The Significant Solar Proton Events in the 20th Solar Cycle for the Period October 1964 to March 1970

W. Atwell

Lockheed Electronics Company

Solar proton data are presented from observations by the IMP 2, 3, F and G satellites. The NASA Solar Particle Alert Network (SPAN) solar optical and radio frequency data for the period May 1967 to March 1970 are associated with the proton events observed by the IMP F and G satellites; however, missing data are supplemented with data recorded at other international observatories. From a radiation hazard standpoint, NASA is concerned with solar proton events of the order of 10^8 proton/cm². Radiation dose data are presented for some of the large proton events that have occurred thus far in the 20th solar cycle and are compared with some of the large proton events of the 19th solar cycle. Finally, the results of a simple parametric correlation study are presented for both the 19th and 20th solar cycles.

The author is indebted to Mrs. Louise Lui, who assisted in the reduction and computer analyses of the RF data, and Messrs. M. D. Lopez and J. W. Snyder for many stimulating discussions and helpful suggestions. The author is also appreciative for the IMP 2 and 3 solar proton data from Prof. J. A. Simpson and to Dr. J. H. King, who performed the IMP 2 and 3 time integrations. Additionally, the author is indebted to Messrs. R. Doeker, D. S. Lund and P. S. McIntosh for providing some of the optical data and whose helpful comments were invaluable.

This research was supported by NASA Contract NAS 9-10950.

For more than 25 years it has been known that the sun unpredictably emits copious amounts of high-energy particulate radiation. Since the goal of the Apollo program was to land a man on the moon and return him safely, it was thought that solar radiation might present a hazard. Consequently, in 1967 NASA developed the Solar Particle Alert Network, called SPAN. The SPAN is a worldwide network of solar optical and radio frequency telescopes used to monitor solar activity in realtime. The primary SPAN sites are located at NASA/ MSC, Houston, Texas; the National Oceanic and Atmospheric Administration (NOAA), Boulder, Colorado; the Canary Islands; and Carnarvon, Australia. Supplemental sites are located at Hawaii, Teheran and Culgoora, Australia. During manned spaceflight missions SPAN observers can provide, via the Manned Space Flight Network (MSFN) communications system, the NASA Flight Safety Office with real-time information concerning impending solar radiation hazards. During nonmission periods the SPAN has provided an almost constant patrol of solar activity. Consequently, a prodigious amount of solar optical and radio frequency data has been collected during the past few years. A more detailed description of the NASA SPAN has been presented by Robbins and Reid (ref. 1).

It is the purpose of this paper to present the solar proton data as observed by the IMP 2 and 3 satellites; to present the solar proton data as observed by the IMP F and G satellites and the associated SPAN solar optical and radio frequency data supplemented with data from other observatories; to present radiation dose data from both the 19th and 20th solar cycles for various Apollo shielding configurations: to present the results of a parametric correlation study for the solar proton events in the 19th and 20th solar cycles: and to conclude with recommendations for enhancing and improving the meaningfulness of the solar data.

SOLAR PROTON EVENTS FOR THE PERIOD OCTOBER 1964 TO APRIL 1967

The IMP 2 and 3 satellites were in earth orbit during the period covered by October 1964 to April 1967. Prof. J. A. Simpson, University of Chicago, had a charged-particle, solid-state detector experiment onboard these two satellites to measure solar protons in the 0.9-190, 6.5-19, 19-90, and 90-190 MeV ranges. Dr. J. H. King, NASA/GSFC, National Space Science Data Center, plotted the 2.4 hr averaged count rates and generated event integrated fluxes at the given energies. He assumed negligible flux above 190 MeV and interpolated to obtain event integrated fluxes above 10, 30 and 60 MeV.

Table 1 shows the solar proton events obtained from this interpolation. During this period 23 major solar proton events were recorded. The start time, time of peak intensity, end time, and event flux are given. The times are given in UT, and the integrated flux units are in proton/cm². The events marked by an asterisk are those cases where no significant flux was measured in the 90-190 MeV channel. Consequently, the event integrated fluxes above 30 and 60 MeV were extrapolated and are likely to be less reliable than the interpolated values of the other events (ref. 2).

These data are presented to provide a complete picture of the solar proton emissions from the commencement of the 20th solar cycle (October 1964) through March 1970. It remains to associate the optical and radio frequency data with these events.

Table 1. - IMP 2 and 3 solar proton events.

<u>DATE</u> <u>E>10</u> MeV	<u>5 Feb 65</u>	4 Oct 65	<u>24 Mar 66</u>	29 Apr 66*
Start time	1912	0936	0000	1010
Peak time	0000/06	1424	0448	1912
End time	0712/09	1912/07	0036/07	1912
Event flux	5 90F07**	1 50507	0936/0/	0448/01
	0.00207	1.00207	1.25607	3.02E05
E>30 MeV				
Start time	1912	0936	0000	0712
Peak time	044B/06	1424	0712	1648
End time	0712/09	0712/08	0224/27	0448/01
Event flux	5.25E06	1.60E06	3.20E06	1.02E05
E>60 MeV				
Start time	1912	0936	0000	
Peak time	2136	1640	0000	
End time	0000/07	0224 /05	0448	
Event flux	1.13506	0224/05	U224/25	
	1.77200	4.20200	9,30E05	1.99E04
Table 1 1	MP 2 and 3 solar	proton events	(cont'd).	
DATE E>10 MeV	3 Nay 66*	25 June <u>66</u> *	7 July 66	14 July 66*
Start time	0712	1648	0000	0000
Peak time	0936	2136	0936	0000
End time	0448/09	0224/28	0936/12	1649/16
Event flux	3.97E06	6.05£05	9 50507	4 17505
			1100007	4.17203
E>30 MeV				
Start time	0712	1424	0000	0000
Peak time	0936	2136	1200	0712
End time	0936/09	0224/28	0224/13	0448/16
Event flux	1.35E06	2.05E05	2.15E07	2.14E05
E>60 MeV				
Start time			0000	
Peak time			1200	
End time			0000/10	
Event flux	2,70E05	3.95E04	7 10506	7 00504
				7.30204
Table] ₽	IP 2 and 3 solar p	roton events (e	cont'dj.	
DATE	16 July 66*	30 July 66	28 Aug 66	2 Sept 66
E>10 NeV				
Start time	0000/17	0224	1424	0224
Peak time	0712/17	1912/31	2136/29	0936
End time	0936/19	1912/02	0712/02	2136/03
Event flux	1.00ED6	1.08E06	6.62E07	3.75E07
E>30 MeV	0125			
Dask sime	41JB	1648	1424	0224
Fed Adms	0/12/17	1912/31	1912	0712
Cristic China	0430/19	1424/01	0712/02	2136/03
Event flux	2.43E05	5.30E05	2.54E07	6.70E06
E>60 MeV				
Start time		0712/31	1424	0224
Peak time		1912/31	1912	0712
End time		1200/01	0712/02	2136/03
Event flux	2.81E04	5.10E05	1,18E07	2.83E06

