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N THE AREAS of animal orientation and I navigation, directions are measured in 
various ways. Animals are either kept in 
cages and their movements or preferences 
with respect to a reference direction recorded, 
or they are released and at certain points of 
their path the bearings are measured. The 
purpose of a statistical analysis is to establish 
preferred directions and to compare them 
with geographical lines such as directions to 
breeding places, homeward directions, val- 
leys, mountain ranges, shore lines, and the 
like. I t  is also important to find significant 
differences between experimental and control 
groups. 

A comprehensive account of statistical 
methods in the analysis of directions for biolo- 
gists was published in reference 1. In the 
past five years, there was considerable inter- 
est in this area by both theoretical and ap- 
plied research workers. A host of new results 
and methods is available today. 

This paper explains and illustrates those 
methods that are immediately useful for 
biologists. No attempt is made to review re- 
sults that are of purely theoretical interest no 
matter how important they may be for future 
statistical research. We will restrict ourselves 
to the two-dimensional or circular case and 
omit the three-dimensional or spherical case. 

An exhaustive bibliography is found at 
the end of this paper for the reader whose 
interest goes beyond the rather limited scope 
of this account. Only those publications are 
listed that are not already quoted in Bat- 
schelet, 1965 (ref. 1). Recent papers of 
basically mathematical interest can be found 
under such names as Ajne, Beran, Downs, 
Maag, Mardia, Rao, Schach, Stephens, and 
Watson. For the spherical case we refer the 
reader to Bingham (1964), Downs (1966, 
1970), Downs and Gould (1967), Savary 
( 1965), Selby (1964), Stephens (1967, 
1969), Watson (1965, 1966, 1967, 1970). 

NOTATIONS 

We will use the same notations as in ref- 
erence 1. Let a1, a2, - * * , a,, be a sample 
of independent angles taken fmm a certain 
theoretical distribution. Without loss of gen- 
erality we choose the positive x axis as zero 
direction and associate the positive sign with 
a counter-clockwise rotation (see fig. 1). 

It is convenient to introduce unit vec- 
tors, that is, vectors of unit length point- 
ing in the directions given by the angles a( 
(i = 1, * * * , n) - The tips of these unit vec- 
tors are located on the circumference of the 
unit circle. 
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FIGURE 1. Circular sample? represented by unit FIGURE 2. Circular sample represented by unit 
vectom. masses atid their center C of gravity. 

In a rectangular x,y-coordinate system V = 2  cos cy$, W = 2  sin cy( 

The length of the resultant vector is 

(4) 
the components of the unit vectors are 

xk=cos at, y4=sin arc  (i- l , *** ,n )  (1) 

When a preferred direction or a mean 
direction is to be defined, we associate with 
each direction a unit mass which we locate 
at  the tip of the corresponding unit vector 
(fig. 2). Then we calculate the coordinates 
of the center of gravity by 

R =  (VZ + W2)V ( 5 )  

Then the length of the mean vector is 
simply 

( 6 )  
1 
n 

r = - R  

Denote the center of gravity by C, The 
vector which points to C is called the mean 
vector, whose components are x and y. 

The length of the mean vector is denoted 
by r and may be calculated from 

Y = (3 + p)V (3) 

An alternative way of calculating r uses 
vector addition. Consider again the unit vec- 
tors with components cos act, sin arc  (i = 1, 
6 , n) . The sum of these vectors, also called 
the resultant vector, has components 

If the population center of gravity falls 
into the origin, then no single preferred direc- 
tion exists. This may be the case where all 
directions are equally likely, which is referred 
to as uniform distribution. Another possibility 
occurs with certain multi-modal distributions, 
for instance, when two opposite directions are 
equally probable. 

We should also consider the influenGe of 
chance fluctuations. A sample may have a 
non-zero mean vector even if the underlying 
theoretical distribution has its center of grav- 
ity in the origin. I t  is therefore desirable to 
test whether r differs from zero significantly. 
Such tests will be presented in the following 
five sections. 

Assume now that the length of the mean 
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vector is significantly different from zero and 
that the sample points are concentrated 
around a single preferred direction. Then we 
have good reason to introduce a mean direc- 
tion, which is defined to be the direction of 
the mean vector. We denote its angle by t9 
(Greek theta) and call it the mean angle 
(fig. 2). This angle is calculated by solving 
the equations 

x == r cos 6, F= r sin 9 (7) 
or 

V=Rcos9 ,  W = = R s i n 6  (8) 

RAYLEIGH TEST AND 
MODIFICATION 

The Rayleigh test is presented in reference 
1, p. 28. For reasons that are explained there, 
the Rayleigh test should be used only in the 
unimodal case. The null hypothesis states that 
the theoretical distribution is uniform. As a 
test statistic we may use the length r of the 
mean vector. When T exceeds a certain 
critical value, the null hypothesis is rejected. 

For the presentation of a table of critical 
values it is better to consider the test statistic 

z == nr2 (9) 
instead of r itself. A short table of critical 
values adapted from work by Greenwood and 
Durand was published in reference 1. Now 
it is possible to enlarge this table (table 1) 
considerably by adapting tables published in 
reference 2 and by using an unpublished table 
kindly submitted by W. T. Keeton, Cornel1 
University. 

The Rayleigh test is most powerful if the 
alternative to the uniform distribution is a 
circular normal distribution (ref. 3). 

Recently, a modification of the Ray- 
leigh test has proved to be most usefu1.l 

‘1 am indebted to Keeton for drawing my at- 
tention to the V test. 

I t  may occur that a particular direction is 
expected to be the preferred direction in ad- 
vance of the experiment. For instance, when 
pigeons are released at a test site, the home 
direction is known in advance. The null 
hypothesis that we are going to test is random- 
ness, which means that the angles of the 
sample are independent observations from a 
uniform circular distribution. For a test of 
the null hypothesis, it would be a loss of 
information when the knowledge of a pre- 
dicted direction were abandoned. Indeed, by 
using this direction we obtain a more pow- 
erful test. 

Let 0, be the angle of the predicted direc- 
tion, and let R, 6 be defined as above. When 
making the predicted directions to a new 
X-axis, then the X-component of R is 

as shown in figure 3. By means of formula 
(8) we also get 

V’=VCOS&+ Wsin00 (11) 

which is more practical for numerical cal- 
culations. 

FIGURE 3. The Y’ component of R as uned in 
the Y test. 



64 A N I M A L  O R I E N T A T I O N  A N D  N A V I G A T I O N  

TABLE 1.-Critical Values of the Test Statistic z of the Rayleigh Test 

n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18  
19 

20 
21 
22 
23 
24 

25 
30 
35 
40 
45 
50 

m 

P=10% 

2.36 
2.29 
2.29 
2.29 
2.29 
2.29 

2.29 
2.29 
2.29 
2.29 
2.29 

2.29 

. 2.29 

. 2.29 
2.29 

2.30 
2.30 
2.30 
2.30 
2.30 

2.30 
2.30 

’ 2.30 
2.30 
2.30 
2.30 

2.31 

2.. 29 

5% 

2.87 
2.84 
2.86 
2.88 
2.90 
2.91 

2.92 
2.93 
2.93 
2.94 
2.94 

2.95 
2.95 
2.95 
2.95 
2.96 

2.96 
2.96 . 
2.96 
2.96 
2.96 

2.97 
2.97 
2.97 
2.98 
2.98 
2.98 

3.00 

2.5% 

3.28 
3.34 
3.40 
3.45 
3.48 
3.50 

3.52 
3.54 
3.55 
3.57 
3.58 

3.59 
3.59 
3.60 
3.60 
3.61 

3.61 
3.61 
3.61 
3.62 
3.63 

3.63 
3.64 
3.64 
3.65 
3.65 
3.66 

4.06 

1% 

3.69 
3.86 
4.08 
4.16 
4.20 
4.25 

4.29 
4.32 
4.34 
4.36 
4.38 

4.40 
4.41 
4.42 
4.43 
4.44 

4.45 
4.46 
4.46 
4.47 
4.48 

4.48 
4.49 
4.51 
4.52 
4.53 
4.54 

4.61 

0.1 % 

............._. 
4.91 
5.30 
5.56 
5.74 
5.88 

6.00 
6.06 
6.16 
6.22 
6.27 

6.32 
6.35 
6.39 
6.42 
6.45 

6.47 
6.49 
6.51 
6.53 
6.54 

6.56 
6.62 
6.66 
6.69 
6.72 
6.74 

6.90 

In an experiment of homing, V’ denotes 
the so-called homeward component (ref. 1, 
p. 19), if 60 is the angle of the homeward 
direction. 

