TRANSITION FROM A SUPERSONIC TO A SUBSONIC SOLAR WIND B. Durney

ABSTRACT

The transition from a supersonic to a subsonic corona was investigated by increasing the density N_o at the base of the corona (initially $N_o = 9.3 \times 10^7 / \text{cm}^3$) while keeping the temperature T_o there constant ($T_o = 2.1 \times 10^6 \,^{\circ}$ K). For the initial values of N_o and T_o , the solution of the inviscid solar wind equations is of the Parker type. As N_o is increased, Parker type supersonic solutions cease to exist for $N_o = N_o^P \sim 1.17 \times 10^8 / \text{cm}^3$. No subsonic solutions exist, however, for $N_o < N_o^S$ where $N_o^S > 3 \times 10^8 / \text{cm}^3$. For $N_o^P < N_o < N_o^S$ the solar wind equations permit supersonic solutions which are not of the Parker type, with the temperature varying as $(1/r)^{4/3}$ for large distances.

The transition region separating supersonic expansions of the solar wind [*Parker*, 1958] from subsonic expansions [*Chamberlain*, 1961] has been considered by *Parker* [1965]. Here we study this transition region for a given value of the temperature at the base of the corona. *Chamberlain's* notation [1961] will be used throughout this paper; that is, the dimensionless values of the temperature, square of the velocity, and the inverse of the radial distance will be defined as

$$\tau = T/T_1 \qquad \psi = mw^2/kT_1 \qquad \lambda = GM_{\Theta} m/kT_1 r (1)$$

where T_1 is a reference temperature taken equal to $2 \times 10^6 \,^{\circ}$ K, w the radial expansion velocity, m the average mass (for a hydrogen-helium mixture 10:1), M_{\odot} the mass of the sun, and G and k are the gravitational and Boltzmann constants, respectively. The usual momentum and energy equation can then be written as

$$\frac{d\psi}{d\lambda} = \frac{1 - 2\tau/\lambda - d\tau/d\lambda}{0.5(1 - \tau/\psi)}$$
(2a)

The author is with the National Center for Atmospheric Research, Boulder, Colorado. The National Center for Atmospheric Research is sponsored by the National Science Foundation.

$$\frac{d\tau}{d\lambda} = \frac{\epsilon_{\infty} - \frac{1}{2}\psi + \lambda - \frac{5}{2}\tau}{0.5 \, 4 \, \tau^{5/2}} \tag{2b}$$

For A we take [Chamberlain, 1961]: $A = 5.8 \times 10^6$ /C where C is the mass flow given in terms of N, ψ , and λ by $C = N \psi^{1/2} \lambda^{-2}$ (N is the total particle density). In equation (2b) ϵ_{∞} is the residual energy per particle at infinity. For $\epsilon_{\infty} \neq 0$ a well-known solution of equations (2a) and (2b) is the Parker supersonic solution. Then for small values of λ

$$\tau = D_0 \lambda^{2/7} \left(1 + \frac{77}{9} \frac{\lambda^{2/7}}{A D_0^{5/2}} + \dots \right)$$
(3)

The asymptotic expansion for ψ is obtained from equation (2b). The parameter D_0 in equation (3) is left undetermined; this allows equations (2) to be solved as follows. Given C and ϵ_{∞} , the integration of (2) and (3) is

started from small values of λ

$$\left(\frac{77}{9} \frac{\lambda^{2/7}}{A D_0^{5/2}} \ll 1\right)$$

toward the sun; the condition that the numerator and denominator of equation (2a)

$$\phi_1 = 1 - 2\tau / \lambda - d\tau / d\lambda \quad \phi_2 = 0.5(1 - \tau / \psi)$$
 (4)

should vanish for the same value of $\lambda(\lambda_c)$ determines N_o ; the dashed curve represents interpolated values. In then D_0 . This solution is supersonic for large distances figure 2, ϵ_{∞} is plotted versus N_0 . Thus, from figures 1 ϵ_{∞} = constant and C = constant are known in the N_o, T_o plane [Kopp, 1968]. In the present paper, C and ϵ_{∞} were adjusted to give the desired value of $T_o N_o > N_o^p$. However, since for $N_o = N_o^p$ the total energy $(T_o = 2.1 \times 10^{6} {}^{\circ}\text{K})$ and increasing values of N_o $(N_0 > 9.3 \times 10^7 / \text{cm}^3)$. In figure 1, D_0 is plotted versus

