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CONVERSION OF MAGNETIC FIELD ENERGY INTO

KINETIC ENERGY IN THE SOLAR WIND

Y. C. Whang

ABSTRACT The ouiflow of the solar magnetic field energy (the radial component of the Poynting
vector) per steradian is inversely proportional to the solar wind velocity. It is a decreasing
function of the heliocentric distance. When the magnetic field effect is included in the
one-fluid model of the solar wind, the transformation of magnetic field energy into
kinetic energy during the expansion process increases the solar wind velocity at 1 AU by
17 percent. The predicted solar wind conditions at 1 AU are u =302 km/sec,
n =8 protons/cm®, T'=1.5X10°°K, g = 1.4X10"2 erg/cm?/sec, B = 7.3y ¢ = 129.5°, and
B =1.58. They agree very well with the observed quiet solar wind.

INTRODUCTION

Since the original application of hydrodynamic equa-
tions to the solar wind by Parker [1958], a number of
theoretical models have been developed to study the
solar wind, notably the one-fluid models studied by
Noble and Scarf [1963] and by Whang and Chang
[1965], and the two-fluid model by Sturrock and Hartle
[1966] and by Hartle and Sturrock [1968]. The
one-fluid model assumed that all types of particles
(electrons, proton, helium, etc.) have the same
temperature, while the two-fluid model took into
consideration the different temperatures for protons and
electrons. The inviscid model of Whang and Chang
predicted a solar wind velocity of 260 km/sec at 1 AU.
The solution of Hartle and Sturrock predicted a velocity
of 250 km/sec at 1 AU. These velocites are about 20
percent below the observed quiet solar wind condition
[Hundhausen, 1970].

The interplanetary magnetic field has a strong coupling
with the dynamics of the solar wind. The magnetic field
organizes the collisionless plasma into a continuum in
the expansion process of the solar wind. It is well known
that when the solar wind flows across a shock wave, the
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magnetic field energy flux and the convective thermal
energy increase during the compression process at the
expense of the kinetic energy. In a reverse process,
during the magnetohydrodynamic expansion of the solar
wind, the magnetic field energy as well as the thermal
energy is continuously converted into kinetic energy.
Therefore, we propose that in a magnetohydrodynamic
model of the solar wind, which includes an additional
energy source, the predicted solar wind velocity can be
increased closer to the observed quiet condition.

Various mechanisms for the additional energy source
needed to increase the solar wind velocity have been
proposed by many authors. Barnes [1968, 1969]
proposed that a significant amount of energy is carried
by the hydromagnetic waves. The dissipation of
hydromagnetic waves adds its energy into the solar wind
flow. Jokipii and Davis [1969] proposed that the
observed long-lived velocity streams are the source of

long-wavelength turbulence, which in turn serves as an
efficient and variable heat source for the solar plasma. In
this paper, we will show that the magnetic field energy
flow per steradian is a decreasing function of the
heliocentric distance . The total decrease of field energy
flow from 7 = 2rg tor =1 AU is about 25 percent of the
convective kinetic energy at 1 AU. Therefore, during the
expansion process of the solar wind, the conversion of
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field energy into kinetic energy increases the solar wind
velocity by 17 percent.

The solution of a steady-state magnetohydrodynamic
one-fluid model of the solar wind is carried out in this
paper. The model assumes that the solar wind velocity is
in radial directions away from the center of the sun, and
its temperature is isotropic. The solar wind conditions
near the equatorial plane predicted by the present
solution clearly demonstrate the process of energy
conversion in the solar wind on a quantitative basis.

DECREASE OF THE MAGNETIC FIELD
ENERGY FLOW

Spiral Pattern of the Magnetic Field
The steady-state solar magnetic field is governed by
Maxwell’s equations

V-B=0 &)

V X(uXB)=0 2
Spherical coordinates (r, Y, w) are used in this paper; ¢
denotes the colatitude measured from the north pole of
the sun. If B = e, Byfr,y) + € ,B (1), then we can
write equations (1) and (2) as
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These two equations can be integrated to give
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which represent the spiral pattern of the solar magnetic
field. '

The Poynting Vector
The equation of energy conservation can be integrated
once:

mi GM®

)+ r*q,+r’p, = F

u2
N\m;% +5kT - )