DATE	3 Sept 66	13 Sept 66	20 Sept 66*	25 Sept 66
E>10 MeV				
Start time	2136	0936	1912	1648
Peak time	2136	0448/15	0224/21	1424/26
End time	2136/10	1912/19	0712/24	1648/27
Event flux	3.35E08	2.50E07	8.80E05	3.98E05
E>30 MeV				
Start time	2136	0936	1912	1648
Peak time	0448/05	1648/14	2136	1424/26
End time	2136/10	1912/19	1424/23	1648/27
Event flux	1.10E07	1.07E07	1.49E05	1.48E05
E>60 MeV				
Start time	2136	0936/14		
Peak time	0000/04	0936/15		
End time	1424/04	0936/17		
Event flux	2.60E05	6.25E06	1.00E04	3.36E04

Table 1. - IMP 2 and 3 solar proton events (cont'd).

DATE	27 Sept 66*	<u>11 Jan 67</u>	28 Jan 67	2 Feb 67
E>10 MeV				
Start time	1424	0224	0448	1912
Peak time	1648	0224/12	2136	0712/03
End time	0224/30	1912/13	2136/02	2136/13
Event flux	9.45E05	4.10E06	3.59E08	5.08E08
<u>E>30 MeV</u>				
Start time	1424	0224	0448	1912
Peak time	1648	0448	0936/30	0000/04
End time	0224/30	1912/13	2136/02	2136/13
Event flux	2.01E05	2.90E06	7.10E07	1.02E08
E>60 MeV				
Start time		0224	0448	1912
Peak time		0224/12	1912/31	1200/03
End time		1912/13	2136/02	1912/08
Event flux	1.99E04	2.50E06	2.95E07	3.13E07
Table 1 IMF	2 and 3 solar pr	roton events	(cont'd).	

DATE	13 Feb 67*	27 Feb 67	<u>11 Mar 67</u>
E>10 MeV			
Start time	1912	1648	1912
Peak time	0000/14	0000/28	0448/12
End time	1424/18	0712/07	1912/17
Event flux	6.97E06	4.60E07	6.90E07
E>30 MeV			
Start time	1912	1648	1912
Peak time	0936/14	0224/28	0000/12
End time	1424/18	1424/10	1648/19
Event flux	1.39E06	2.87E07	3.21E07
E>60 MeV			
Start time		1648	1912
Peak time		2136	0712/12
End time		1424/02	2136/14
Event flux	1.21E05	1.25E07	9.50E06

*-Events for which the flux in the 90-190 MeV channel was insignificant.

**-Exponential power of 10; 5.90E07 = 5.90x107.

SOLAR PROTON EVENTS FOR THE PERIOD MAY 1967 TO MARCH 1970

The IMP F (Explorer 34) satellite was in earth orbit from May 24, 1967, to May 3, 1969. This satellite carried the Solar Proton Monitoring Experiment (SPME) of Bostrom and Williams (ref. 3) and recorded approximately 32 solar proton events. The IMP G (Explorer 41) satellite was placed into earth orbit on June 21, 1969, and is still functioning properly. The IMP G satellite also contains the SPME, and both experiments record protons at the >10, >30, and >60 MeV levels.

The event integrations performed by the author are given in table 2. The table also contains the start time (UT), end time (UT), event duration (hr), peak intensity (proton/cm²-sec-ster), time of peak intensity (UT), total integrated flux (proton/ cm²), and event integrated flux (proton/cm²). The peak intensity is the highest hourly counting rate and includes the background flux for that hour.

Table 2. - Explorer 34 and 41 solar proton events.

DATE	23 May 67	28 May 67	<u>6 June 67</u>	2 Nov 67	3 Dec 67
E-10 MeV					
Onset time	2000	0700	00800	1100	1000
End time	0600/28	2400/31	1700/12	1 300/ 04	2200/07
Duration	107	90	137	51	109
Peak Intensity	1036	115	20.8	9.42	31.9
Time (peak int.)	1300/25	1100/28	1500	1800	1 300
Integrated flux	1.07E09	7.40E07	9.60E07	7.50E06	2.53E07
Background flux	1.69E06	1,42E06	2.48E06	8.08E05	1.97E06
Event flux	1,07E09	7.26607	9.35€07	6.70E06	2.33E07
E>30 MeV					
Onset time	2000	0700	0800	1100	1000
End time	2400/26	2400/30	1200/09	2 J0/03	2400/06
Duration	77	66	65	38	87
Peak intensity	32.9	27.6	5.55	1.39	11.3
Time (peak int.)	0900/25	1100/28	1500	1700	1300
Integrated flux	2,27E07	2.00E07	2.60207	1.80E05	9,12E06
Background flux	2.60E06	2.24E06	2.35E06	1,25E06	2.95E06
Event flux	2.01E07	1,78E07	2.36E07	7.50E05	6.17E06
E-OU Mer					
Onset time	2000	0700	0900	no significant	1000
End time	2300/25	1900/30	1100/08	flux	2400/05
Duration	52	61	52	background	63
Peak intensity	3.09	10.2	2.13		4.56
Time (peak int.)	0900/25	0800/28	1500		1 300
Integrated flux	3.60E06	7.50E06	1.20E07		4.17E06
Background flux	1.76£06	2.07E06	1.88E06		2.14E06
Event flux	1.84E06	5.43E06	1,02807		2.03E06

Table 2. - Explorer 34 and 41 solar proton events (cont'd).

