
COST ADVANTAGES OF AN INTEGRATED
DOCUMENTATION APPROACH

William 0. Felsman
Litton Systems, Inc.

Interactive use of on-line computing terminals is a method of increasing importance in
developing or updating programs. Two major advantages are realizable: the turnaround time
is decreased by at least one order of magnitude, and the programmer learns to treat the com-
puter not only as a computational device but also as a combination blackboard and library.
All additions and updatings are consequently performed directly on disc storage, and the
completed program is thus available only in the raw form in which it was developed.

Program cleanup is required before formal documentation. TIDY and SWAP are two
programs that assist this function. Figure I shows a subroutine that is representative of the
kind of source code that can result when using on-line, interactive programming techniques,
particularly if full advantage is made of the on-line system by assigning several programmers
to related portions of the same task.

The TIDY program reassigns statement numbers in ascending order, with the base number
and number increment being defined by the operator. It also generates a standardized, closed-up
source language format. Figure 2 shows the RAW subprogram after being processed by TIDY.

Two further transformations are
useful for improving the program legi-
bility. First, the equal, plus, and minus
operators can be set off by blanks and
the variable names can be replaced by
others of increased semantic content.
Figure 3 shows the TIDY'ed program
after being thus processed by SWAP. The
format is more pleasing, and the vari-
ables now indicate the function they
serve. For example, the name of the sub-

SUB3(I)
IARRYO2)

77

SUBROUTINE
DIMENSION
IEMP1-I
IEMP2- 10737U182U

IF(I)77, 10, 10
I- I +21U7U836U7+ 1
IARRY(I)- 1
GO TO 11

10 IARRY(l)-6
11 DO 16 J-1,31

IF (I - IEMP2)12,88,88
12 IARRY(J+ 1)-0

GO TO 90
88 IARRYCJ+ !)• 1

I-I-IEMP2
90 IEMP3L-IEMP2/2

16 CONTINUE
I- IEMP1
URITE(6,800) (lARRY(J l) ,J1-1,32

800 FORMATdX, UUI1, IX, Ull , 2X))
RETURN
END

Figure 1 .-RAW subprogram.

routine BISHOW shows some relation
to its function of generating a bit-by-bit
printout of the contents of the named
variable, and so on.

PREDOCUMENTED SUBROUTINES

The use of predocumented sub-
routines in the development of a new

157

i'AGK NOT FILMED

https://ntrs.nasa.gov/search.jsp?R=19730010491 2020-03-17T08:25:28+00:00Z

158 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

SUBROUTINE SUB3(I)
DIMENSION IARRYO2)
IEMP1-I
IEMP2-107374182I*

10 l» l+21 i*7 l»836 l»7 + l
IARRYC1)- !
GO TO II*

12 IARRY(1)-0
II* DO 22 J-1,31

IF(I-IEMP2)16,18,18
16 IARRYCJ+D-0

GO TO 20
18 IARRY(J+1)-1

I - I - IEMP2
20 IEMP2- IEMP2/2
22 CONTINUE

I-IEMP1
WR I TE(6, 2U) (I ARRYC J1),J1-1,32)

21* FORMATdX, I»(UI1, IX, I* 1 1 , 2X })
RETURN
END

Figure 2.— TIDY'ed program.

SUBROUTINE Bl SHOU(NUMBER)
DIMENSION MEMBITC32)
NUMSAV = NUMBER
NEXT - 107371*1821*
IF(NUMBER)10,12,12

10 NUMBER - NUMBER * 211*71*8361*7 * 1
MEMBIT(l) - 1
GO TO II*

12 MEMBIT(l) • 0
II* DO 22 ICOUNT = 1,31

IFOJUMBER - NEXT)1G,18,U
16 MEMB ITU COUNT * 1) = 0

GO TO 20
18 MEMBIK ICOUNT «• 1) * 1

NUMBER - NUMBER - NEXT
20 NEXT = NEXT/2
22 CONTINUE

NUMBER » NUMSAV
l/RITE(6,2l»)(MEMBIT(Jl)/Jl

21* FORMATdX,
RETURN
END

, IX, 1*11, 2 X))
1,32)

Figure 3. -TIDY'ed and SWAP'ed program.