Here N =r*nu=constant, G is the gravitational
constant, M, the mass of the sun, ¢, the radial
component of the heat flux, and p, the radial
component of the Poynting vector

P =3 BX(uXB)
In the right side of (5), F is a constant. Thus equation
(5) expresses the conservation of the total energy in the
steady-state expansion of the solar wind. During the
expansion process, energy can be converted from one
form into another, but the total energy must be
conserved.
The radial component of the Poynting vector is

uB? sin? ¢

Pr = 47

Making use of (4), we can express the flow of magnetic
field energy per steradian as

"2Pr°c u! (6)

The solar wind velocity u is an increasing function of the
heliocentric distance r. Thus the flow of magnetic field
energy per steradian is a decreasing function of 7.
Conservation of the total energy flow requires that the
field energy be transformed into other forms of energy
flow.

Mechanism of Energy Conversion
The equation of motion for the magnetohydrodynamic
expansion of the solar wind is

D 1
m;n'p; = ming — V(kT) + . IXB
™
where g = —e,GMy/r*. In the right hand side of (7), the
magnetic field exerts a force

1
- JXB

on the moving solar wind flow. The radial component of
this force can be written as

B%sin’¢ du
4mu  dr

This term is always positive, because u is an increasing
function of r. The magnetic field exerts a force on the
solar wind in the direction of the solar wind velocity.
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The rate of work done by this force on a unit volume of |

the solar wind flow is

B? sin’¢ du
47 dr

The work done on the solar wind flow is used to increase
the kinetic energy of the solar wind at the expense of
the field energy.

MAGNETOHYDRODYNAMIC ONE-FLUID MODEL
OF THE SOLAR WIND

Governing Equations
The magnetohydrodynamical expansion of the one-fluid
solar wind is governed by a system of two ordinary
nonlinear differential equations: The equation of motion

akT _ Mo 2k dr

du u M 4 m; dar
dr ~r 4 - 2kT _ BZsin’¢ (8)

m; 47rml-n

and the equation of energy conservation

r? k cos (;b?;f

_ u’ _ml-GM@ B%sin?¢
—N(ml- 2+5kT p + .
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where the thermal conductivity « is proportional to
TS/Z

Let us denote conditions at the critical radius by a
superscript asterisk. Then we can introduce the follow-
ing dimensionless variables

V=ufu*
6= T/T*
o= r/r*

and dimensionless parameters

o = —2NK
rfg*cos?g*
_ GM,
Y= r*u*Z
— F
H Nmiu"‘2
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ml u*z
2KT*

E:

Because the denominator of (8) vanishes at the critical
radius, we obtain

#2 /80 14 2sin?¢*

£ = 1+sin® ¢>*B

In terms of the dimensionless quantities, we can write
the two governing equations, (8) and (9), in dimension-
less form,

pid do
av _ v 20 — 7 -Z dZ
aZ " Z 2 (10)
£V -0-(1)%
and
cos?
%%=Zzoésfz coszq; [ +(§_1)V+ B_E_EH]

(11

These two ordinary differential equations will suffice to
solve for the two dependent variables ¥V and 0.
At the critical radius, equation (11) reduces to

@ -Gl o

Both the denominator and the numerator of equation
(10) must vanish simultaneously at Z=1. When the
numerator is zero, we obtain

(@) -2

From the above two equations, we can show that « is
not an independent parameter:

(13)

yE—2
S Iy TH-3/2)-3]2

(14)

Therefore, the general solutions for ¥ and 6 can be
expressed in the form

V=V(ZH"E9*)
and

15)
0=6(Z,H, & ¢%)

Making use of the 'Hospital’s rule, we can calculate
(dV/dZ)*; the result is
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where

a+(Ey—2)(1 + 2sin® ¢*)
(65-2)

(16)
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Numerical Solutions
For any given value of v, H, £, and ¢*, we can use (13)
and (16) to calculate the solution for ¥{Z) and 6(Z) in
the € neighborhood of the singular point at Z = 1. Then
we can integrate equations (10) and (11) for Z>1+e¢
and Z < 1 — €. The two branches of the numerical
solutions join smoothly at the singular point.

