 16 that 0 is approximately unity over the range of velocity ratios where

preturbulence predominates independent of density ratio. Over the range of velocity

ratios where jet interactions constitute the dominant turbulence producing mechanism,

is larger than unity and depends on both m and n. These findings are consistent

with the jet spreading data of reference 50.
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CONCLUSIONS

On the basis of the analysis presented herein and comparison between the analysis

and existing data, it may be stated that

1. The proposed model for the kinematic eddy viscosity, involving an extension of

Prandtl's constant exchange coefficient hypothesis to account for the effect of density var-

iation through the mixing layer, yields good agreement with measured jet spreading

parameters.

2. Transport of heat and mass can occur when the velocities of the jet and external

streams are equal as a result of initial turbulence.

3. Additional mixing data are required to provide verification of the kinematic eddy

viscosity model. In particular, information concerning the rate of mixing of jets at sev-

eral different initial turbulence levels would be of value.
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TABLE I.- COMPARISON OF EXPERIMENTAL AND PREDICTED

SPREADING PARAMETERS

m

0.25

.25

.46

.50

0

.382

.678

0

.279

n

1.300

1.087

1.087

1.300

a (b/x) experimental

Landis (ref. 28)

0.185

.165

.095

.106

(o'/a o)experimental

Willis and Glassman (ref. 29)

1.372

1.540

2.680

2.40

( / O)calculated

1.37

1.57

2.57

2.57

.496

.319

.567

.234

.415

0.915

.927

.952

.842

.852

.876

1.324

1.361

1.218

1.251

0.216

.1298

.0759

.1968

.1421

.0986

.1403

.0836

.1655

.1266

a (b/X)o determined

(ref. 20) is 0.270.

1.18

1.96

3.35

1.29

1.79

2.57

1.81

3.04

1.53

2.00

to be 0.254 from data. Value suggested by

1.08

2.34

5.30

1.16

1.97

3.20

1.60

3.04

1.394

2.10

Abramovich
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TABLE II.- SPREADING PARAMETERS FOR CONSTANT DENSITY JET MIXING

(7 a K

Core region (e = 0) ....................... 11.0 (ref. 17) 0.00764

Developed region:

Axisymmetric (e = 1.0) ................... 22.6 (ref. 39) 0.0089

Two-dimensional (e -- 0) ................... 9.1 (ref. 40) 0.0136

acalculated from equations (3) and (22) with (b/x) o = 0.27 in the core region and

(b/X)o = 0.22 in the developed region as suggested in reference 20.
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DISCUSSION

M. V. Morkovin: Will you ask the awkward question or will IT

H. McDonald: I think Dr. Cohen made it quite clear as to how he viewed the present pro-

cedure, that is a pragmatic industrial procedure which is designed to effect some calcu-

lations, and as he points out, that any developed turbulence model, I don't want to put

words in Dr. Cohen's mouth - any developed turbulence model will have to take certain

effects into account before they can be of use to people like the propulsion group at United

Aircraft Corporation and in addition will have to explain certain things which the present

model does in an albeit empirical manner. Is that correct, Dr. Cohen?

L. S. Cohen: Yes.

M. V. Morkovin: You talk about these preturbulent mechanisms. Well, how many param-

eters do you really have for the preturbulent mechanism - how do you choose for a given

situation? What is the upstream boundary-layer effect or what ? I mean, is it just

because you have seen it before and you know you are a good cook, or do you have some
real mechanisms in mind ?

L. S. Cohen: Well I think your comment about being a good cook is part of it, certainly.

As I mentioned, it turns out accidently the only thing you really have to select in the model

is the ml parameter.

M. V. Morkovin: Look, what is the mechanism - you said the mechanism ?

L. S. Cohen: I am sorry, I did not mean to imply that what I am calling preturbulence is

just a pot into which I am throwing all of my ignorance. What I am saying is, there is

some initial turbulence level which, I suppose if we were wise enough, we would go in and

measure in all of these difficult cases. In deriving this model, we simply assumed that

this initial turbulence level could be sustained somehow in the flow and that this m 1

parameter is directly relatable to this initial turbulence level. The mechanism by which

this initial turbulence is produced, I have no idea how it is produced initially. I just think

we do not know what the causes are but the effect is a particular initial turbulence level so

that no mechanism is put forth for the production of this initial turbulence level.

S. W. Zelazny: I have a comment concerning your second slide and that was the mass

fraction decay exponent. You had shown a plot and the plot showed a definite dip in that

decay exponent for velocity ratios near unity. I think maybe you might be putting a little

bit more into the data interpretation than we have a right to expect, primarily because if

you look at the data that are available that enable us to calculate that decay exponent, you

will find that most of the data are restricted to about 20 diameters downstream. Some

of the data that you used, for example Alpineri's data, did show a decay exponent in the
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ballpark of unity. I do not think 20 diameters is sufficiently far downstream to really

call it an asymptotic decay and that is what we are looking for.

L. S. Cohen: I guess I agree with what you are saying, but I really do not have any com-

ment on it, I think that your point is well taken.
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