Table 1.—List of Common Subroutines

Compiler

X

X
X

Assembler

X

X
X
X

X

X

X

X
X
X

X

X
X

LOG2

X

X
X

X

X

X
X

X

SADL

X

X

X

X
X

X

SWAP

X
X
X

X

X

X

X

X
X
X

X

X

TIDY

X
X
X

X

X

X

X
X

X

X

Subroutine

PAGE
INBUF
OUTBUF

MOVER
MOVEL
MVLEFT

MVRITE

ILSHFT

IRSHFT

IFXPT
DLIMIT
PACK3P

PACKP3

UNPACQ
ORDER

Definition

Page control
Source language read control
Source language standard out-

put format
Right adjust name
Left adjust name
Left adjust name, return spaces

shifted
Right adjust name, return

spaces shifted
Shift name specified number of

places to the left
Shift name specified number of

places to the right
Alpha to integer conversion
Delimit a source statement
Terse number equivalence to

variable name
Reassemble names after

delimiting
A4 format to Al format
Indirect reference ordering of

data

COST ADVANTAGES OF AN INTEGRATED DOCUMENTATION APPROACH 1 59

program is a well-known way to greatly reduce the attendant documentation effort at the
same time that it reduces the program development time. Table 1 shows the extent to which
predocumented subroutines were useful in the development of the operational programs dis-
cussed in this paper. The effect is similar to the use of a special higher order language, except
that the more powerful operations are defined by subprograms rather than operators.

METAPROGRAM CONCEPT

Considerable additional advantage can be obtained if programs are written in a generic
manner. For example, in an assembler program for an avionics computer, completion of the
truncated operand addresses is normally a function of the attendant instruction. The alter-
natives might be to use the most significant bits of the instruction counter, to use a maximal
length base address register, or to use a minimal base address register. If the usage for each
instruction is written into the source code, then modification of the program to perform the
assembly function for a second computer requires not only that the source code be redevel-
oped but also that the documentation be rewritten both at the program level and the user's
manual level.

If, on the other hand, the basic program is written to provide for all of these potential
choices and the branch chosen for a particular command is determined by a data set includ-
ing the command mnemonic and a code defining the method of address completion, then
this portion of the program needs no rewriting or redocumentation when the target com-
puter is modified or a new target computer developed. Change of the data-set entry table is
all that is required, together with the attendant minimal documentation.

This method of identifying significant parameters in a class of programs and then writ-
ing a generic program to accommodate these parameters in a defining data set is known as
a "metaprogram" approach. That is, the data set is itself in effect a program, written in some
very simple interpretive language and consequently has become known as the metaprogram.

Figures 4 and 5 show the metaprograms used for TIDY and SWAP.
The TIDY metaprogram is categorized by an identifying operator and several parameters.

These define the start and finish locations within a FORTRAN statement of the series of
places where statement numbers occur in that statement. The main program is thus

GO-GO DELIMIT
TO=TO DELIMIT
CALL=CALL DELIMIT
REAL-REAL DELIMIT
INTEGER=INTEGER DELIMIT
SUBROUTINE-SUBROUTINE DELIMIT

00 2 2 DIMENSION-OIMEMSION DELIMIT
G0 3 3 1 DOUBLE-DOUBLE DELIMIT
G0 "• -"» PRECISION = PRECISION DELIMIT

GOTO 2 2 1 DO-DO DELIMIT2
GOTO 3 -U COMPLEX-COMPLEX DELIMIT

IF -1 -1 1 COMMON-COMMON DELIMIT
IF -5 -1 CYCLE-CYCLE DELIMIT

CYCLE 2 2 GOTO-DELIMITL GO DELIMIT TO DELIMIT DELIMITR
READ 5 5 EQUIVALENCE-EQUIVALENCE DELIMIT

WRITE s s FUNCTION-FUNCTION DELIMIT

Figure 4.—TIDY meta- Figure 5.—SWAP metaprogram.
program.