The numerical solutions for Z>1 show the same
property as the numerical solutions for the inviscid
model of the solar wind [Whang and Chang, 1965]. As
Z o, the solution curve is expected to approach the
condition V="V, and 6 =0with

+..£____.1=H
2 &V,

V. 2

A solution satisfying this condition when H = 3.0,
£=1.3,¢*=176", and y = 1.8978 is obtained as shown
in figure 1. The numerical values of this solution in
dimensionless form V= V(Z) and 8 =6(Z) are given in
table 1.

Physical interpretation of the numerical solution
depends on the choice of the ratio r*/r,. When the
critical radius is chosen at between S and 6 14, the solar
wind conditions at 1 AU predicted by the present
solution are (fig. 2) u = 287-318 km/sec and
T = (145 - 1.57)X10°°K. In the remaining part of this
paper, we will interpret the physical meaning of the
solution based on r*/ry=5.5 (fig. 3). The predicted
solar wind conditions at 1 AU are

u = 302 km/sec

T= 1.50X10° °K

ar _ -9 ©

ar 5.7X10 K/cm
¢ = 129.5°
B = 1.58

where @ is defined as the ratio of 2nkT to B*/8n.

NUMERICAL SOLUTION

1.5
FOR H*3.0 £+1.3
y *1.8978
¢*=176°
rsp¥*
o (CRITICAL RADIUS)

0.5+

T—Pm—\
o T

&) 1 2
v

Figure 1. The numerical solution, given in fable 1,
smoothly passes through the singular point at the critical
radius (Z = 1), and approaches the condition V =V
and 0 =0as Z > oo,

' t*/ry=5.0

TEMPERATURE AT 1A.U. (10° °K)

|
290 300 310
VELOCITY AT 1A.U. (KM/SEC)

1
320

Figure 2. The solar wind conditions at 1 AU predicted
by the present solution depend on the choice of the
ratio r¥/rg. For r¥*fro = 5.5, the present result gives
u=302 kmfsecand T= 1.50X10° °Kat 1 AU.
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Table 1. Numerical solution for H= 3.0, §= 1.3, ¢*= 176" and y= 1.8978

z ¢ 14 0 do/dzZ B
0.100 171.3 0.046 3.026 -14.76 0.021
0.126 172.7 0.069 2.704 -10.53 0.020
0.158 174.0 0.105 2415 - 7483 0.019
0.200 175.0 0.159 2.157 - 5294 0.017
0251 175.7 0.234 1928 - 3.733 0.017
0316 176.2 0.331 1.724 - 2,630 0.017
0.398 176.4 0.448 1.544 - 1853 0.018
0.501 176.5 0.579 1.384 - 1309 | 0019
0.631 176.5 0.719 1241 - 0926 0.022
10.794 176.3 0.860 1.114 - 0.657 0.027
1.000 176.0 1.000 1.000 - 0467 0.033
1.259 175.6 1.134 0.898 - 0333 0.041
1.585 175.0 1.261 0.807 - 0237 0.052
1995 174.2 1.380 0.725 - 0.169 0.067
2512 173.3 1.489 0.651 - 0.121 0.089
3.162 172.1 1.590 0.585 - 8.61X10~2| 0.118
3981 170.6 1.682 0.525 - 6.14 0.157
5.012 168.8 1.766 0472 - 438 0.211
6310 166.5 1.842 0424 - 3.11 0.283
7.944 163.8 1.911 0.381 - 222 0378
10.00 160.5 1.974 0.343 - 1.58 0.503
12.59 156.6 2.030 0.308 - 113 0.661
15.85 152.0 2.081 0.277 - 8.10X10-2| 0.850
19.95 146.7 2.127 0.249 - 588 1.063
25.12 141.0 2.169 0.223 - 435 1.277
31.62 134.9 2.207 0.199 - 327 1.464
39.81 128.8 2.241 0.175 - 251 1.588
50.12 122.9 2.271 0.152 - 196 1.626
63.10 117.5 2.298 0.130 - 1.53 1.567
79.44 112.7 2322 0.108 - 1.18 1.424