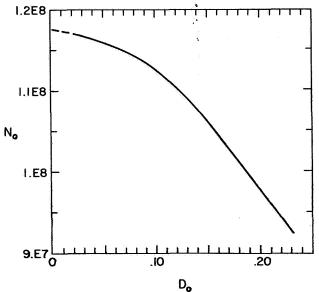
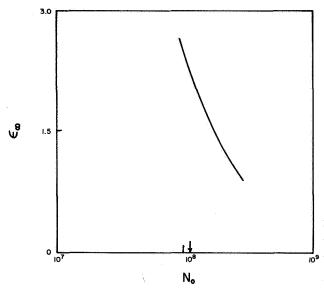


Figure 1. Density at the base of the corona versus D_{0} . The dotted lines are interpolated values.



 $T_o = 2.1 \times 10^6 \,^{\circ} K.$

and subsonic for $\lambda > \lambda_c$. Therefore, given the values of C and 2 it is clear that D_o vanishes for and ϵ_{∞} the integration of equations (2) determines $N_O = N_O^p = 1.17 \times 10^8 / \text{cm}^3$, that is, for a finite value of and T_{O} at the base of the corona; that is, the curves ϵ_{∞} . It is easily seen that the vanishing of D_{O} implies that the conductive flux at infinity is zero. Therefore, supersonic solutions of the Parker type cease to exist for flux at infinity, ϵ_{∞} , is not zero, it is to be expected from physical grounds that as N_{O} is increased the flow will remain supersonic. This was confirmed by numerical calculations. No subsonic solutions were found for $N_o < 10^9 / \text{cm}^3$.

> The above considerations led to the search for a supersonic solution of equations (2) with an asymptotic expansion different than that given by equation (3). It was indeed found that the full equations (2) also admit a solution with the following asymptotic expansions

$$\tau = D_0 \lambda^{4/3} [1 + D_1 \lambda + D_2 \lambda^{4/3} + D_3 \lambda^{5/3} + D_4 \lambda^2 + D_5 \lambda^{7/3} + \dots]$$
(5a)
$$\psi = \psi_{\infty} + 2\lambda + C_0 \lambda^{4/3} [1 + C_1 \lambda + C_2 \lambda^{4/3} + C_3 \lambda^{5/3} + C_4 \lambda^2 + C_5 \lambda^{7/3} + \dots]$$
(5b)

with

$$\epsilon_{\infty} = \frac{1}{2} \psi_{\infty} ; C_0 = -5D_0 ; C_1 = D_1 = -\frac{2}{3\psi_{\infty}} ;$$

$$C_2 = D_2 = \frac{5}{3} \frac{D_0}{\psi_{\infty}} ; C_3 = D_3 = 0$$

$$C_4 = D_4 = \frac{8}{9\psi_{\infty}^2} ;$$

$$D_5 = -\frac{2D_0}{63} \left[\frac{175}{\psi_{\infty}^2} + 22 A D_0^{3/2} \right] ;$$

$$C_5 = \frac{4A}{15} D_0^{5/2} + D_5$$
(6)

As in the Parker solutions the parameter D_0 in equation (5) is left undetermined, and equations (2) can again be solved by integrating from small values of λ toward the sun. An iteration procedure was used to determine D_{o} so that $\phi_1(\lambda) = \phi_2(\lambda) = 0$ (cf. eq. (4) for the same value of $\lambda = \lambda_c$). This determines the critical point. The iteration Figure 2. Residual energy at infinity versus N_o for procedure is based on the fact that if ϕ_1 vanishes first $(\phi_1(\lambda_c) = 0 \text{ and } \phi_2(\lambda) \neq 0 \text{ for } \lambda < \lambda_c)$, then D_0 is too

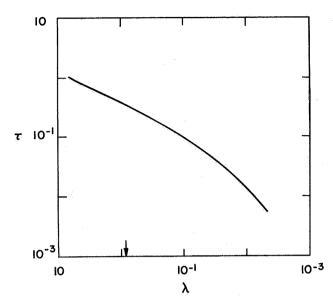


Figure 3. τ versus λ for $C = 5.47 \times 10^4$, $\epsilon_{\infty} = 0.887$.