160 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

STA1
STA1
LOQ1
LOai
CLA2
CLA2
CLA1
CLA1
CLA2
IMC1
ST01
ST01
Aoni
ADD1
sum
SUB1
CLA2
ANA1
CLA2
ORA1
CLA2
Dl VI
CLA2
TKA1
TNZ1
TNZ1
TZA1
TZM
TPA1
TPA1

CLA2

STA2

ADD1
sum
STA2

MPY1
TRZ2
STA2

ST/V2

STA2

ANA1

UKAl

01 VI

TKA1

CLA2

CLA2

CLA2

18001212
18001010
21)001212
2U001010
25012121
29012121
28001212
2R001010
lf)012121
1U001T15
1P001212
ir.ooinn
260(11:12
2C001010
27001212
27001010
31012121
31001010
50012121
30001010
17012121
17001010
00012323
00003010
01003232
0100301C
05003232
05C03010
00003232
OG003010

18001010

2U001010

2R001010
2B001010
2P001010

2S001010
1'4001010
16001010

26001010

27001010

28001010
31001010
22001010
30001010

17001010
00003010

01003010

05003010

06003010

Figure 6.—Typical assembler meta-
program (partial).

specifically directed to the locations where replace-
ment is to occur. Additional statement types can be
processed by adding to the metaprogram with no
change in either the main program or the documen-
tation associated with it.

The SWAP metaprogram is equally simple. The
mnemonic to be replaced occurs to the left of the
equal sign, and the replacing mnemonic sequence is
to the right of the equal sign. Additional control
parameters are included at the right. Thus, DELIMIT
indicates a blank is to be inserted after each occur-
rence of a new variable in the output, and DELIMIT2
indicates that blanks are to be placed after both the
replacing variable and the next succeeding variable.
Additional control commands close up blocks, re-
move parentheses, and perform other functions.

This metaprogram is also open-ended, and ad-
ditional statements in any of several higher order
languages can be accommodated by appropriate de-
scriptions in the metaprogram.

In fact, the data representing the desired mne-
monic exchange is also treated as a simple continua-
tion of the normal metaprogram.

Figure 6 shows a portion of a metaprogram for an assembler. It consists of a defining
mnemonic or mnemonic pair, plus a series of numerals that define the transfers within the
main program which control the development of the assembled code for that instruction
mnemonic. The assembler program is very nearly invariant for a wide class of computers,
consequently documentation of the main program can here, too, be unchanged with new
applications. However, the interpretation of the metaprogram by the programmer requires a
computer assist to documentation.

Figure 7 shows the metaprogram as processed for semantic clarity, and figure 8 shows a
portion of the documentation that relates the metaprogram controls to the operation of the
computer arithmetic unit. The matrix documentation shown in figure 8 has been developed
to reduce the difficulty in the handling, updating, and correction of bulk data. The matrix
documentation program accepts data as a sequential input stream and formats it in both ver-
tical and horizontal directions, with text hyphenation where applicable. Program control
cards direct the number and width of the columns. Thus, each entry in any column is sep-
arately modifiable, and the program adjusts the full updated data input to maintain the
format.

INTEGRATED DOCUMENTATION SAVINGS

Two examples of the cost of documentation are shown in table 2.
In each case, the compiler and assembler documentation for a given computer required

full page counts of 140 and 95, respectively. However, for all successive applications to

COST ADVANTAGES OF AN INTEGRATED DOCUMENTATION APPROACH 161

Pl'.l
STA1
STA1
LDQ1
LDQ1
CLA2
CLA2
CLA1
CLA1
CLA2
IMC1
STQ1
STQ1
ADD1
ADD1
SUB1
SUB1
CLA2
AIJA1
CLA2
OftAl
CLA2
DIV1
CLA2
TltAl
TIIZ1
THZ1
TZA1
TZA1
TPA1
TPA1