100.0 108.5 2.342 0.087 — 8.78X10" 4| 1.222
125.9 105.0 2.359 0.068 - 6.16 0.997
158.5 102.1 2372 0.052 - 387 0.781

The values of u, T, dT/dr, ¢, and § calculated above are
independent of the constant K used in the expression for
the thermal conductivity k = KT°?. However, the
proton number density, the magnitude of the mag-
netic field and the heat flux at 1 AU predicted by
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the present solution depend on the value of the con-
stant K (table 2). When the value of K is about half of
that used in the ordinary expression for the thermal
conductivity of fully ionized hydrogen, the predicted
n, B, and g agree very well with the observed solar
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Figure 3. The solar wind temperature, velocity, direc-

tion angle, and B-value as functions of the heliocentric
distance, at 1 AU u = 302 kmfsec, T= 1.50X10° °K,
¢=129.5° and B = 1.58.
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Figure 4. The proton density and the magnitude of

the magnetic field as functions of the heliocentric
distance.

Table 2. The proton density, the magnitude of the 10° F—7—T TN B R ERRE T T T TTITH
magnetic field, and the heat flux at 1 AU predicted by - —
the present solution E \ 3
10% |= N

k/T5'?, m, B, q, - \ .
ergs cm? protons  gammas ergs cm™2 sec™! 0% < =
sec™! deg™'? cm™3 6 N
g °§|o = \ .
6.00X10"" 13.1 9.3 2231072 § L \ ]
r | =

4.58X1077 10.0 8.1 L7ox102 ¢ | \ ]
210" = N -

4.00X10°7 8.7 76 14ox102 & [ N ]
<C _2_ \ —

3.66X1077 8.0 7.3 136x10-2  1'OF \ 7
2.75X107" 6.0 6.3 102102 'O°F \ 5
‘ 0k :

wind conditions [Hundhausen, 1970; Ness, 1967]. - \;
For k = 3.66X10™7 T5'% erg cm™ sec™ deg™', the g5l 1 11111 RN RN S R
predicted results at 1 AU are n=8 protons/cm?, : 10 /ey 10 0

B=73v and q=136X10"% erg/cm?®/sec. The pre- _. , ,

dicted n, B, and g as functions of the heliocentric ~FigweS. The heat flux as a function of the heliocen-

distance r are plotted in figures 4 and 5. The density

tric distance, q = 1.4X 1072 erglem? [sec at 1 AU.
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curve agrees reasonably well with the observed data in
the region 2 rg <r<20 rg [van de Hulst, 1950, 1953;
Michard, 1954; Blackwell, 1956] . In the regionr <2 rg,
the present solution is not expected to be accurate,
because the structure of the solar magnetic field is more
complicated than the simple model described by
equations (3) and (4).

CONCLUDING REMARKS

The solar wind conditions predicted by the present
magnetohydrodynamic model show that when the effect
of the solar magnetic field is included in the one-fluid
model, we obtain an increase of 17 percent in the solar
wind velocity or 37 percent in the convective kinetic
energy at 1 AU. The variations of the magnetic field
energy flow and the convective kinetic energy flow per
steradian as functions of the heliocentric distance r are
plotted in figure 6. The magnetic field energy flow per

1 1 4 3140l 1 RS L1 11l

T I
T T 11T

I
T

KINETIC ENERGY FLOW
B PER STERADIAN, B
pur2(u%2)

0.1— ' C
. \ FIELD ENERGY FLOW [
I PER STERADIAN, r2 pr [
_ ; B
_ | n
. — |
|
-] l —
|
] | L
|
|
|
0.01 =TT TTT T TTTTT ‘l T T T
1 10 100 1000
r/ To
Figure 6. The radial flow of magnetic field energy per

steradian is a decreasing function of the heliocentric
distance. The field energy is converted into the kinetic
energy during the expansion of the solar wind. The
convective kinetic energy flow per steradian at 1 AU is
chosen as unity in this figure.
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steradian is a2 monotonically decreasing function of r.
Using the convective kinetic energy per steradian at
1 AU as 2 unit, we can see that the total decrease of the
magnetic field energy flow fromr=275tor=1AU s
about 0.35. Conversion of the magnetic field energy into
the kinetic energy certainly plays an important role in
the expansion process of the solar wind., :

Urch [1969] has studied the magnetohydrodynamic
one-fluid model of the solar wind. The equations of
motion and energy conservation were integrated in a
quite different way. He has obtained the numerical
solutions for the solar wind after several iterations. The
temperatures at 1 AU predicted by Urch are 3 to
4X10°°K, which are too high compared with the
observed data.