The basic idea of the test is to consider 
the size of V’. If V’ is small there is no evi- 
dence that the animals are oriented in the 
predicted direction with angle 60. If V’ is 
relatively large, however, there must be some 
concentration of the directions around the 
predicted bearing. The larger the component 

V’ is, the better chance there is of rejecting 
the null hypothesis of randomness. There- 
fore, we may choose V’ as our test statistic. 
For this reason the test is called the V test 
(ref. 4). 

The V test leads to significance only if 
there is suficient clustering around the pre- 
dicted direction. In contrast the Rayleigh test 
is less powerful in this case but remains pow- 
erful for clustering on any part of the circle. 

For preparing a numerical table of criti- 



S E S S I O N  I :  T E C H N I Q U E S  65 

TABLE 2.--Critical Values of the Test Statistic u of the Modified Rayleigh Test (V Test) 

n 

5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
40 
50 
60 
70 
100 
500 
1000 

P=O.10 

I =1.3051 
1.3009 
1.2980 
1.2958 
1 .2942 
1.2929 
1.2918 
1 .2909 
1.2902 
1.2895 
1.2890 
1.2885 
1.2881 
1.2877 
1 .2874 
1.2871 
1.2868 
1.2866 
1.2864 
1.2862 
1.2860 
1 .2858 
1.2856 
1.2855 
1.2853 
1,2852 
1 .2843 
1.2837 
1.2834 
1.2831 
1 .2826 
1,2818 
1.2817 

0.05 

1.6524 
1.6509 
1.6499 
1.6492 
1.6486 
1.6482 
1.6479 
1 .6476 
1.6474 
1 ,6472 
1.6470 
1.6469 
1.6467 
1 .6466 
1 .6465 
1 .6464 
1.6464 
1.6463 
1 .6462 
1.6462 
1.6461 
1.6461 
1.6460 
1 .6460 
1.6459 
1.6459 
1 .6456 
1.6455 
1.6454 
1.6453 
1 .6452 
1 .6449 
1.6449 

0.01 

2.2505 
2.2640 
2.2734 
2.2803 
2.2856 
2.2899 
2.2933 
2.2961 
2.2985 
2.3006 
2.3023 
2.3039 
2.3052 
2.3064 
2.3075 
2.3085 
2.3093 
2.3101 
2.3108 
2.3115 
2.3121 
2.3127 
2.3132 
2.3136 
2.3141 
2.3145 
2.3175 
2.3193 
2.3205 
2.3213 
2.3228 
2.3256 
2.3260 

cal values, it is more practical to use the 
related test statistic 

u =  (2/n)H V' (12) 
A chart of critical values published in refer- 
ence 4, p. 234, satisfies most practical 
purposes. The more accurate numerical table 
(table 2) was submitted by Keeton. 

For applications of the V test see refer- 
ences 5 and 6. The following examples were 
also suggested by Keeton : 

0.005 

2.4459 
2.4695 
2.4858 
2.4978 
2.5070 
2.5143 
2.5201 
2.5250 
2.5290 
2.5325 
2.5355 
2.5381 
2.5404 
2.5424 
2.5442 
2.5458 
2.5473 
2.5486 
2.5498 

2.5519 
2.5529 
2.5538 
2.5546 
2.5553 
2.5560 
2.5610 
2.5640 
2.5660 
2.5674 
2.5699 
2.5747 
2.5752 

2.5509 

0.001 

2.7938 
2.8502 
2.8886 
2.9164 
2.9375 
2.9540 
2.9672 
2.9782 
2.9873 
2.9950 
3.0017 
3.0075 
3.0126 
3.0171 
3.0211. 
3.0247 
3.0279 
3.0308 
3.0335 
3.0359 
3.0382 
3.0402 
3.0421 
3.0439 
3.0455 
3.0471 
3.0580 
3,0646 
3.0689 
3.0720 
3.0775 
3.0877 
3.0890 

0.0001 

3.0825 
3.2114 
3.2970 
3.3578 
3.4034 
3.4387 
3.4669 
3.4899 
3.5091 
3.5253 
3.5392 
3.5512 
3.5617 
3.5710 
3.5792 
3.5866 

3.5992 
3.6047 
3.6096 
3.6142 
3.6184 
3.6223 
3.6258 
3.6292 
3.6323 
3.6545 
3.6677 
3.6764 
3.6826 
3.6936 
3.7140 
3.7165 

. 3.5932. 

Example 1 .  Assume a random sample of 
directions as shown in figure 4. Despite an 
apparent clustering to the left, the Rayleigh 
test does not lead to significance ( z  = 2.86, 
P > 0.5). But when we learn that the home 
direction has azimuth 9, = 279", the pros- 
pect improves. Let us apply the V test. The 
azimuths ai, listed in increasing order of 
magnitude, are 0", 175", 195", 225", 240°, 
240", 260", 295", 330", 340", and 345". 
With n = 11 we get, from formulas (4) ,  (5) , 
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N depicts the situation. The sample shown was 
collected under special experimental condi- 
tions that tend to increase the scatter of the 
bearings. The azimuths are 140°, 190°, 220°, 
230°, 255O, 270°, 300°, 330°, 330', and 
350'. If we are interested in rejecting ran- 
domness, we may accept the long-experienced 
mean direction with azimuth 0, = 267.4O as 
a predicted direction. The test statistic of the 
V test is u = 2.21. Thus the V test leads to 
significance with a P value of less than 5 
percent, whereas the Rayleigh test would fail 
again since P turns out to be nearly 10 per- 
cent ( z  = 2.45). FIGURE 4. Home direction i s  used as predicted 

direction in application of V test. 

W $ h /  9 0 7  E 

TEST BY HODGES AND AJNE 

Hodges (ref. 7) proposed a bivariate sign 
test that later turned out to be quite useful 
in the analysis of directions. 

Assume that two quantities are measured 
on each individual or experimental unit. De- 
note the two measurements by x and y and 
assume that the measurements are repeated 
n times. Thus we get the pairs 

FIGURE 5. Long mean direction If the experiment is performed with the 
same individuals under different conditions, 
we get another sample consisting of n pairs, 

serves as predicted direction in application of v 
tat. 

and (8), V = + 0.3514, W = - 5.6026, 
R = 5.614, and -9 = 274'. Then it follows 
from formulas (11) and (12) that V'= 
+ 5.589 and u = 2.38. For n = 11, table 2 
reveals that P < 0.01. Hence the hypothesis 
of randomness can be rejected, whereas the 
Rayleigh test was too weak in our case. 

Example 2. At a test site near Castor 
Hill, N. Y., it was observed in a long series 
of releases that the mean bearing of homing 
pigeons always deviated by roughly the same 
angle from the homeward direction. Figure 5 

(xi ' ,  yi') i =  1,2, ' , n 

The null hypothesis states that the two 
samples were taken from the same bivariate 
distribution. To test this hypothesis we form 
the differences 

and plot these differences in a rectangular 
x, y-diagram. Thus we get n vectors with 
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FIGURE 6. Hodges’ test for paired bivariate 
samples. 

components x( - xc and y{ - yt, respective- 
ly (fig. 6 ) .  If the null hypothesis is true, we 
would observe vectors pointing in all direc- 
tions. If, on the other hand, the null hypoth- 
esis is wrong, the vectors should point to one 
sector of the x, y-diagram more frequently 
than to the rest of the plane. 