DATE	16 Dec 67	9 June 67	6 July 68	13 July 68	26 July 68
E>10 MeV					
Onset time	0600	1000	1800	2000/12	1400
End time	2400/22	0900/14	1900/12	-1800/17	0800/30
Duration	163	120	146	118	68
Peak intensity	6.45	354	5.33	54.6	0.78
Time (peak int.)	0800/18	0600/10	0200/11	2200	1900
Integrated flux	1.55E07	2.91E08	1.44E07	3.16E07	1.60E06
Background flux	2.95E06	1.63E06	2.11£06	1.71E06	9.84E05
Event flux	1.25E07	2.89£08	1.23E07	2,99E07	6.20E05
E>30 MeV					
Onset time	0600	1000	1800	0200	1300
End time	2400/20	1800/11	2400/11	1100/14	0500/29
Duration	115	75	127	34	65
Peak intensity	2.39	13.1	1.37	1.72	1.07
Time (peak int.)	2100/17	1400	1200/13	2200	1900
Integrated flux	6.39E06	1.12E07	8,28E06	1.41E06	2,29EN6
Background flux	3,90E06	2.38E06	4.028.06	1.08606	2.06E06
Event flux	2.49E06	8,80E06	4.26E06	3.30E05	2,30505
E-60 MeV					
Onset time	0600	1000	1800	no significant	1300
End time	0500/19	0500/11	0900/11	flux	2400/27
Duration	72	44	112	background	36
Peak intensity	1.30	6.13	1.15		D.98
Time (peak int.)	2100/17	1300	1200/07		1700
Integrated flux	3.10E06	3.99E06	4.58E06		1.32E06
Background flux	2.44E06	1.39E06	3.55E06		1,14606
Event flux	6.60E05	2,60E06	1.03E06		1,80505

Table 2. - Explorer 34 and 41 solar proton events (cont'd).

DATE	26 Sent 68	29 Sept 68	4 Oct 68	31 Oct 68	1 Nov 68
5.10 M-1	LO JOPE NO	<u>9 99 10 10</u>			
E-TO Her		1800	0200	0200	1100
Onset time	0900	1000	0200	1000/02	1100/04
End time	1600/28	0800/03	1600/08	1200/02	1100/04
Duration	57	87	111	57	73
Peak intensity	9.15	31.0	36.5	133	152
Time (peak int.)	1500	2300	0800	1500	0600/02
Integrated flux	6.455.06	2.89E07	3.26E07	6,57E07	1.18E08
Background flux	8,25E05	1.26E06	1,61E06	8,25ED5	1.06E06
Event flux	5.62£06	2.76E07	3.12007	6.49207	1.17E08
E>30 MeV					
Onset time	1100	1800	0200	0300	1100
End time	2400	0800/02	0800/06	1800/01	0300/03
Duration	14	63	55	41	39
Peak intensity	0.97	19,6	6.93	10.7	12.3
Time (peak int.)	1500	2100	0500	1500	2100
Integrated flux	5.17E05	1,10E07	4.44E06	5.05E06	8.94E06
Background flux	4,24E05	1,91606	1.49E06	1.11E06	1.06£06
Event flux	9.3E04	9.1GE06	2.95806	3.94E06	7.88E06
E-60 MeV					
Onset time	no	1800	0200	1000	1100
End time	significant flux	1800/01	0600/05	0600/01	13/10/02
Duration	above background	49	29	21	26
Peak intensity		11,0	1.77	2.08	1,66
Time (peak int.)		2000	0400	1500	2000
Integrated flux		5,28206	1.17E06	9.62E05	1,19E06
Background flux		1.44E06	7.87EG5	5.70E05	7.06E05
Event flux		3.84506	3.80E05	3,92805	4,80E05

Table 2. - Explorer 34 and 41 solar proton events (cont'd).

DATE	4 Nov 68	18 Nov 68	3 Dec 68	24 Jan 69	25 Feb 69
E-10 MeV					
Onset time	0600	∿1200	1000	0900	1000
End time	2300/07	2400/25	0600/13	2400/25	0700/27
Duration	90	s180	237	40	44
Peak intensity	19.6	849	152	3.47	88.7
Time (peak int.)	0900	1400	0400/06	1400	1 300
integrated flux	1.15E07	2.04E09	4,85208	2.38E06	3.74E07
Background flux	1,30E06	2.61E06	2.79506	5.79E05	6.37E05
Event flux	1.02E07	2.04E09	4.82E08	1.80E06	3.68E07
E-30 MeV					
Onset time	0600	~ 1200	1000	0900	1000
End time	0600/06	2400/23	0400/10	0500/25	2000/26
Duration	49	~132	163	21	35
Peak intensity	5.42	404	31.6	0.85	42.1
Time (peak int.)	0800	1400	0100/06	1100	1200
Integrated flux	3.37E06	4.10E08	3.99E07	6.94ED5	1.48E07
Background flux	1,30E06	3.58E06	4.13E06	6.18E05	1.03E06
Event flux	2.07E06	3.54E08	3.58E07	7.50204	1.38E07
E-60 MeV					
Onsel time	0600	-1200	1000	10	1000
End time	0600/05	1000/21	0700/08	flux	1709/26
Duration	26	70	118	above background	31
Peak intensity	2.06	96.7	5.83		24.9
Time (peak int.)	0800	1400	0100/06		1200
Integrated flux	1,16E06	6.54E07	7.85E06		7.69E06
Background flux	7.06E05	1,90E06	2.99E06		9.10205
Event flux	4.50E05	6.35207	4.86E06		6.78E06