SEC

CLA2

STA2

ADD1
SUB1
STA2

MPY1
TRZ2
STA2

STA2

STA2

ANA1

ORA1

DIV1

TRA1

CLA2

CLA2

CLA2

NUMB

18
18
2U
2lt
25
29
28
28
19
lit '
16
16
26
26
27
27
31
31
30
30
17
17
C
0
1
1
5
5
G
6

TYPE

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
u
0
0
0

M

0
0
0
0
1
1
c
0
1
0
a
0
c
0
0
u
1
0
1
0
1
0
1
0
0
0
0
0
0
0

LtKU itLAi
DIRECT
PRI

1
1
1
1
2
L.

\
1
2
1
1
1
1
1
1
1
2
1
2
1
2
1
2
3
5
3
3
3
3
5

SEC

2
0
2
0
1
1
2
0
1
5
2
U
2
n
2
o
1
0
1
0
1
Q
3
0
2
0
2
0
2
0

IIUAKT £t
INDIRECT
pr. i

1
1
1
1
2
2
1
1
2
1
1
1
1
1
1
1
2
1
2
1
2
1
2
1
3
1
3
1
3
1

SEC

2
p
2
U
1
1
2
n
i
5
2
U
2
0
2
0
1
0
1
0
1
0
3
0
2
0
I
0
2
0

SPR

0
C
n
0
1)
0
0
C
0
n
0
0
0
Q
0
0
a
0
0
0
0
0
0
0
0
0
0
0
0
0

NUMB

18
G

2 it
r,

28
28
28
0

28
lit
1C
n

26
r,

27
C
28
31
28
30
0

17
0
0
1
0
5
0
6
0

TYPE

C
0
n
0
n
0
0
c
r
c
0
0
o
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

r.

0
c
0
0
n
0
0
0
0
n
0
0
0
0
0
0
c
u
0
a
0
0
0
u
0
0
0
0
0
0

' DIRECT
PRI

1
C
1
c
1
1
1
0
1
1
1
0
1
c
1
0
1
1
1
1
0
1
3
0
3
0
3
0
3
0

SEC

r

0
0
0
R

0
n
n
0
c
n
!)
n
0
c
0
0
0
0
u
0
0
0
0
0
n
0
0
0
0

INDI RECT
PRI

1
0
1
c
1
1
1
'J
1
1
1
0
1
0
1
c
1
1
1
1
0
1
1
0
1
0
1
0
1
0

SEC

a
9
c
n
Q

0
0
0
0
n
0
0o
c
a
0
0
c
u
0
0
u
c
0
0
0
0
0
0
0

SPT

0
rl

c
0
0
n
0
r,
0
0
o
0
c
0
0
n
0
0
0
0
c
n

6
0
0
0
0
n
c

Figure 7.-Processed assembler metaprogram (partial).

CUJE

CC32

LOC*.

cac*

,«,CN,C

CLA M2

1« Ml
CLA »2

IRA HI

SPC Kl
CL* *2

»l* 112
T«A 111

CL* M2

CL* M2

INSIRUC7IGII COMOir iCNS
HI AND M2 FIELC **SEO
kU IkCIRECT ACIKESS

PACMPC.BAI.I i) i— >I>EO
"MPCS — > PC
c*— > c
• ML — > BARL
IKS — > YARS

r*l*PCS — >PC 1* AON 01
IP2*BAALI — > A
pACK<PC,aARi7»i-->OEO
0 —> J
«»RL — > BARL
B A R S — > B A R S

KKPCSIICUI — > PC
C --> 0

C0«l — > PL

10(01 — > IXK1AKSI
fH2*6AHL> — > A
U — > »
CAUL — > bARL
BARS — > OARS
PC* I --> PC

IAI ~> UI2<eA«Ll
PACKIPCtBAill7M-->DEO
•l«PCS — > PC
a — > c
BARL — > bARL
BARS — > BAKi