To get a suitable test statistic we may 
draw a straight line 1 through the origin and 
count how many of the vectors point to one 
or the other side of 1. Now we rotate 1 
around the origin until we minimize the 
number of vectors on one side. This minimum 
is the test statistic. We denote it by K .  If K 
is small enough compared with the sample 
size n, the null hypothesis can be rejected. 
Critical values for K can be found in table 3, 
which is adapted from tables in references 3 
and 7. Hodges’ test may be interpreted as an 
extension of the sign test to bivariate data. 

Example 3. In fipre 6 the sample size is 

ments (xg, y ~ )  and ( x l ,  y l )  belong to the 
same distribution. 

Table 3 yields P = 0.044. Hence we can 
reject the null hypothesis at a 5-percent level 
of significance. 

Example 4. In  the paper in these pro- 
ceedings entitled “Satellite and Ground Radio 
Tracking of Elk,” F. C.  Craighead et al. 
study the deviations between the actual loca- 
tion of an individual elk and the points 
tracked by a satellite. The errors of location 
are recorded as vectors in a horizontal plane 
in their figure 5. 

Do the vectors indicate any preferred di- 
rections? Applying Hodges’ test, we obtain 
n = 17 and K = 6. Table 3 yields a P-value 
greater than 0.500 or 50 percent. Hence we 
have no reason to assume a preferred direc- 
tion? 

Notice, however, that east-west errors 
seem to be larger than north-south errors. To 
test significance of this kind we would need 
another test. Hodges’ test is not sensitive to 
changes of variance. 

Example 5.  When tracking a single ani- 
mal, a question frequently arises: Is the 
movement of the animal oriented or is it 
random? Consider figure 7 where the track 
of an animal is recorded. At a glance it ap- 
pears that the animal is generally headed 
north and that it only occasionally deviates 
strongly from his course. 

In the light of probability theory, the 
track may be considered as a realization of a 
stochastic process. I t  is very likely that con- 
secutive sections of the track are dependent 
on each other. We want to show that the 
animal reorientates himself toward the north 
over and over again. 

Present-day statistics is not able to 

n = 16, and the minimum number of vec- 

The null hypothesis states that the measure- 

* I  am indebted to C. E. Cote, Goddard Space tors On One side Of a straight line is 2* Flight Center, Greenbelt, Md., for &e permission 
to use his data. 
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TABLE 3.--Critkal Values of Test Statistics K in Relation to the Significance Level P and the 
Sample Size n 

n K=O 1 2 3 4 5 6 7 8 

8 
9 

10 

11 
12 
13 
14 
15 

16 
17 
18 
19 
20 

21 
22 
23 
24 
25 

26 
27 
28 
29 
30 

35 
40 

P=.O63 .375 
.035 .246 
.020 .I56 

.011 ,097 

.006 .059 
,003 .035 
.002 .021 
.001 .012 

. ob7 
f004 
.002 
.001 

< .001 

.376 

.258 

.I71 

.I11 

.070 

.044 

.027 

.016 

.010 

.006 

.003 

.002 

. O O l  

.489 
f355 
.250 

.I71 

.I14 

.075 

.048 

.030 

.019 

.012 

.007 

.004 

.003 

.002 

.444 

.327 

.233 

.I63 

.111 

.074 

.049 

.032 

.020 

.013 

.008 

.005 

.003 

.002 

. O O l  

.399 

.296 

.213 

.I51 

.lo4 

.071 

.048 

.031 

.020 

.013 

.008 

.005 

> .500 

.466 

.356 

.265 

.193 

.137 

.096 

.066 

.045 

.030 

.020 

.002 

.413 

.315 

.235 .466 

.I72 .364 

.I24 .278 

.087 .208 

.061 .I53 

.008 .026 
.003 

prove that such a track is oriented. Nor is 
statistics able to deal with random walks. 
However, the following modest approach is 
possible: Let us play the role of a devil’s 
advocate and assume that from time to time 
the animal chooses new directions “at ran- 
dom.” The directions would be taken from a 
uniform circular distribution. We call this 
pssumption the null hypothesis. We consider 
the points PI, P2, * * reached by the animal 
at time 1 hour, 2 hours, * * * , respectively, 
after release at Po. (The time interval de- 
pends on the frequency of new decisions. In 

our example, we assume that a new decision is 
made at intervals small2 than an hsur.) NOW 
we form the vectors POPI, P ~ Z ,  P2P3, * * . 
Under the null hypothesis these vectors have 
random directions. We plot these vectors 
with a common base 0 and draw a line 1 
that minimizes the number of vectors on one 
side of 1. Applying Hodges’ test to the vectors 
of our example, we get n = 13, K = 1. 
Table 3 yields P = .035. Hence we are able to 
reject the null hypothesis of randomness at a 
level of P = 5 percent. 

Ajne (ref. 3 )  proposes a circular one- 
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N 
I 

FIGURE 7. Track of an animal and a test for 
randomness. 

sample test. The problem is the same as for 
the Rayleigh test discussed previously. Con- 
sider a sample from a unimodal circular dis- 
tribution. Can a preferred direction be 
established statistically? The null hypothesis 
is a uniform distribution. 

The test procedure is very simple once a 
circular plot is provided. We draw a straight 
line 1 through the center of the circle and 
count the number of sample points on each 
side of 1. Then we rotate 1 and minimize the 
number of sample points on one side of 1. 
This minimum number is denoted by K and 
used as a test statistic. If K is small relative 
to the sample size n, the null hypothesis of a 
uniform distribution is rejected. 

We slightly modified the original formu- 

becomes obvious that Ajne's test is a special 
case of Hodges' test. This connection was dis- 
covered by Bhattacharyya and Johnson (ref. 
8). Ajne's test is powerful if the alternative 
to the uniform distribution is a rather narrow 
unimodal distribution (high degree of con- 
centration around the mean direction) . 

Example 6. Homing pigeons were released 
singly. They disappeared at directions meas- 
ured by the following azimuths (arranged in 
increasing order) : 115"' 120°, 120°, 130°, 
135", 140°, 150°, 150'' 150°, 165"' 185'' 
210°, 235', 270°, and 345'. Sample size is 
n = 15. The line 1 can be drawn in such a 
way that the minimum number of sample 
points on one side of 1 is K = 1 (fig. 8). 
From table 3 we get P = .012. Hence the 
null hypothesis of a uniform distribution can 
be rejected at a 2-percent level of significance. 

AJNE'S SECOND TEST 

Ajne (ref. 3) proposes a further method 
for testing the null hypothesis of a uniform 
distribution. Consider again the straight line 
1 in figure 8. If the theoretical distribution 
were uniform, we would expect an equal 

N 
I 

s 
FIGURE 8. Ajne's tat applied to an orientation 

lation of Hodges' and Ajne's tests. Thus it problem. 
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TABLE 4.-Critical Vakes  for Ajne's Test Statistic A in Degrees 

n 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

P=lO% 

A=185 
184 
184 
184 
184 

185 
185 
185 
185 
185 

15 
16 
17 
18 
19 

2.5% 

262 
268 
269 
271 
272 

274 
275 
277 
277 
278 

278 
279 
279 
280 
280 

281 
283 
284 
284 

285 
286 
287 

1% 

301 , 

314 
318 
322 
326 

329 
332 
334 
336 
337 

338 
339 
340 
341 
341 

342 
346 
347 
349 

351 
352 
354 

20 
30 
40 
50 

100 
200 
W 

I 

185 
185 
185 
185 
185 

185 
186 
186 
186 

186 
186 
185 

5% 

227 
227 
228 
229 
230 

231 
231 
232 
232 
232 

232 
233 
233 
233 
233 

233 
234 
235 
235 

235 
236 
236 

number of sample points on each side of 1, 
that is, n/2 sample points. A small deviation 
from n/2 may be due to chance fluctuation. 
A large deviation, however, indicates that 
the uniform distribution is not the proper 
hypothesis. When we rotate 1 around the 
center, the deviation from n/2 varies. Ajne 
chooses a suitably defined average of this 
deviation as a test statistic. 