Table 2. - Explorer 34 and 41 solar proton events (cont'd),

DATE	26 Feb 69	27 Feb 69	<u>12 Mar 69</u>	21 Mar 69	30 Mar 69
E-10 MeV					
Onset time	0700	1600	2000	0700	0400
End time	0900/28	2400/03	1500/15	0400/24	1800/12
Duration	51	105	68	70	327
Peak intensity	11.62	27,67	2.51	4.93	26.3
Time (peak int.)	1200	2200	2100	1800	1800
Integrated flux	9.63E06	2.73E07	2.34E06	5.78E06	7.70E07
Background flux	7.38E05	1.52E06	9.84E05	1.01E06	4.73E06
Event flux	8.89E06	2.58E07	1.36ED6	4.77E06	7.23E07
E-30 MeV					
Onset time	0600	1600	2000	0700	0400
End time	1900/27	1100/02	1600/14	0700/23	0200/12
Duration	38	68	45	49	311
Peak intensity	4.72	9.98	1.47	1,34	13.6
Time (peak int.)	1200	2100	2100	1700	1800
Integrated flux	3.68E.06	8.39606	1,69E06	1.80E06	3.77E07
Background flux	1.12ED6	2.00E06	1.32£06	I.44E06	9.15E06
Event flux	2.56£06	6.39E06	3.70E05	3.60E05	2.85E07
E 60>MeV					
Onset time	0600	1500	2000	no	0300
Fnd time	1000/27	0700/01	1800/13	flux	2400/08
Duration	29	41	23	background	238
Peak intensity	2.45	4.34	0,86		9.39
Time (peak int.)	0900	1900	2100		1800
Integrated flux	1,85E06	3.28E06	7,72ED5		2.23E07
Background flux	8,53E05	1,21ED6	6.56E05		7.00E06
Event flux	1.00506	2.07E06	1,16605		1.53E07

Table 2. - Explorer 34 and 41 solar proton events (cont'd).

DATE	10 Apr 69	25 Sept 69	27 Sept 69	2 Nov 69	24 Nov 65
E>10 MeV					
Onset time	1900	0900	1100	1100	1200
End time	1100/28	0700/27	0500/30	0700/09	1000/27
Duration	425	47	67	165	71
Peak intensity	1 375	15.2	11.3	1317	3.75
Time (peak int.)	0300/13	1200	0300/28	1400	1700
Integrated flux	2.26E09	6.24E06	1.08607	7.34E08	3.96506
Background flux	6.15E06	6.80E05	9.09E05	2.04E06	1.28606
Event flux	2.25609	5.56806	9.90E06	7.32E08	2.70606
E>30 NeV					
Onset time	0300/11	0900	1100	1100	1200
End time	2400/21	1700/25	1600/28	1600/08	1400/26
Duration	262	33	30	150	51
Peak intensity	123	1,60	0.74	737	1.49
Time (peak int.)	0300/13	1100	0300/28	1300	1500
Integrated flux	2.10E08	1.19E06	8.81E05	2.23508	2.14206
Background flux	7.70E06	8.96605	B.14E05	4.07606	1.38606
Event flux	2.02E08	2.90E05	6.70E04	2.19E08	7.6E05
E>60 Me¥					
Onset time	0600/11	0900	ne	1100	1200
End time	2400/16	2100	significant flux	2400/05	1000/25
Duration	139	13	above background	86	23
Peak Intensity	16.7	0.68		201	0.86
Time (peak int.)	0300/13	1100		1300	1500
Integrated flux	2.64E07	3.57E05		4.10607	7.28605
Background flux	4.28E05	3.23E05		2.14E06	6.24E05
Event flux	2.21E07	3.40E04		3.89607	1.04605
					1.07605

Table 2. - Explorer 34 and 41 solar proton events (cont'd).

DATE	7 Mar 70	23 Mar 70	29 Mar 70
E>10 Hey			
Onset time	1900	1900	0200
End time	1700/10	1500/26	2400/06
Duration	п	69	215
Peak Intensity	93.54	8.18	66.0
Time (peak int.)	0300/08	2200	1900
Integrated flux	5.72E07	6.52E06	8.38E07
Background flux	1.03E06	1,25E06	4.38E06
Event flux	5.62ED7	5.27806	7.94E07
E>30 MeV			
Onset time	1800	1900	0200
End time	1900/08	0500/25	0200/05
Duration	25	35	171
Peak intensity	1.52	2.09	20,8
Time (peak int,)	2400	2200	1900
Integrated flux	1.09E06	1.64£06	3.13£07
Background flux	6.82E05	1.03E06	5.03E06
Event flux	4.13E05	6.10ED5	2.63E07
E>60 MeV			
Onset time	N0	1900	0200
End time	flux	1100/24	0200
Durat fon	backgrnund	17	97
Peak intensity		0.81	7.05
fime (peak int.)		2100	1900
Integrated flux		5.27E05	1.13E07
Background flux		4.61E05	2.63ED6
Event flux		6.60E04	8.7206

Table 2. - Explorer 34 and 41 solar proton events (cont'd).