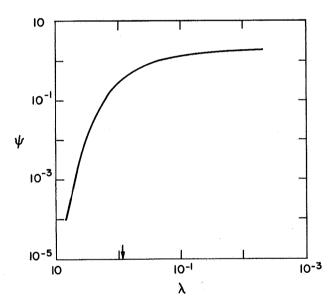


Figure 4. ψ versus λ for $C = 5.47 \times 10^4$, $\epsilon_{\infty} = 0.887$.

large and it should be decreased; if on the other hand ϕ_2 vanishes first, then D_O is too small and it should be increased. This method allows the critical point λ_C to be known as accurately as desired. Once λ_C is determined a Taylor expansion of τ and ψ in the neighborhood of λ_C can be used to integrate across the critical point. In figures 3 and 4, τ and ψ are plotted versus λ for $C = 5.47 \times 10^4$, $\epsilon_{\infty} = 0.887$. With the help of the asymptotic expansions (5) the integrations were started from

 $\lambda = 4.7 \times 10^{-3}$ toward the sun. The arrow indicates the position of the sonic point. For the above values of Cand ϵ_{∞} the values of the density and temperature at the base of the corona are $T_o = 2.1 \times 10^6 \,^{\circ}$ K and $N_o = 2.88 \times 10^8 \,/\text{cm}^3$, respectively. Therefore, to summarize, if the temperature at the base of the corona is assumed constant and equal to 2.1×10^{6°}K, the solution of the solar wind equations is of the Parker type for values of $N_0 \le 1.17 \times 10^8$ /cm³. For values of N_0 such that $1.17 \times 10^8 / \text{cm}^3 < N < N_0^S (N_0^S > 3 \times 10^8 / \text{cm}^3)$ the flow continues to be supersonic but differs from the Parker solution. The asymptotic expansions of the velocity and temperature are now given by equations (5). For $N > N_0^S$ the flow becomes subsonic. The value of N_O^S was not determined with great accuracy; the numerical calculations suggest that $N_O^{S} \sim 2 \times 10^9 / \text{cm}^3$. Since the integrations are time consuming no supersonic solutions were evaluated for $N_o > 3 \times 10^8 / \text{cm}^3$.

As the density at the base of the corona is increased from an initial value of $N_o = 9.3 \times 10^7 / \text{cm}^3$ and the temperature there is held constant ($T_0 = 2.1 \times 10^{6}$ °K) there is not a direct transition from a Parker type supersonic flow to a subsonic flow. As N_{o} is increased the conductive flux at infinity $\epsilon_{\infty}^{\mathbb{C}}$ decreases sharply and vanishes for a *finite* value of the total energy per particle at infinity ϵ_{∞} . This is not surprising, since as N_{α} increases the mass flow C also increases, and since T_O has been kept constant ϵ_{∞} must decrease. The sharp decrease in ϵ_{∞}^{c} arises as more and more of the conductive flux at infinity is converted into kinetic energy of the particles. The Parker type supersonic solutions cease to exist when ϵ_{∞}^{C} vanishes. The total energy flux at infinity remaining, however, different from zero, it is to be expected from physical grounds that if N_O increases still further there will not be an immediate transition to a subsonic flow but rather a transition to a different type of supersonic flow (cf. eqs. (5) and (6)). The expansion becomes adiabatic [Chamberlain, 1961] and the heat conduction flux is much smaller than the internal energy flux [Hundhausen, 1971]. Any further increase in N_0 must now be entirely accounted for by a decrease in the kinetic energy flux at infinity. The velocity reaches a maximum and decreases towards a finite value as $r \rightarrow \infty$. Finally, for values of N_0 large enough, ϵ_{∞} vanishes and the flow becomes subsonic.

ACKNOWLEDGMENTS

The author is indebted to Drs. R. A. Kopp, G. W. Pneuman, and E. J. Weber for many illuminating discussions and to Dr. G. Vickers presently at Sheffield

calculations for the subsonic solutions.

REFERENCES

- Chamberlain, J. W.: Interplanetary Gas, III, A Hydrodynamic Model of the Corona. Astrophys. J., Vol. 133, 1961, p. 675.
- Hundhausen, A. J.: Dynamics of the Outer Solar Atmosphere. Physics of the Solar System, edited by S.I. Rasool, Goddard Space Flight Center publication X-630-71-380, 1971.
- University for carrying out the analytical and numerical Kopp, R.A.: The Equilibrium Structure of a Shock-Heated Corona. Thesis, Astronomy Department, Harvard University, 1968.
 - Parker, E. N.: Dynamics of the Interplanetary Gas and Magnetic Fields. Astrophys. J., Vol. 128, 1958, p. 664.
 - Parker, E. N.: Dynamics Properties of Stellar Coronas and Stellar Winds, IV, The Separate Existence of Subsonic and Supersonic Solutions. Astrophys. J., Vol. 141, 1965, p. 1463.