A rather lengthy mathematical analysis 
leads finally to the following procedure (ref. 
9). Let al, a2, * , an be the observed 
angles in degrees and assume that they are 
arranged in ascending order. Thus 

0.5% 

324 
343 
354 
359 
364 

369 
372 
375 
377 
379 

381 
383 
385 
386 
386 

387 
393 
395 
397 

400 
402 
404 

Calculate the differences 

If one of them exceeds 180°, take the comple- 
mentary value by subtracting it from 360'. 
For instance, if a10 - a1 = 205", take 
m1.10 = 360" - 205' = 155". The differ- 
ences may be arranged as follows: 
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Then form the s u m  of all these n(n - 1) /2 
differences, that is, 

Z =  $ '5' r n ~  (15) 
j = 2  6 - 1  

With this sum the test statistic can be writ- 
ten in the form 

(16) 
2 
n 

A = n * 9 0 °  -- 2. 
The null hypothesis of a uniform distribu- 

tion is rejected if A exceeds a certain critical 
value. A table of critical values was published 
by Stephens (ref. 9) ; our table 4 is an adapta- 
tion of it. 

Ajne's second test is especially powerful 
if the alternative to the uniform distribution 
is a unimodal distribution with a large angular 
deviation (low degree of concentration). 

Example 7. We apply Ajne's test to the 
same data as in example 6. Here cyl = 115 ' , 
cy2 = 120°, * - * , a15 = 345'. The differences 
in degrees arranged in the scheme (equation 
14) are 

5 5 15 20 25 35 35 35 
0 10 15 20 30 30 30 - 

10 15 20 30 30 30 
5 10 20 20 20 

5 15 15 15 * * 

10 10 10 
0 0 * * .  

0 ... 
Noticethata,5-a1=345'- 115' =230°, 
but m1,15 = 360" - 230' = 130'. Formula 
(15) yields 2 = 6660'. Hence, we get from 
formula (16) 

z A =  15(90°) - - 6660" = 462' 
15 

This value is larger than any critical value in 
table 4. Therefore, we can reject the null 
hypothesis of a uniform distribution at a 0.5- 
percent level of significance. 

TEST BY LAUBSCHER AND RUDOLPH 

Sometimes tests are required that are not 
necessarily powerful but are quick to apply. 
When testing uniformity versus a unimodal 
alternative on the circle, such a test could 
be quite useful. This was proposed by Laub- 
scher and Rudolph (ref. 10) and also in- 
vestigated by Rao (ref. 11). 

Let R be the length of the smallest arc on 
the circle that contains all sample points. R 
may be called the range of the sample. A 
sufficiently small value of R indicates that the 
sample was not taken from a uniform dis- 
tribution. Therefore, R can be chosen as a 
test statistic. If R is below a certain critical 
value, the null hypothesis of a uniform dis- 
tribution can be rejected. A table of critical 
values follows (table 5) which is part of a 
table published in Laubscher and Rudolph 
(ref. 10). 

Exampb 8. Six different migrating birds 
kept in cages moved toward average direc- 
tions with the following azimuths: 122", 93', 
158', 67O, 85O, and 145'. Is the concentra- 
tion of directions significant? 

All six angles are between 67' and 158'. 
Hence the range is R = 158' - 67" = 91'. 
The critical value of R for a significance 
level of 1 percent is 100.2' (table 5). The 
sample range is below the critical value. 
Hence the null hypothesis of a uniform dis- 
tribution can be rejected. The concentration 
of directions is indeed significant. 

RAO'S TEST 

The previous sections have dealt with the 
same topic-testing whether a circular sam- 
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TABLE 5.-Critical Values n Degrees of the Range R of a Circular Sample 

n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 

19 

20 
21 
22 
23 
24 

25 
26 
27 

29 
30 

18 

28 

P= .005 

~ = 3 a . a  

87.2 
64.0 

107.6 
125.5 
141.1 

154.7 

177.4 

195.5 

203.2 
210.2 
216.6 
222.4 
227.7 

232.7 
237.2 
241.4 
245.4 
249.0 

252.5 
255.7 

261.5 
264.2 
266.7 

166. a 

187.0 

258.7 

0.01 

48.9 
76.1 

100.2 
120.8 
138.5 
153.8 

178.7 
189.0 
198.1 

167.1 

206.2 

213.5 
220.1 
226.2 
231.6 
236.7 

241.3 
245.6 
249.5 
253.2 
256.7 

259.9 
262.9 
265.7 
268.3 
270. a 
273.2 

ple is taken from a uniform distribution. All 
of these tests are restricted to the situation 
where the alternative is a unimodal distri- 
bution. 

However, multimodal distributions occur 
frequently in They have two or 
more preferred directions. When we apply 
one of the aforementioned tests to such data, 
the test loses most of its power; that is, it 

0.025 

66.3 
95.7 

120.3 

157.9 
172.5 

140.8 

185.0 
195.9 
205.4 
213.8 
221.3 

228.0 
234.0 
239.5 
244.5 
249.0 

253.2 
257.1 
260.7 
264.0 
267.1 

270.0 
272.7 
275,2 
277.6 
279. a 
281.9 

0.05 

83.6 
113.8 
138.2 
158.0 

188.1 

199.8 

218.7 

174.4 

209.9 

226.5 
233.4 

239.5 
245.1 
250.1 
254.7 
258. a 

262.7 
266.2 
269.4 
272.5 
275.3 

277.9 
280.4 
282.7 
284. a 
286.9 
288. a 

0.10 

105.3 
135.4 

177.3 
192.5 
205.1 

215.8 
225.0 
233.0 
240.0 
246.2 

251.7 
256.7 
261.2 
265.3 
269.1 

272.5 
275.6 

158.7 

278.6 
281.3 
283. a 

286.1 
288.3 
290.4 
292.3 
294.1 
295.9 

frequently fails to reject the null hypothesis 
of a, uniform distribution even though the 
existence of modes is strongly suggested. 

A test that is powerful in unimodal as 
well as multimodal situations was recently 
proposed by Rao (ref. 11). Its application is 
easy. Assume that the angles of a random 
sample are arranged in increasing order: 

'We will omit here the special treatment of 
multimodal distributions with strict symmetry. Then we calculate the length of all n arcs 
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TABLE 6.-CritieaZ Values for the Test 
Statistic U in Degrees 

n 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
25 
30 
35 
40 
45 
50 

100 
200 

P=O.Ol 

u=221 .o 
212.0 
206.0 
202.7 
198.4 
195.1 

192.2 
189.7 
187.6 
185.8 
184.0 

182.2 
180.7 
179.6 
178.2 
177.1 

176.0 
171.9 
168.8 
166.4 
164.4 
162.7 
161.2 

152.8 
146.8 

0.05 

186.5 
183.6 
180.7 
177.8 
175.7 
173.5 

172.1 
170.3 
169.2 
167.8 
166.7 

165.6 
164.9 
164.2 
163.1 
162.4 

161.6 
158.9 
156.7 
155.0 
153.6 
152.4 
151.4 

146.8 
142.6 

0.10 

171.7 
168.8 
166.3 
164.9 
163.4 
152.4 

161.3 
160.2 
159.2 
158.4 
157.7 

157.0 
156.6 
155.9 
155.2 
154.8 

154.4 
152.7 
151.4 
150.3 
149.5 
148.7 
148.1 

143.7 
140.4 

between consecutive sample points on the 
circle. We denote these arc lengths by Tr. 

Notice that we always have 

If the theoretical distribution is uniform, 

73 

FIGURE 9. Testing a bimodal sample using 
Rao's test. 

we expect that the T3 differ only slightly 
from each other. They fluctuate around their 
mean value 360°/n. On the other hand, if 
the Tr differ sufficiently from 360"/n, this 
indicates that the theoretical distribution is 
not uniform but rather unimodal or multi- 
modal. Rao introduces the sum of deviations 
as test statistic; more specifically 

I (19) U = -  z IT*--- 
1 "  360 " 

n 2 2 = 1  

If U exceeds a certain critical value, the 
null hypothesis of a uniform distribution is 
rejected. The following (table 6) is a table 
of critical values for the U statistic. It is 
partly based on a table in reference 11. 