DATE	18 Dec 69	20 Dec 69	29 Jan 70	31 Jan 70	6 Mar 70
E>10 MeV					
Onset time	1700	0400	1400	1700	1500
End time	1800/19	1200/22	1500/31	1200/04	0800/08
Duration	26	57	50	92	42
Peak intensity	1.84	8.86	4.66	24.5	7.76
Time (peak int.)	2000	0400	2400	2400	0200/07
Integrated flux	1,17E06	4.48E06	3.89E06	2.13E07	5 09506
Background flux	3,53E05	7.74E05	6.79E05	1.25E06	6 08505
Event flux	8.20E05	3.71E06	3.21E06	2.00E07	4 48505
E>30 NeV					
Onset time	1700	0200	1400	1700	1500
End time	1300/19	1100/21	1500/31	2400/02	1800/07
Duration	21	34	50	56	28
Peak intensity	1.81	2.47	2.61	6,86	0.94
Time (peak int.)	2000	0300	2400	2100	1900
Integrated flux	1.03E06	1.64E06	2.69806	5.06E06	9.60605
Background flux	5.70605	9.23E05	1,36E06	1.52ED6	7 08505
Event flux	4.60E05	7.20E05	1.33E06	3.54606	2 52505
E>60 MeV					
Onset time	1700	0200	1400	1700	<u> </u>
End time	1200/19	1500	1400/30	2400/01	significan flux
Duration	20	14	25	32	above
Peak intensity	1.12	1.17	1.26	2.35	
Time (peak int.)	2000	0200	2400	2000	
Integrated flux	6.95E05	4.86605	1.07E06	1.63ED6	
ackground flux	4.98E05	3.48605	6.22E05	7.96E05	
vent flux	1.97E05	1.38E05	4.50605	8 10505	

THE SOLAR OPTICAL PARAMETERS ASSOCIATED WITH THE IMP F AND G OBSERVATIONS

The solar optical parameters associated with the solar proton events observed by the IMP F and G satellites are shown in table 3. The optical parameters listed are the proton event date (the superscripts refer to the reporting station where the letter G is grouped data from several stations as reported in Solar-Geophysical Data (ref. 3), 1 is the NASA/MSC site, 2 is the Canary Islands site, and 3 is the Carnarvon, Australia site), the Mt. Wilson calcium plage area and intensity $(10^{-6} \text{ of the solar disk})$, sunspot area $(10^{-6} \text{ of the solar disk})$, flare start and end times (UT), flare duration (min), flare maximum (UT), flare importance, flare area either maximum (UT), flare importance, flare area either measured (m) or corrected (c) in sq deg, the heliographic location, and the McMath plage region number. The optical parameters and the IMP proton data were obtained from the Solar-Geophysical Data (ref. 3), although Mr. P. S. McIntosh provided some of the calcium plage and sunspot data.

Table 3. - Solar optical parameters

DATE	PLAGE	PLAGE INT.	SUNSPOT APEA	FLARE	FLARE	FLARE	FLARE MAX.	FLAPE	FLARE	LOCATION	NCHATI PEGI N
1967											
23 May ^{aG}	10000	4.0	1820*	1803	2300	297	1844	38	18.0	N28 E26	8616
28 May ^G	10000	4.0	1050	0527	0712	105	0546	3B	13.11_	N28 W33	8818
6 June ^G	2200	3.5	70	846	2030	104	1937	211	4.84_	518 W58	8624
2 Nov ^G	6900	3.5	110	bass	0916	21	0859	18	4.66	518 W02	9047
B Dec	Na log	ical flare	association	- probably	occurred	behind the w	est limb		•		
16 Dec ^ú 1968	9100	3.0	230	0247	0446	119	0256	2N	5.47 _m	N23 E66	9718
) June ³	3200	3.0	70	0843	0920	37	0854	38	21.8	\$16 W06	9429
5 July ⁶	8000	3.5	1000	0946	1029	43	0956	1N	1.47	N14 E89	9503
3 J⊮1y ⁶	3200	3.0	160	1341/12	1522/12	101	1415/12	21	5.97	N11 H21	9499
16 July	No log	ical flare	association						-		
16 Sept ^G	5300	3.0	300	0026	0105	39	0031	28	4.76_	N14 E35	96#7
29 Sept 1	4300	3.0	100*	1618	1657	39	1623	2B	10.1	N16 N52	9678
l Oct ^G	3700	2.5	230	2348/03	0330	222	0008/04	28	6.38_	\$16 W37	9692
81 Oct ⁶	7000	4.0	1070*	2339/30	0133	114	0013	38	19.48.	S14 H37	9740
Nov ³	5600	3.5	1000*	0835	0930	55	0842	18	5.00	517 849	9740
Nov ³	3000	3.5	710*	0524	0606	42	0529	18	4.80	514 190	9740

* - Complex sunspot group (ref. 5) 6,1,3 - observing station code; see text

				Table 1 . 5	olar optic	al parameter	3(cont'd)				
DATE	PLAGE AREA	PLAGE INT.	SUNSPOT AREA	FLARE START	FLARE	FLARE OURATION	FLARE MAX.	FLAPE TMP.	FLARE AREA	LOCATION	Memath Region
1968											
18 Nov ^G	3200	3.5	650	1026	1235	129	105P	18	1.66	N20 M20	0360
3 Dec ⁶	3600	2.5	150	21 16/02	2350/02	154	2202/02	34	3.71_	N18 EB0	9202
1969											
24 Jan ^G	6300	3.0	60	0803	0926	83	0811	28	9.22	N20 1000	0.070
25 Feb ³	8700	3,5	640*	0909	0949	40	0913	28	9.40	N11 U20	30/9
26 Feb ³	10000	3.5	670*	0422	0441	19	0426	28	8.80	NTA NAC	37940
27 Feb ^G	10000	4.0	260*	1352	1511	79	1415	28	4 25		7740 MAR
12 Mar ⁶	3800	3.5	270*	1738	1807	29	1744	28	4.06	N12 MBD	97740 90.64
21 Mar ^G	28000	3.5	1730*	0141	0330	109	0154	25	6.80	N19 E16	0004
30 me r ^b	11000	4.0	1000*	~ 0332	0400	?	,	18	2.60.	N19 M90	9994
10 Apr ^{bb}	7000	3.0	120	0410	0445	35	0414	18	0.52	W11 EGO	10035
25 Sept ³	3800	2.0	0	0709	0815	66	07%	28	# 50	N12 1/16	10035
27 Sept ⁶	4800	3.5	60	0347	0545	138	0412	38	10.45	NOD 500	10.528
2 Nov ^G	4500	3.0	1078 [*]	1102	1220	78	1138	18	0.97	N16 M90	10333
24 Xav ³	14000	3.0	530*	0913	1000	47	0918	28	10.60	N16 H32	10433
18 Dec	No logi	cal flare	associatio	•					·····c	132	10-32