PACKIPC.BAMf H 1 — >UC|J
M1*PCS — »»L IA-0)
C — > C
CARL — > tf«KL
BAAS — > d'MS

PICKIPC.bXI 7M-->OeC
Ml'PL'4 — >PC I4»*l

t — > tt
b«RL --> BAKL
BAKS — > B A R S

IriSFHUCTICh CUNDITIIMS
III FIELD CNLV
NO INDIRECT AOORESS

PACKIPCffiAiU7l 1 — >OEO
KUPCS — > PC
g --> u

BARL — > BARL
«A«S > blllS

«1>PCS — >PC IA NCN Dl

PAC«IPC,8ARITII — >0€0
a — > o
t*RL --> BARL
0ARS — > 8A«S

(MI'PCSIULOII — > PC
0 — > 0

PC»I — > Pt

IOEDI — > <MI*BAKSI

C --> J
BARL > RAKL
BARS — > OAKS
««l — > PC

PAlKIPCiBAKI Til— >0£0
HltPCS — > PC
0 — > 0
CARL — > BAHL
BARS --> BARS

PACKl PC .BAR 1 Ml — >OEO
*I»PCS — >PC IA-01
M > t

CARL — > 0ARL
BARS — > BARS

PACKl PC.BAMI7I I — >OED
KI«I>C> ~>PC IA-»I
i --> C
BAKL — > BAKL
dAKS — > BARS

INSIRUCIIUN CCkOITIUNS
111 AND N2 FIELD USED
INOI4ECT ADDRESSING

IIM2*8ARL)I ••*-> A
PACKIPC.BUI Tl 1 — >DEO
"1«PCS --> PC
0 — > Q
BARL — > BUL
BARS — > BAHS

NI*PCS — >PC IA NUN 0)
IIII2>BARLII — > A
PACHIPC.BARIJII— >OEO
o — > g
&ARL — > BAJtL
BARS — > BARS

IN2*BAKLI ~~> BAR! 71
Ml*PCS<NEUt — > PC
u — > g
BARLIHEMI — > BARL

IOEDI — > IH1*BARS)
IIH2*BARLII — > A
g — > g
BARL — > BARL
BARS — > «AKS
PC«l — > PC

1 Al — > UH2*BAMLI 1
PACKIPC.BAKI 71 1— >0£0
IU»PCS — > PC
0 — > g
BARL — > BARL
BARS --> BARS

PACKIPCtBARI 71 1 — >OEO
»l»PCS — >PC IA-01
u — > g
BAKL — > BAKL
BARS — > BARS

PACtlPC.BARI 71) — >OEO
"l»PCS — >PC IA.»I
a —> a
BARL — > BARL
BAKS — > BAXS

INSTRUCTION CONDITIONS
111 FIELD ONLr
INDIRECT ADDRESSING

PACKIPC.BAJimi — >DED
INIOAISI — > PC
g — > o.
BARL — > BARL
BAftS — > BAMS

INI«BARSI — >PCIA NO 01

PACKl PC .BAH 1 71 1— >0£0
g — > g
BARL — > BARL
BAAS — > BARS

g — > Q
BARLIOLOI — > BABl
RARSIOLO) — > BARS

IDEOI — > IIM1*BARSII

g — > o
BARL — > BARL
BARS — > BARS
PCM — > PC

PACKl PC tBAHITI 1 — >OEO
IMl •BARS! — > PC
g — > g
BARL — > BARL
BARS — > BARS

PACKIPC«BARI7II — >DCO
CPI|«B»«S>— >PC IA-01
u — > g
BARL — > BARL
BARS — > BARS

PACKl PC .BAR 1 71 1 — >OEO
IN1«BAMSI — >PC IA«*I
g — > g
BARL — > BARL
BARS — > »1RS

Figure 8.-Matrix documentation of assembler metaprogram (partial).