Example 9. Homing pigeons were re- 
leased singly in the Toggenburg Valley under 
subalpine conditions.* The birds did not ad- 
just quickly to the homing direction but pre- 
ferred to fly in the axis of the valley (fig. 9).  
The vanishing points are given by the angles 
arranged in ascending order: 20°, 135", 
145", 165", 170", 200", 300°, 325", 335O, 
350", 350°, 350", and 355". Sample size is 
n = 13, 

for the permission to use his data. 
' I am indebted to G. Wagner, Bern, Switzerland, 
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TABLE 7.-CriticaE Values of the Test Statistic K = fi ( D +  + D - )  

n 

10 
11 
12 
14 
16 
18 
20 

30 
40 
50 
60 
70 
80 

100 
m 

P=lO% 

Ke1.428 
1.458 
1.473 
1.484 
1.493 
1.501 

1.507 
1.512 
1.518 
1.527 
1.534 
1.540 
1.546 

1.562 
1.571 
1.577 
1.582 
1.585 
1.588 

1.590 
1.620 

5% 

1.536 
1.565 
1.584 
1.598 
1.609 
1.618 

1.625 
1.632 
1.637 
1.647 
1.656 
1.662 
1.665 

1.684 
1.695 
1.701 
1.705 
1.708 
1.711 

1.716 
1.747 

Does a uniform distribution fit these 
data? To test this possibility we apply Rao's 
U statistic. From formulas (17) -+re obtain 

Ti =E 115" Ts= 30" TV = 15" 
T z =  10' TS 100' Tlo= 0" 
T3= 20" T7= 25' Til= 0' 
T4= 5" Ts= 10' T12= 5" 

Ti3 = 25" 

As a check of computation we get XT6= 
360". 

Since 360"ln = 27.7", we obtain from 
formula (19) 

1 

+ 72.3 + 2.7 + 17.7 + 12.7 + 27.7 
+ 27.7 + 22.7 + 2.7) = 162' 

U = ~ ( 8 7 . 3  + 17.7 +7.7 + 22.7 + 2.3 

1% 

1.728 
1.764 
1.793 
1.815 
1 .E30 
1 .E42 

1.853 
1 .E62 
1 .E69 
1.882 
1 .E92 
1.901 
1.908 

1.930 
1.941 
1.949 
1.955 
1.959 
1.962 

1.967 
2.001 

0.1% 

1.874 
1.970 
2.018 
2.051 
2.076 
2.096 

2.112 
2.126 
2.140 
2.155 
2.168 

.................. 

.................. 

.................. 

.................. 

.................. 

.................. 

.................. 

.................. 

.................. 
2.303 

For P=O.O5 we get from table 6 the 
critical value 167.8'; our U value from the 
sample is somewhat below this. Thus we 
were not able to establish significance at a 
5-percent level. However, a slightly higher 
sample size,say n = 15, would probably have 
yielded the desired result. 

KUIPERS GOODNESS-OF-FIT TEST 

In reference 1, Kuiper's test was described 
in detail. The test could serve the same pur- 
pose as the previous tests, that is, to decide 
if a circular distribution is uniform. 

Stephens (ref. 12, table 1) slightly cor- 
rected the table of critical values for the test 
statistic and enlarged it considerably. Table 
7 is based on Stephens' findings. 
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Kuiper’s test can be used in the unimodal 
and the multimodal case. A test related to 
Kuiper’s test is Watson’s U2 test. It is de- 
scribed in reference l (p. 27). In samples 
occurring in biology, Watson’s test is at least 
as powerful as Kuiper’s test. 

Example 10. We apply Kuiper’s test to 
the data of example 9. Following the test 
procedure as explained in reference 1, p. 26, 
we obtain figure 10. From this figure we read 

D +  = .023 and D -  = .369. Hence 
K == V T ( D +  + D - )  = VT( .023 + .369) 

= 1.414 

From table 7 we obtain the critical value 
K= 1.642 at a 5-percent level of significance. 

Our K value from the sample is smaller. 
Therefore, we cannot claim a significant 
deviation from the uniform distribution. The 
result is consistent with our findings based on 
Rao’s test. 

CONFIDENCE INTERVALS FOR 
THE MEAN ANGLE 

In the case of a unimodal distribution, it 
is convenient to work under the hypothesis 
cf circular normal distribution introduced by 
von Mises in 1918. The probability density 
function is 

where 8 denotes the mean angle, K the pa- 
rameter of concentration, and C a numerical 
constant depending on K. More details, charts, 
and tables are given in reference 1. 

If we are given a sample of n independent . 
angles alpz,  ,an, it is often demanded 
to estimate the parameters 8 and K. As a 
point estimate of 0, we take the mean angle 
8 calculated from the sample (formula 7 ) .  

In addition, the research worker wants to 
know the reliability of this estimate. The 

FIGURE 10. Application of Kuiper‘s test to a circular sample. 
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FIGURE 11. Chart for determining a confidence interval of the mean angle with a 95 percent 
confidence coefficient. 

question is then to find an interval around .9 
in which the unknown parameter 8 falls with 
a preassigned probability Q, called the con- 
fidence coefficient. 

In reference 1 a confidence interval of 
the form 

was presented. However, the method to de- 
termine the deviation 6 is somewhat sophis- 

ticated. I t  was therefore a good idea (ref. 
13) to search for a direct graphical approach. 
Brown and Mewaldt present a chart from 
which the deviaton 6 can be read as a func- 
tion of the sample size n and the length r of 
the mean vector. Their chart was prepared 
for only Q = 99 percent and is fairly sketchy. 
I t  seemed worthwhile to follow their idea 
and to draw accurate charts. Figures 11 and 
12 yield 6 for confidence coefficients Q == 95 
percent and Q = 99 percent, respectively. 
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l e n g t h  o f  m e a n  v e c t o r  1 

FIGURE 12. Chart for determining a confidence interval of the mean angle with a 99 percent 
confidence coefficient. 

Example 11. In example 6 the null hy- - 1  
x =- (- 8.5723) = - .5715, 15 
2 sin ad = + 3.8478, 
- 1  y = -( 3.8478) = + .2565, 15 
T = (22 + 7 )  W = .6264, 

pothesis of a uniform distribution was re- 
jected. I t  is reasonable to assume that the 
sample was taken from a circular normal 
distribution with unknown mean angle 8 
and unknown parameter K of concentration. 

ter of gravity following the instructions given 
in the second section of this paper. We get 

X To estimate 0 we first determine the cen-  COS$=^=- .9123, 

sin -9 = 2 = + .4095, 
T 

Z: COS = - 8.5723, 
9 = 155.8" 

Now we choose Q = 95 percent as con- 
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FIGURE 13. Chart for determining a confidence interval of the parameter of concentration with 
a 90 percent confidence coefficient. 

fidence coefficient. In  figure 11 we find lines 
for sample sizes n== 14 and 16. Our sample 
size is n = 15 so that we have to interpolate. 
At r = .6264 we find 6 = 30.6" for n = 16 
and 6 = 33.4" for n = 14. Hence 6 = 32.0" 
fits our purpose. Using formula (21) our con- 
fidence interval for 0 turns out to be 

155.8" k 32.0° 

CONFIDENCE INTERVALS FOR 
PARAMETER OF CONCENTRATION 

As in the previous section, we assume 

that the theoretical distribution is a circular 
normal distribution with probability density 
function (20). Our purpose is to estimate 
the parameter K. 

Values of K range from 0 to co. The par- 
ticular value K = O  indicates that the dis- 
tribution is uniform. The higher the value 
of K, the stronger is the concentration about 
the mean direction. Usually K has to be 
estimated when the mean angle 8 is unknown. 
The estimation is based on the length r of 
the mean vector, which was defined in 
formula (3).  For a point estimate of K, we 
use table B in the appendix of reference 1. 
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There r ranges from 0 to 1 in steps of 0.01. 
The estimate of K can be read in the third 
column. 

Stephens (ref. 14) studied the theoretical 
distribution of r for a variety of circular 
normal distributions where K ranges from 0 
to 5. Based on his table 2, the following 
charts were drawn: Figures 13 and 14 give 
upper and lower confidence limits for K for 
various sample sizes n and for the 'confidence 
coefficients Q = 9 0  and 98 percent, respec- 
tively. The use of the charts is explained in 
example 12. 