No logical flare association

b - An unconfirmed flare reported by Menila observatory bb - An unconfirmed flare reported by Nitaka, Japan observatory

Table 3. - Solar optical parameters(cont'd)

	AREA	PLAGE INT.	SURSPOT	FLARE	FLARE	FLARE	FLARE MAX.	FLARE	FLARE	LOCATION	MCNA TH
970											AC0104
<u></u>											
9 Jan'	5100	3.5	820	0932	0939	,	0932				
l Jan ¹	£100		396				0751		2.70 _c	512 W45	10542
	3100	3.5	//0	1516	1630	74	1533	28	11.1	S26 W62	10542
Her	6200	4.0	160	0926	1	,	,	-			10246
Har-B							,		7	MO9 W90	10595
	8.00	3.5	490	1601	1635	34	1610	ZN	6.50	\$13 642	10614
3 Mar?	1800	4.0	100	1545	1600	16	16.00	-(0)	c.	515 642	10018
3 143					1000		1545	*F(V)	1.60 _c	N18 W61	10638
	8700	5.0	150	0009	0225	136	0048	2N	10.75		
	-								10.72	MI4 W36	10641

THE SOLAR RADIO FREQUENCY PARAMETERS ASSOCIATED WITH THE IMP F AND G OBSERVATIONS

The solar radio frequency parameters associated with the solar proton events observed by the IMP F and G satellites are shown in table 4. The RF parameters listed are the proton event date (the superscripts refer to the reporting station, where 1, 2, and 3 are the same SPAN observatories as given in table 3, 4 and 5 are the ARCRL Sagamore Hill and Manila stations, respectively, and were obtained from refs. 3 and 6), the peak RF intensity and background flux $(10^{-22}W/m^2-Hz)$, the time-integrated RF burst energy $(10^{-18}J/m^2-Hz)$, and the energy-to-peak ratio (sec) at the three fixed frequencies of 1415, 2695 and 4995 MHz.

RADIATION DOSES FOR THE LARGE PROTON EVENTS

Webber (ref. 7) assumed that an exponential rigidity spectrum best described the solar proton event and generated flux equations based on particle rigidity P. For energies greater than 30 and 60 MeV, the characteristic rigidity, P_0 , is given by

.

$$P_{O} = \frac{242.89}{\ln\left(\frac{\Phi(E>30 \text{MeV})}{\Phi(E>60 \text{MeV})}\right)} , \text{MV}$$

where $\Phi(E>30MeV)$ and $\Phi(E>60MeV)$ are the time-integrated proton fluxes having energies greater than 30 and 60 MeV, respectively. A similar equation is obtained for protons with energies greater than 10 and 30 MeV:

$$P_{0} = \frac{195.78}{\ln(\frac{\Phi(E>10MeV)}{\Phi(E>30MeV)})}, MV,$$

where $\phi(E>10MeV)$ and $\phi(E>30MeV)$ are the time-integrated proton fluxes having energies greater than 10 and 30 MeV, respectively.

				1415 MHz		2695 MHz				4995 MHz		
DATE	PEAK INT.	BrGD.	ENERGY	ENE RGY PEAK	PEAK INT.	BKGD.	ENERGY	PEAK	PEAK INT.	BKGD.	ENERGY	ENE RG PEAK
1967												
23 May ⁴	85100 (1954)	102	1104.03	0.0130	5400 (1952)	220	513.08	0.0916	9858 (1948)	302	828.82	0.084
28 May ³	1540 (0543)	139	50.82	0.0330	1772 (0542)	223	70.44	0.0398	4691 (0545)	339	164.53	0.035
6 June ⁴	69.1 (?)				115.6 (7)				164 (?)			
2 Nov ³	587 (0857)	96	4.81	0.0082	685 (0855)	120	2.60	0.0038	1080 (0856)	210	2.57	0.002
3 Dec	No RF t	ourst r	eported									
16 Dec ³	200 (0252)	110	7.08	0.0354	320 (0252)	154	9.96	0.0311	440 (0252)	258	10.96	0.024
1968												
9 June ²	1022 (0849)	152	19.42	0,0190	986 (0851)	148	30.79	0.0312	3024 (0851)	352	53.67	0.013
6 July ²	415 (0946)	91	10.67	0.0257	831 (0945)	104	22.59	0.0272	2516 (0949)	189	61.64	0.024
13 July ²	269 (1357/12	108)	1.26	0.0047	331 (1357/12)	149	1.25	0.0038	317 (1357/12)	230	0.66	0.00
26 July	No RF I	burst #	reported									
26 Sept ⁵	839	0	14,38	0.0171	353	0	6.57	0.0186	699	0	14.46	0.020

Table 4. - Solar radio frequency parameters(cont'd)

			1415 MHz			26	95 MHz	_		49	195 MHz	
DATE	PEAK INT.	BKGD.	ENERGY	ENERGY PEAK	PEAK [NT.	BKGD.	EXERGY	ENE RGY PEAK	PEAK INT.	SKGD.	ENEPGY	ENE PEY PEAK
1968												
29 Sept ¹	358 (1620)	106	9.10	0.0254	796 (1622)	152	22.09	0.0278	2112 (1621)	91	39,74	0.0188
4 Oct ⁵	229 (0043)				108 (0000)				57 (0905)			
31 Oct ³	935 (0013)	119	78.91	0.0844	2187 (0011)	154	183.6	0.0840	3370 (0011)	26R	172.41	0,0512
1 Nov ³	1138 (0915)	116	98.69	0.0867	2603 (0913)	161	242.44	0.0914	3487 (0912)	272	285.79	0.0 420
4 Nov ³	463 (0517)	94	5.28	0.1140	1141 (0520)	151	31.33	0.0275	5652 (0523)	369	145.59	0.0258
18 Nov ²	1097 (1031)	101	25.62	0,0234	1449 (1030)	129	65.52	0.0452	1655 (1030)	223	142.81	0.0863
3 Dec ⁵					270 (2116/	0 32)	7.52	0.0279				
1969												
24 Jan ⁵	158 (0721)	0	10.11	0.0640	176 (0721)	0	11.83	0.0672	1 65 (0720)	0	7.83	0.0423
25 Feb ³	5314 (0913)	129	35.66	0.0067	2557 (0912)	223	46.79	0.0183	4950 (0912)	300	105,63	0.0213
26 Feb ³	779 (0425)	140	14,99	0.0192	1268 (0425)	205	25.42	N.0200	2828 (0425)	334	52.25	0.0185
27 Feb ¹	467 (14091	92	9.94	0.0213	1369 (1409)	249	32.38	0.0237	1853 (1410)	399	53.64	0,0289