162 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

Table 2.-Documentation Page Count

Documentation stage

Theory of operation
Flowcharts
Description of charts
Metaprogram description

Total

Compiler

70
30
30
10

140

Assembler

40
30
20

5
95

Table 3.—Program Organization Statistics, Source Code

Name

TIDY (statement
number reorder)

SADL (reliability
model)

LOG2 (logic
simulator)

SWAP (mnemonic
exchange)

Memory allocator
Assembler
Compiler

Basic
program
length
(lines)

229

475

515

210

587
829

1216

Total
program
length
(lines)

686

816

857

637

887
2193
1690

Development
time

(man-months)

0.75

1.5

1.5

.5

3
5.5

24

Basic
program3

0.334

.590

.602

.330

.662

.378

.720

Separable
program -
peculiar

subroutines3

0.052

.025

.000

.000

.025

.077

.063

Data
set3

0.015

.007

.003

.024

.016

.063

.200

Predocumented
subroutines3

0.599

.378

.395

.646

.298

.282

.017

Proportions of total programs.

differing computers, the compiler required only a new description of the metaprogram, and
the assembler, which was less completely organized into a generic program, required a new
metaprogram description plus about 30 percent of the other page counts.

Some indication of the savings to be gained by the use of predocumented subroutine
and metaprogram data-set techniques can be seen in table 3, which gives the relative usage of
these methods for a variety of programs. Documentation savings run typically from 30 to
60 percent on the initial program development. However, the use of subprograms has a
major effect upon the program cost itself. Table 3 tabulates the number of lines of source
code for the programs investigated together with the development time for these programs.
These programs were developed by a group of five people, of consistent skill level, working
both individually and as members of small teams. A plot of these data is shown in figure 9.

The most significant aspect of the graph is that it shows an exponential growth of
development time with the length of the basic program. The basic program consists of the
main program plus such program-peculiar subroutines as are conceptually involved with the
main program in a highly complex manner. Thus, implementation of an integrated

COST ADVANTAGES OF AN INTEGRATED DOCUMENTATION APPROACH 163

to <
I CC
t- o

^ °O cc

O cc
LL LU
U. Q.
LU O

5 UJ

< Ecc I-
O LU
O I-
cc uj
o- rJ

"
I- O

40

30

20

10

8

6

4

3

2

1.0
0.8

0.6

0.4

0.3

0.2

/• COMPILER

PROTOTYPE COMPILER

ASSEMBLER

MEMORY
ALLOCATOR

RELIABILITY/
MODEL

LOGIC SIMULATOR

STATEMENT NUMBER RE-ORDER

MNEMONIC TRANSFORMATION

200 400 600 800 1000 1200

BASIC PROGRAM SOURCE CODE (LINES)

Figure 9.—Program development time.

1400

documentation approach, which suggests the use of small, preferably predocumented, sub-
program elements is not inconsistent with the program design cycle, which also shows greater
efficiency in the time of program development when appropriate organization permits the
size of the basic program to be reduced.

MODIFICATION

Figure 10 shows the advantages resulting from the use of the integrated documentation
approach when it was necessary to modify an existing assembler to accommodate a new
computer. Two basic programs were available for modification, one with both subroutines
and a metaprogram, the other being predominantly large program elements. Eighty-five
percent of the source code from the integrated approach was applicable, whereas only 40
percent of the unitized code could be reused.

Figure 10 also shows the costs associated with the two modifications. The unitized
code changeover was estimated at 15 man-months. The actual cost to update the program
using an integrated documentation approach was 2 man-months.

Further cost savings are shown in table 4. Here, the effect of the metaprogram is de-
tailed. The cost of modification from one target computer to another is compared to the

164 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

O

o
o!
O

z o
H U
a «

> o!
W O
J O
U «
rt o,

40%

UNITIZED INTEGRATED
CODE DOCUMENTATION

APPROACH

X
H
Z
O

z
2
Q
Ua

§
u

OSo
In
U,
W
Zo
H

O

M
O

D
IF

1

15 MAN -MONTHS
(ESTIMATED)

TARGET COMPUTER A
TO TARGET COMPUTER B

Z MAN-MONTHS

(ACTUAL)

n TARGET COMPUTER B
TO TARGET COMPUTER C

UNITIZED INTEGRATED
CODE DOCUMENTATION

APPROACH

Figure 10.—Program modification comparison (assembler program).