We denote the lower limit by K~ and the 
upper limit by K~ Thus the confidence in- 
terval is 

Notice that sometimes the lower confi- 
dence limit is zero so that there is no uncer- 
tainty on the lower side of the interval. In  
this case the confidence coefficient has to be 
raised approximately from 90 to 95 percent 
and from 98 to 99 percent, respectively. 

Example 12. We return to example 11. 
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There n = 15 and r = .6264. To get a point 
estimate of K, we use table B in the appendix 
of reference 1. For r =  .62 we find 
K = 1.60044. For r == .6264 we get by linear 
interpolation K == 1.629. 

For confidence limits of K, we choose 
Q = 90 percent as our confidence coefficient. 
In figure 13 we find curves for n =  10 and 
n = 20. For our own sample with n = 15 
we will have to interpolate. For the lower 
limit we read from the lower curves at 
r = .6264 

n = 10, 
n = 20, 

Kz = 0.44, 
Kz = 0.88. 

By linear interpolation for n = 15 we 
obtain 

K Z  0.66 

Similarly for the upper limit we read from 
the upper cumes at r = .6264 

n = 10, 
n = 20, 

KU = 2.62, 
K* = 2.40. 

Linear interpolation for n = 15 leads to 

I / 

x 
---t 

FIGURE 15. Testing two bivariate samples. One 
sample is represented by open circles, the other 
sample by filled circles. (Mardia’s test). 

KZ( = 2.51 

Hence with probability 90 percent we con- 
clude that 

0.66 < K < 2.51 

Notice that the point estimate K = 1.629 
does not fall exactly into the center of this 
interval. 

TWO-SAMPLE TEST BY MARDIA, 
WATSON, AND WHEELER 

Wheeler and Watson (ref. 15) proposed 
a test procedure for comparing two circular 
samples. This test is nonparametric and pow- 
erful; for both reasons the test should be 
favored by research workers. 

Mardia (ref. 16) has shown that Wat- 
son’s and Wheeler’s test is a special case of 
a bivariate test proposed by Mardia (ref. 
17).  Mardia also provided tables of critical 
values for the test statistic. Therefore, it 
seems to be appropriate to attribute the cir- 
cular test to all three authors and to name it 
the Mardia-Watson-Wheeler test. In this sec- 
tion we will first explain Mardia’s bivariate 
test and later consider the special case for 
circular samples, 

We consider a sample of bivariate obser- 
vations 

and a second sample 

(xj’,yj’), j =  l , - * * , n .  

We want to know whether the two samples 
belong to the same bivariate population. TO 
explain the test procedure we plot the sample 
points (fig. 15). The sample points (xt,  y i )  
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J 
FIGURE 16. (a) Reduction of bivariate samples to circular samples. (b) Generation of equi&- 

tant sample points (Mardia-Watson-Wheeler test). 

of the first sample are plotted by filled circles 
and the sample points ( x l ,  y l )  of the second 
sample by open circles. The second sample is 
located slightly to the left and below the first 
sample. Is this shift due to chance only or 
were the samples drawn from different popu- 
lations? 

To find a statistical answer to this ques- 
tion we pool the two samples and calculate 
the coordinates of the common center C of 
gravity using the formulas 

- 2x4 + 3x1' - Z Y ~ +  2y.i' (23) 
m + n  

X =  , Y= m + n  

The center C of gravity is marked in figure 
15. 

From C we draw vectors to all m + n 
sample points and consider their directions. 
Mardia's test is based on these directions 
only; thus the test reduces the bivariate case 
to the circular case (fig. 16a). 

Now we rank the m + n directions with 
numbers 1, 2, 3, * * . ,  m + n by starting at 
any reference direction and by rotating coun- 
terclockwise. Let 

r2, ' , rm 

be the ranks of the first sample, and 

the ranks of the second sample. In figure 16a 
we see that TI = 1, r2 = 2, r3 = 3, r4 = 4, 
r5 = 8, r6 = 9 and rl' = 5, rz' = 6 Y r 3-73 - 
r4' = 10. We have tacitly assumed that there 
are no intersample ties. 

As a next step we introduce n + m 
equally spaced dots on the circumference of 
the unit circle and mark them in the same 
order as the dots of the original samples (fig. 
16b). If the dots of one sample are sufficiently 
separated from the dots of the other sample, 
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we conclude a signifiant difference between 
the samples. To define a test statistic we 
concentrate on one of the two samples. The 
choice is irrelevant. Then we calculate the 
length R of the resultant vector using for- 
mulas (4) and (5). When choosing the first 
sample, the angles are . 

Hence 

m 
V =  z cosp,, W= $ sinp,, 

a = 1  

R =  (V2+ Wz)M (25) 

In figure 16b the angles p4 are plotted 
with the horizontal direction as zero line : 

Hence V =  1.118, W= 1.539, R= 1.902. 
This length R can be used as a test sta- 

tistic. If R is sufficiently large, the dots of the 
first sample are concentrated around a pre- 
ferred direction and thus more or less sepa- 
rated from the dots of the second sample. 
This argument is very similar to the pro- 
cedure of the Rayleigh test (see the third 
section). Thus, in a certain sense, the two- 
sample test is reduced to a one-sample test, 
an idea which was successfully applied to 
other tests (ref. 18). 

Instead of R itself, Mardia uses the fol- 
lowing function of R as a test statistic 

B =  R2 (26) 

If B exceeds a certain critical value, we re- 
ject the null hypothesis that the samples were 
taken from the same population. 

The Mardia-Watson-Wheeler test can be 

safely used only if there are no intersample 
ties, that is, if no angle of the first sample 
coincides with an angle of the second sam- 
ple. When the test leads to significance, this 
does not necessarily imply that the two sam- 
ples differ in location. I t  could well occur 
that the main reason for significance is a dif- 
ference in dispersion. This property is typical 
for most nonparametric tests. For a discussion 
see reference 1 (p. 34, .especially figure 23.1). 

Table 8 of B values is based on table 1 of 
reference 17. 
For N > 17, Mardia (ref. 17) gives the fol- 
lowing approximate distribution : 

The quantity 

R2 (27) 2(m + n-  1) 
m n  U =  

is approximately distributed as 2 with two 
degrees of freedom. Using a table of critical 
x2 values, it is easy to find critical values for 
U. 

In our illustrative example of figures 15 
and 16 we got R = 1.902. Hence, B = R2 
=3.62. For n+m=N=lO and n=4,  
the critical value is 9.47 at a 5 percent level 
of significance. Our B value is smaller. Thus 
we cannot claim significance. 

For a biological example see Mardia (ref. 
16, p. 189). 

WATSON'S U2 TEST 

A nonparametric two-sample test attrib- 
uted to CramCr, von Mises, and Smirnov was 
adapted for the circular case by G. S. Wat- 
son. The test was explained and exemplified 
in reference 1 (pp. 35 and 36). The test sta- 
tistic is denoted by U2, where n and m are 
the two sample sizes. 

has 
prohibited the use of this test in the begin- 

The lack of critical values of U 2 ,  
I 

_ _ _ _  .__ _..__ ._ ning. Now tables of critical values are avail- 



m h n , N = m + n . )  