Table 4, - Solar redio frequency parameters(cont'd)

			1415 MHz			2	595 MHz			49	195 MHz	
DATE	PEAK INT.	BKGD.	ENERGY	ENERGY PEAK	PEAK 18T -	BKGD.	EXEPGY	ENE PGY PEAK	PEAK INT.	BKGD.	ENEPSY	ENEPGY PEAK
1970												
29 Jan ³	619 (0932)	115	0.59	8.001 0	278 (0932)	161	0.57	0.0018	524 (0932)	254	1.11	0.0021
31 Jan ⁴	15.5 (1516)				23.2 (1554)				46,4 (1556)			
6 Mar ³	169 (0934)	135	0.21	0.0012	1034 (0934)	174	1.03	0.0010	413 (0934)	253	1.20	0.0029
7 Mar ⁴	105 (1607)				110 (1607)				145 (1607)			
23 Mar ⁴	28.8 (1547)				30 (1547)				93 (1550)			
29 Mar ³	1400	129	56.48	0.0403	1592 (0041)	178	86.48	0.0543	4062 (0041)	294	165.AŞ	0.0408

Table 4. - Solar radio frequency parameters(cont'd)

		÷	1415 MH	r			2695 Miz			495	15 MHz	
DATE	PEAK INT.	BKGD.	ENERGY	ENERGY PEAK	PEAK Int.	BKGD.	ENERGY	ENE PGY PEAK	PEAK INT.	BKGD.	ENE PGY	PEAK
1969												
12 Her ¹		No da	ata		2387 (1740)	14F	24.48	0.0103	2329 (1741)	376	AD.99	0.0176
21 Nar ³	528 (0153)	168	17.95	0.0340	963 (0154)	259	33.93	0.0352	2060 (0153)	411	49.02	0.0234
30 Mar ³	5793 (0250)	68	75.88	0.0131	10845 (0250)	95	90.79	0.0084	24733 (0249)	19#	140.49	0.0057
10 Apr ³	216 (0358)	112	3.2	0.0148	408 (0357)	128	8.35	0,0205	P40 (0400)	163	24.54	0.0292
25 Sept	No PF t	ourst n	eported									
27 Sept ⁵	98 (0401)	C	4.64	0.0473	106 (0357)	0	2.46	0.0232	86 (0426)	0	9.37	0.1090
2 Nov ²	697 (1043)	101	52,55	0.0754	1543 (1041)	138	157.88	0.1023	1455 (1041)	229	146.45	0.100
24 Nov ²	1420 (0918)	108	30.18	0.0213	2031 {0918}	173	53.68	0.0264	3378 (0925)	244	84.89	0.025
18 Dec ⁴	335 (1514)	0	14.57	0.0435	70 (1515)	0	?	7	30, P (1517)	0	1	?
20 Dec	No RF	burst T	eported									

Table 5 shows the characteristic rigidities computed for the 20th solar cycle proton events.

Hardy (ref. 8) has generated curves for the normalized proton dose versus characteristic rigidity for various Apollo shielding configurations. Table 6 shows the radiation (skin) doses for some of the large solar proton events that occurred during the 19th and 20th solar cycles. It must be emphasized that the doses listed are accumulated over the entire event duration, which can vary from several hours to several days. However, the dose rates at the event peak may be quite high.

The proton events for which the integrated flux is in the 10^5 to 10^7 range should be considered significant and are of interest to some medical people. Radiobiological effects vary with the individuals exposed, and knowledge and understanding in this area are still somewhat limited. It is for this reason that the possible radiation threat must be considered by mission planning and hardware design personnel for space missions such as advanced lunar exploration, lunar bases, and interplanetary travel.

CORRELATION OF THE SOLAR OPTICAL AND RADIO FREQUENCY PARAMETERS

Several of the optical and radio frequency parameters given in tables 3 and 4 were correlated with the event fluxes for E>30MeV and were compared with similar correlations generated from solar data presented by Gonzalez and Divita (ref. 9) and Lopez (ref. 10). Table 7 shows the correlation coefficient for the various solar parameters for the proton events of the 19th and first half of the 20th solar cycles. The correlation coefficients for the optical data for both solar cycles are not very impressive. In fact, negative coefficients were obtained for three of the four 20th cycle optical parameters. The importance of optical solar observations cannot be over emphasized, but utilization of the optical parameters for solar proton prediction should be made only to monitor active regions and to locate the proton source from proton emitting flares.

The correlation coefficients generated from the 19th cycle RF data are reasonably good. Using a 95% confidence limit, Gonzalez and Divita (ref. 9) obtained a 0.962 correlation coefficient for the 19th cycle RF energy parameter (13 proton events). Thus far in the 20th cycle the coefficient for the RF energy is rather poor. One of the reasons for this seems to be the preponderance of limb-region events (see figure 1). There appears to be an attenuating process which limits the RF burst observed at the earth. As an example, the correlation coefficient computed for the 20th cycle RF peak intensity was 0.033. When the events that occurred near or behind the limb were deleted and the correlation coefficient was recomputed, a value of 0.757 was obtained, which is a significant improvement. Obviously, if proton prediction techniques that utilize only the RF parameters are to be used satisfactorily, then methods must be devised to incorporate the limb and behind-the-limb radio frequency data.