Recently Wolff et al [1971] have studied the
magnetohydrodynamic two-fluid model of the solar
wind; their predicted solar wind conditions at 1 AU are

- very close to the results obtained in this paper. Barnes et

al. [1971] have also included the magnetic field in their
two-fluid model of the solar wind. Because they have
dropped out the JXB/c force term in their equation of
motion, the magnetic field force is not doing work on
the expanding solar wind. The conversion of magnetic
field energy into kinetic energy is not included in their
work. They proposed that an energy source due to
dissipation of hydromagnetic waves supplies the energy
needed to increase the solar wind velocity. Their source
of energy is completely different from the magnetic field
energy flow (the Poynting vector) discussed here.

ACKNOWLEDGMENTS

This work was supported by National Aeronautics
and Space Administration under Grant No.
NGR-09-005-063.

REFERENCES

Barnes, A.: Collisionless Heating of the Solar Wind
Plasma, I, Theory of Heating of a Collisionless Plasma
by Hydromagnetic Waves. Astrophys. J., Vol. 154,
1968, p. 751.

Barnes, A.: Collisionless Heating of the Solar Wind
Plasma, II, Application of the Theory of Plasma
Heating by Hydromagnetic Waves. Astrophys. J., Vol.
155,1969, p. 311.

Barnes, A.; Hartle, R. E.; and Bredekamp, J. H.: On the
Energy Transport in Stellar Winds. Astrophys. J.
Ltrs., Vol. 166, 1971, p. L-53.

Blackwell, D. E.: A Study of the Outer Solar Corona
from a High Altitude Aircraft at Eclipse of 1954,
June 30. Mon. Not. Roy. Astron. Soc., Vol. 116,
1956, p. 57.



Hartle, R. E.; and Sturrock, P. A.: Two-Fluid Model of
the Solar Wind. Astrophys. J., Vol. 151, 1968,
p. 1155,

Hundhausen, A.J.: Composition and Dynamics of the
Solar Wind Plasma. Rev. Geophys. Space Phys., Vol.
8, 1970, p. 729.

Jokipii, J.R.; and Davis, L.Jr.: Long Wavelength
Turbulence and the Heating of the Solar Wind.
Astrophys. J., Vol. 156, 1969, p. 1101.

Michard, R: Densitie’s E'lectroniques Dansla Couronne
Externe du 25 Fevrier 1952. Ann. Astrophys., Vol.
17,1954, p. 429.

Ness, N. F.: Observed Properties of the Interplanetary
Plasma. Ann. Rev. Astron. Astrophys., Vol. 6, 1967,
p. 79.

Noble, L.M.; and Scarf, F. L.: Conductive Heating of
the Solar Wind, I. Astrophys. J., Vol. 138, 1963,
p- 1169.

Parker, E. N.: Dynamics of the Interplanetary Gas and
Magnetic Fields. Astrophys. J., Vol. 128, 1958,
p. 664.

Sturrock, P.A.; and Hartle, R. E.: Two-Fluid Model of
the Solar Wind. Phys. Rev. Letters, Vol. 16, 1966,
p.628.

Urch, I.H.: A Model of the Magnetized Solar Wind.
Solar Phys., Vol. 10, 1969, p. 219,

Whang, Y.C.; and Chang, C.C.: An Inviscid Model of
the Solar Wind. J. Geophys. Res., Vol. 70, 1965,
p. 4175.

Wolff, C. L.; Brandt, J. C.; and Southwick, R. G.: A Two
Component Model of the Quiet Solar Wind with
Viscosity, Magnetic Field, and Reduced Heat
Conduction. Astrophys. J., Vol. 164, Pt.1, 1971,
p. 181.

van de Hulst, H. C.: The Electron Density of the Solar
Corona. Bull. Astron. Inst. Neth., Vol. 11, 1950,
p- 136.

van de Hulst, H. C.: The Chromosphere and the Corona,
in The Sun, edited by G. P. Kuiper, Univ. of Chicago
Press, Chicago, 1953, p. 259.

243