N n P = O . O O l  0.01 

a 4 

4 
9 3 

10 3 
4 
5 

11 3 
4 
5 

12 3 
4 
5 13.93 
6 14.93 

13 3 
4 
5 15.26 
6 17.31 

14 3 
4 12.34 
5 15.44 
6 15.59 
7 16.39 

15 3 
4 12.78 
5 14.52 
6 17.48 
7 22.88 16.14 

16 3 
4 13.14 

7 25.27 18.16 

5 15.55 
6 22.43 16.98 

a 26.27 18.89 

17 3 
4 13.10 
5 18.86 16.44 
6 23.73 17.76 
7 27.40 17.98 
a 29.37 19.11 

0.05 0.10 

6.83 

4.88 
6.41 

4.62 
9.47 6.24 

10.47 6.85 

5.23 
10.42 7.43 
12.34 6.60 

7.46 5.73 
9.71 7.46 

10.46 7.46 
11.20 7.46 

7.68 6.15 
9.35 7.03 

10.15 7.39 
10.42 8.04 

7.85 6.49 
9.30 7.60 

10.30 7.85 
12.21 7.94 
11.65 8.85 

6.78 
8.74 7.91 

10.36 7.91 
11.61 9.12 
11.57 9.03 

7.81 5.83 
9.44 7.38 

12.66 9.78 

10.44 9.03 
11.54 9.11 

13.14 9.44 

8.01 6.14 
9.74 7.64 

11.03 8.76 
12.21 9.41 
12.63 10.11 
13.36 10.15 
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TABLE 9.--Critical VaLues for Watson’s U”,,. ( T h e  T w o  Samples Are of Sizes n and m,n 4. m) 

5% 

.178 

.182 

.183 

.185 

.185 

.185 

.180 

.184 

.185 

.186 

.186 

.179 

.184 

.185 

.186 

.179 

.184 

.185 

.186 
,186 
.178 
.183 
.185 
.185 
.186 
.186 
.1869 

n,m 

10, 6 

10, 8 
10, 7 

10, 9 
10,lO 

12, 7 

12, 9 
12,lO 
1 2 , l l  
12,12 

12, 6 

12, 8 

14, 6 
14, 8 
14,lO 
14, 12 
14, 14 
16, 4 
16, 6 
16, 8 
16,lO 
16, 12 
16, 14 
16,16 

1% 

.231 

.245 

.251 

.256 
,258 
,259 
.240 
.254 
.258 
.260 
.261 
,240 
.254 
,259 
.262 
.240 
,254 
,259 
.261 
,263 
.239 
,254 
,259 
.261 
,262 
,264 
.2684 

P=lO% 

.153 

.153 

.153 

.153 

.153 
,153 
.153 
.153 
.153 
.153 
.153 
.153 
.153 
.153 
.153 
.153 
.153 
.151 
.152 
.153 
.153 
.153 
.153 
.153 

5% 

.182 

.183 

.183 

.184 

.184 

.182 

.183 

.184 

.184 

.184 

.184 

.184 

.182 

.184 

.184 

.185 

.185 

.178 

.182 

.183 

.184 
,185 
.185 
.185 

1% 

.243 

.246 

.248 

.249 

.250 

.244 

.247 

.249 

.251 

.252 

.253 

.253 

.244 

.250 

.253 

.254 

.255 

.231 

.244 

.250 

.253 

.255 
,256 
.257 

0.1% 

.266 

.270 

.273 

.275 

.277 

.268 

.272 

.275 

.278 

.279 

.280 

.282 
,269 
.276 
.281 
.283 
.285 
.251 
.269 
.277 
.282 
.284 
.286 
.287 

able. Burr (ref. 19, p. 1094) published a 
table for all pairs m, n 1 4, m + n 17, 
and P < 0.01. Later Stephens (ref. 20), ex- 
tended the table for large values of n and 
m up to m=n=50. 

Watson’s UZm, test is sensitive for all 
kinds of deviations between two populations. 
Table 9 is adapted from reference 20. 

Vm>m T E S T  

Another nonparametric two-sample test, 
Kuiper’s modification of a test by Smirnov, is 
now known as the V,,,m test. It is described in 
detail in reference 1 (p. 35) .  Maag and 
Stephens (ref. 29) have provided tables for 

n,m 

20, 4 
20, 6 
20, 8 
20, 12 
20,16 
20,20 
25, 5 
25, 10 
25, 15 
25, 20 
25, 25 
30, 5 
30, 10 
30,15 
30, 30 
40, 5 
40, 10 
40,15 
40, 20 
40, 40 
50, 5 
50, 10 
50, 15 
50, 20 
50,25 
50, 50 
m, m 

’=lo% 

.151 
,152 
.152 
.153 
.153 
.153 
.151 
.152 
.153 
.153 
,153 
.150 
.152 
.152 
,153 
.150 
.152 
,152 
.152 
.152 
.150 
.151 
.152 
,152 
,152 
.152 
.1517 

0.5% 

.251 
,270 
.278 
.285 
.289 
.290 
.263 
.283 
.289 
.291 
.293 
.263 
,284 
.290 
.294 
,263 

.290 
,293 
.296 
.263 
,284 
.290 
.293 
,295 
.298 
.3035 

.2a4 

the critical values of the test statistic. They 
range from n = 3 to n = 10 and from 
m = 3 partly up to m = 20. 

M U L T I S A M P L E  T E S T S  

In orientation problems, sometimes more 
than two samples have to be compared with 
each other. Tests designed to discover differ- 
ences among several samples are often called 
tests of homogeneity. 

A test for comparing the mean directions 
of several circular samples was proposed by 
Watson and Williams (ref. 21). I t  is assumed 
that q samples of sizes nl, n2, . . . , np, re- 
spectively, are taken from q circular normal 
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(or von Mises’) distributions with the same 
unknown parameter K of concentration. 

The null hypothesis states that the mean 
directions of the q normal distributions are 
the same. To test the null hypothesi? we cal- 

each sample the length RJ of the 
resultant vector using formulas (4) and (5). 
We also pool the q samples and calculate 

.for all 

N = n , + n 2 + * * * + n ,  (28) 

obfiervations the length R of the resultant 
vector. Then the test statistic is 

If F exceeds a certain critical value, the null 
s of equal mean directions is re- 

jected. The ’test statistic F is approximately 
distributed as Fisher’s Fqv1 ,  N W q  with q - 1 
and N - q degrees of freedom. Critical 
values of F can be found in any table of the 
F distribution, e.g, in the well-known table 
by Fisher and Yates (ref. 22) on pages 47, 
49, 51, 53, 55. -There F is denoted by Ge. 

For the rationale of the test and for a 
biological example see reference 1 (section 

A modification of Watson’s and Williams’ 
test was recently proposed by Stephens (ref. 
2 3 ) .  For the two-ssmple case, Stephens’ test 
is exact. In the multisample case, the accu- 
racy is improved by the introduction of a fac- 
tor C that depends on RIN. 

These tests are parametric; that is, they 
are based on strict assumptions on the under- 
lying distributions. They are certainly power- 
ful, but the power may be outweighed by 
doubts about the basic assumptions. I t  is 
therefore desirable to apply nonparametric 
tests whenever we have no evidence of uni- 
modal distributions with the same degree of 

22).  
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concentration. A nonpa 
test was proposed by M 
extension of Watson’s u2 test (see the p.mf- 
ous section) . Unfortunately 
yet be applied since a table 
for the test statistic is not available. 

A generalization of the Mardia-Watson- 
Wheeler test to the multisample case will 
soon be published. For this test critical values 
of the test statistic will be avaifable {see refs. 
25 and 26). 

strongly connected to circ 
I f  the period T of a cyck pheno 

measured with a circle. As thp time increase4 
by one period, we rotate once around the 
circle. As a rule., there will be a time instang 
when the quantity re a maximum. This 
time instance corresp 
tion of a unimodal circqlar distribution. 

in figure 17.6 The interperito 
ture of a rat is measured at 
during the 24 hours of a day, 
at regular time intervals. Th 
the following model : 

. 
To be mQre specific, we cons 

z~=sCo+Ccos (wt~-p )  + e &  ( 3 0 )  

where t4 ( i  = 1, . . . , k) are the time iqtants 
at which the measurements zd were taken. Co 
denotes the mean level of q, C the amplituide, 
o = 27rfT the known angular frequency, 
and cp the so-called acrophase, that is, the 
phase at which the peak of the quantity z 

61 am indebted to F. Halberg, University of 
Minnesota, Minneapolis, for the ‘permission’ to use 
his data. 
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L 
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36.5 
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Degrees 

i 

4 = -1090- + rp=-l99" I' 

Key : 
C, = meon level, in "C 
C = omplitude, in 'C 
w = angular frequency, fixed at 

360°/24h = 15Vh 
t = time, in hours 
$= computotive ocrophase 

in degrees from O O ~  

SE = standard error 

SE' Of CO =.05 OC 

.. : 

1 of + -100' to - 1 1 8 O  

;I Of ~p = -190" to -208' 

GI = (p k(SE"/C x 112.31)=95 % confidence interval I 
I 

I I I I I 

-180 -2110 -360 
-90 -180 -2yO -360 

I 0 0000 
mid-L: 0 - 90 

FIGURE 17. Application of the Cosinor method to telemetric measurements of intraperitoneal 
temperatures of adult female rat. Rat is subjected to special lighting regimen which influences 
the acrophase. Data were obtained in preparation for a space shot. 

occurs theoretically. Finally e( is the error 
term. 