DISCUSSION

Solar proton data were presented thus far for the 20th solar cycle. It remains to associate the solar optical and radio frequency data with the solar proton events observed by the IMP 2 and 3 satellites. Also, it is realized that only approximately one-half of the 20th solar cycle has occurred, and an intelligible comparison of the two solar cycles cannot be fully made. However, the results obtained thus far seem to imply that methods must be devised to improve the value of the optical and RF data and to determine other parameters that can be utilized in solar proton prediction techniques. One means of improvement that has attracted attention recently is the solar x-ray parameter (see, for example, ref. 11 and 12). Kuck (ref. 12) has found that the integrated x-ray flux is more proportional to the solar proton flux than the integrated radio flux. It appears that plasma clouds in the solar corona can effectively shield the centimeter radio burst from detection near earth, but these plasma clouds do not absorb the x-ray bursts. Efforts are underway to incorporate the available x-ray peak and integrated flux data in the existing solar proton prediction programs.

It is concluded that further research in the areas of the interplanetary medium and sector boundaries, particle propagation and diffusion, and other radio, optical and magnetic observations may, and probably will, improve and enhance our understanding of solar proton emissions and other associated solar phenomena.

REFERENCES

- Robbins, D.E.; and Reid, J.H.: Solar Physics, Vol. 10, 1969, p. 502.
- 2. King, J.H.: Private Communication.
- U.S. Department of Commerce: Solar-Geophysical Data, monthly publication
- World Data Center A, Upper Atmosphere Geophysics: Data on Solar Event of May 23, 1967 and Its Geophysical Effects, Report UAG-5, Feb. 1969.
- 5. Lund, D.S.; and McIntosh, P.S.: Private Communications.
- Air Force Cambridge Research Laboratories: Geophysics and Space Data Bulletin, Quarterly Publication.
- Webber, W.R.: An Evaluation of the Radiation Hazard Due to Solar-Particle Events, Boeing Report D2-90469, 1963.
- 8. Hardy, A.C.: Private Communication
- Gonzalez, C.C.; and Divita, E.L.: Solar Proton Forecast System and Procedures Used During the Mariner V Mission, JPL Technical Report 32-1303, 1968.
- 10. Lopez, M.D.: Private Communication
- 11. Arnoldy, R.L.; Kane, S.R.; Windkler, J.R.: Astrophys. Jour., 151, 1968, 711.
- Kuck, G.A.: Prediction of Polar Cap Absorption Events, Air Force Weapons Laboratory Technical Note WLRTH 69-8, 1969.

Table 5. - Characteristic rigidity, P_0 , for the 20th solar cycle events

Table 6. Radiation skin (chest) doses for the large solar proton events of the 19th and 20th solar cycles for various Apollo shielding configurations.

Event Date	Po,MV	Event Date	P ₀ ,MV
Event Date 5 Feb 65 4 Oct 65 24 Mar 66 29 Mar 66 25 June 66 25 June 66 14 July 66 16 July 66 30 July 66 28 Aug 66 28 Aug 66 23 Sept 66 23 Sept 66 23 Sept 66 25 Sept 66 25 Sept 66 25 Sept 66 27 Sept 66 27 Sept 66 28 Jan 67 28 Jan 67 28 Jan 67 28 Jan 67 28 May 67 29 May 67 20 May 67	$\frac{P_{0},MV}{162}$ 162 183 197 149 241 113 241 113 240 317 282 65 2400 90 164 105 2400 277 206 100 292 165 206 100 292 199 102 205 290 89 218	Event, Date 13 July 68* 26 July 68 29 Sept 68 4 Oct 68 31 Oct 68 1 Nov 68 4 Nov 68 3 Dec 68 24 Jan 63* 25 Feb 69 27 Feb 69 27 Feb 69 27 Feb 69 12 Mar 69* 30 Mar 69 25 Sept 69 25 Sept 69 25 Sept 69 27 Sept 69 27 Nov 69 24 Nov 69 18 Dec 69 29 Jan 70 31 Jan 70* 7 Mar 70*	P ₀ , MV 43 > 400 48 105 159 165 159 141 122 52 342 258 215 209 76 390 110 113 39 43 122 286 147 124 167 68 40
16 Dec 67 9 June 68 6 July 68	183 199 171	23 mar 70 29 Mar 70	220

 \star - Events where there was insignificant flux above 60 MeV, consequently P_O was calculated using time-integrated fluxes for E > 10 MeV and > 30 MeV.

EVENT DATE	INTEGRATED FLUX	CHAR. RIGIDITY P _o ,MV	C/SM	SKIN DOSE	(REM) SPACESUIT
(19th Cycle)					
23 Feb 1956	1.0E09	195	55.00	130.00	255.00
29 Aug 1957	1.2E08	56	4.18	34.80	136.80
10 May 1959	9.6E08	84	43.20	202.56	604.80
12 Nov 1960	1.3E09	124	65.00	136.50	507.00
12 Jul 1961	4.0E07	56	1.34	11.60	45.60
(20th Cycle)					
23 May 1967	2.01E07	102	0.95	3,56	9.95
18 Nov 1968	3,54E08	141	18.41	53,45	139.83
10 Apr 1969	2.02E08	110	10.10	35.96	66.90
2 Nov 1969	2.19E08	43	5.91	79.50	281.42
29 Mar 1970	2.63E07	220	1.45	3,24	6.31
>					

Figure 1. - Heliographic locations of solar flares for the 20th solar cycle.

Table 7. - Correlation coefficients for several solar optical and madio frequency parameters for the 19th and 20th solar cycles.

	plage area	plage int.	sunspot	flare imo.	rf energy	rf** energy	peak int.	peak** int.	energy peak
10+h									
cycle	0,287	0.328	0.187	0.316	0.772	0.768	0.707	0,708	0.050
20th cycle*	-0,149	-0.077	0.068	-0.274	0.078	0,332	0.033	0.757	0.267

* - For the period May 1967 to April 1970 ** - Less limb region events