Table 4.—Integrated Documentation Effects on Program Modification

Program type

Compiler
Assembler

Data set proportion
in source code

0.20
.06

Rate of cost of
modification to new

program design

0.1
.3

cost of a new program design for the new target computer. Examples are given for a com-
piler and an assembler.

The compiler, which makes extensive use of a metaprogram, can be modified to accom-
modate a new target computer at one-tenth the cost of writing a new compiler program.
Modifications are almost entirely to the metaprogram. The assembler, which uses a less well-
developed metaprogram but which does make extensive use of common subroutines, can be
modified to accommodate a new target computer at about one-third the cost of developing
a new assembler program.

RUNNING TIME

Run time of production programs developed using the integrated documentation
approach would appear at first consideration to be somewhat higher than the run times of
similar programs written in unitized code. This is because the use of prepackaged sub-
routines implies a close, but not exact, fit between the requirement and the package and

COST ADVANTAGES OF AN INTEGRATED DOCUMENTATION APPROACH 1 65

because of the extra time required to execute the branch statements implied by metapro-
gram techniques.

However, the integrated documentation approach tends to segment a program into
functionally consistent elements with minimal communication required between them and
consequently parallels good programming practice. The result is that the total program size
is somewhat reduced, values from 10 to 30 percent being typical. Smaller programs, using
less core, generally are charged a lesser main frame usage rate. This lesser rate compensates
for the longer execution time.

CONCLUSION

An integrated documentation approach using predocumented subroutines and meta-
program techniques is a very efficient means of not only generating the relevant documen-
tation but also of reducing program development costs.

DISCUSSION

MEMBER OF THE AUDIENCE: Do you use this approach on all your programs? In
other words, do you think that all programs are divisible into small metaprograms?

FELSMAN: Yes, they are divisible, but we do not always do it because occasionally
you run into someone who wants something in a hurry. Then we simply write in a standard
fashion as rapidly as we can. It is a one-of-a-kind thing, and we do not worry about docu-
mentation. But for big problems like compilers, assemblers, and memory allocators, we go
through the process and do indeed break it out, use our regular subroutines, and always
write data-set-wise or metaprogram-wise. It is much more convenient.

MEMBER OF THE AUDIENCE: I think your presentation answered the question
raised by Gridley yesterday about whether we should put emphasis on subroutines or smaller
parts. At that time we did not really respond to his question on the panel, and I think we
should have because it is an asset not only in developing programs but in distributing pro-
grams to other people to use. If you are going to use an entire program without modifying
it, fine. But when you develop programs, I think your point is valid that it takes less time to
develop a new program from well-documented subroutines or metaprograms than it does to
modify an existing program to make it work on a computer other than the one for which
the program was written.

MEMBER OF THE AUDIENCE: You implied that this was for a given set of target
computers.

FELSMAN: Yes. In this case they happen to be all airborne computers.
MEMBER OF THE AUDIENCE: Have you considered it for a general-purpose type of

computer in a general-purpose environment?
FELSMAN: As far as I can tell, we have investigated other military computers like the

AN/UYK-7, which is a very powerful floating-point machine very similar to some of our
commercial machines, and we wrote a metaprogram for that using this compiler. I think the
answer to your question is yes, although not unequivocally.

166 AUTOMATED METHODS OF COMPUTER PROGRAM DOCUMENTATION

MEMBER OF THE AUDIENCE: Presume a manufacturer has provided this to us, but
our problem is related to application programs. Can this be applied there?

FELSMAN: You have a more difficult task because you have to find the common
parameters from application to application. If you can find any, you can do it. If they are
not immediately evident, maybe you cannot do it.