In order to apply the standard technique 
of least squares estimation we assume that 
the errors e$ are independently distributed 
normal variates with mean zero and common 

The model is not linear in the unknown 
parameter Q, but it can be linearized by 
rewriting 

c cos (uti- Q) = c cos ot* cos Q 

variance Crz.. +- C sin ut% sin Q (31)  
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and by substituting 

C C O S Q = X , C ~ ~ ~ Q = ~  (32)  

Thus C and cp are replaced by new pa- 
rameters x and y. Notice that x and y can be 
interpreted as rectangular components of a 
vector of length C and polar angle Q. 

I t  is not the place here to present the 
method of least squares estimation. We men- 
tion only that we get minimum variance esti- 
mates 4, 9, C, for the unknown parameters 
and an estimate s2 for the unknown variance 
cr2 of the error term. 

Estimates for C and Q are found by solv- 
ing the equations (32)  with x and y replaced 
by and $, respectively. 

If measurements are rmt only taken from 
one individual but from n comparable indi- 
viduals independently, we obtain a sample 
of estimates 

A 

A A A  . 
Coj, Cj, ‘pi 1 = 1,. . . , n (33)  

The biological interest usually focuses on 
the amplitude and the acrophase. I t  is then 
natural to plot the n vectors with polar co- 
ordinates Cj, cpj or corresponding rectangular 
coordinates xi, y j  in an xy-coordinate system. 
If our bivariate sample is roughly unimodal, 
it makes sense to calculate the components of 
the sample mean vector: 

This mean vector in turn defines a mean 
amplitude and a mean acrophase for the 
sample. 

Let p, and p, denote the rectangular 
coordinates of the true but unknown mean 
vector. We may then be interested in a con- 
fidence ellipse that covers the point (p,, p g ) .  
For this purpose we follow again a standard 
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technique and determine the sample corre- 
lation coefficient r and the standard errors 
S, and S, of e and 9. Then the point (,us, 
A) satisfies the inequality 

Here F2, n- 2 denotes Fisher’s F for a preas- 
signed confidence coefficient. The inequality 
(35) defines the desired confidence ellipse. 

The confidence ellipse informs the re- 
search worker to what extent he can rely on 
the estimated mean amplitude and mean 
acrophase. If, for instance, the confidence 
ellipse does not cover the point (0,O) , we 
conclude statistically that the amplitude is 
significantly different from zero. 

Conversely if the confidence ellipse covers 
the point (0,O) , then we have no reason to 
assume that there exists a nonzero amplitude. 
In this case, periodicity of the quantity z can- 
not be established. 

This method and related techniques, pro- 
posed by Halberg and coworkers, have be- 
come known as Cosinor method. For a more 
detailed account see reference 27. I t  is ex- 
pected that the Cosinor method will not only 
be useful in the area of biological rhythms 
as hitherto but also in some problems of 
orientation. 

There are other statistical methods which 
also deal with biological rhythms. For a re- 
markably clear treatment of periodic regres- 
sion, see reference 28 (chapter 17) .  

DISCUSSION 

WILLIAMS: A number of us have been going to 
extremes to get not only the point on the circle or 
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vanishing point but also to develop a statistic that 
will expreas the degree of orientation of a track. 
The problem essentially is this: Given two sets of 
radiating lines, radiating in some primary direction, 
other than just plotting where they intersect a cir- 
cle, how can one determine whether these represent 
two different populations? Secondly, how can we 
develop a statistic that will express the straightness 
of the plot? 

BATSCHELET: TO express the degree of orienta- 
tion we may subdivide the track into a moderate 
number of sections, each of them with the same 
flying time. We replace each section of the track by 
a straight line and tepresent their directions by unit 
vectors. Then we calculate the mean vector as 
usual. Its angl6 serves as mean angle, and its lefigth 
v is a measure of concentration. We may also use 
the angular deviation s = [2(1--7)]u as a meas- 
ure of dispersion. 

Since each radiating line can be replaced by a 
straight lihe with a certain mean angle, a set of ra- 
diating lines can be considered as a circular sample. 
If such a set is a random sample from a population, 
circuIar tests can be applied. Likewise for two sets, 
circular two-sample tests are applicable. 

The straightness of a plot can be statistically ex- 
pressed in many different ways. One such way is 
using the length of the mean vector as described 
before. Another statistic or index would be the 
maximum deviation from a straight line joining ini- 
tiai and end points of a track. Whatever statistic 
we use, we have to keep in mind that we lose some 
information and that there will be no definition 
that serves all purposes. 

Special.difficulties arise if the animal follows a 
geographic line or is watching for a food source. 
Under variable atmospheric conditions the track 
could also be the result of a learning process. 

I CARR: What do you think about that series of 
IO-minute duty-cycle heading reports mentioned by 
Mr. Baldwin tliis ‘morning? You suggested that 
these could not be evaluated statistically +cause 
the animal had perhaps learned something between 
each successive heading. I don’t understand this. 
Why can’t each reported heading be considered in 
the same .light as a single sally ‘of an experimental 
bird in an orientation arena and regular circular 
statistics applied? 

BATSCHELET : A statistic for the “straightness” 
of a track could be quite suikble to express how 
well an animal is keeping a certain direction. How- 
ever, the question may be more demanding: Is the 
animal heading for a particular destination or can 

the track be explained otherwise, SAY by random 
movements? With one single znimal this, question 
cannot be solved by today’s statistical methods. We 
should first create appropriate models for animal 
migration. Such models would belong to the large 
area of stochastic processes. Then statistical meth- 
ods would have to be developed to test whether an 
observed track fits the model. A random sample of 
a few animals seems to be the easiest method to 
solve the problem of how well the animals are mo- 
tivated. 

WATERMAN: We are all very concerned with 
these problems of experimental design and data 
analysis for orientation. One great difficulty is that 
we know almost nothing about the dynamics of ori- 
entation, consequently we do not really know what 
endpoints to use. We can take as many observations 
ad lib, but are they really independent? 

Another problem which is promihent in our re- 
search on polarotaxis is multiple peak orientation. 
I t  is difficult to decide how many significant orien- 
tation peaks you really have. In aadition, we are 
also interested in knowing the location of these 
peaks and estimating the significance of their dif- 
ferences. 

BATS CHELET : Multiple peak orientation occurs 
quite frequently. I t  is essential in each experiment 
to find out the reasons for this behavior betore sta- 
tistical methods are applied. Once the theoretichl 
peak directions are defined, statistics is able to test 
the goodness of fit or to decompose a multimodal 
distribution into unimodal distributions. However, 
counting peaks without a biological or physical 
model is a hopeless statistical enterprise. 

CARR: Suppose you put out a mechanical turtle 
with a built-in orientation system and you want to 
answer the question, Is the machine orienting or 
travelling at random? Is there no statistical way for 
evaluating its capacity simply to hold a course? Is 
there no test for significznce for a Segment of a 
course, in terms of its adherence to a straightline or 
to some regular modification of a straight line? 

BATSCHELET: In principle it can be solved, but 
in the graphs I have seen, it cannot be handled 
that way. 

BALDWIN: What is your opinion of the validity 
of comparing the paths of two,turtles released si- 
multaneously, assuming that there is no communi- 
cation between them? 

BATSCHELET: Whether two turtles released &t 
the same time move independently of each other 
cannot be tested by statistical methods. 
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