NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Washington, D.C. 20546

Reply to ATTN OF: GP

TO:
USI/Scientific \& Technical Information Division Attentions Miss Winnie M. Morgan

FROM:
GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U. S. Patents in STAR

In accordance with the procedures agreed upon by code GR and Code USI, the attached NASA-owned U. S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided

> U. S. Patent No.
> Government or.
> Corporate Employee

Supplementary Corporate Source (if applicable) :

NASA Patent Case No.

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable: Xes \square NO
Pursuant to Section $305(a)$ of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent: however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification. following the words w. . With respect to an lonzantion

N71-33229

Elizabeth A. Carter
Enclosure
Copy of patent cited above

NASA CASE No. NPO-10468

PRINT FIG. \mathbb{Z}

NOTICE

The invention disclosed in this document resulted from research in aeronautical and space activities performed under programs of the National Aeronautics and Space Administration. The invention is owned by NASA and is therefore available for licensing in accordance with the NASA Patent Licensing Regulation (14 Code of Federal Regulations 1245.200).

To encourage commercial utilization of NASA-owned inventions, it is NASA policy to grant nonexclusive, royalty-free, revocable licenses to any company or individual desiring to use the invention while the patent application is pending in the U.S. Patent Office and within a specified period, presently two years, after issuance of the patent to NASA. If commercial use of the invention does not occur during this period, NASA may grant a limited exclusive, royalty-free license the reby adding an incentive to further encourage commercial development. Any company desiring to make, use, or sell this invention is encouraged to obtain a royalty-free license from NASA.

Address inquiries and all requests for licenses to Assistant General Counsel for Patent Matters, Code GP-1, National Aeronautics and Space Administration, Washington DC 20546.

3,331,072	$7 / 1967$	Pease	350/55x
3,118,437	1/1964	Hunt	$350 / 294 \mathrm{UX}$
3,503,664	3/1970	Hadley	$350 / 55$
OTHER REFERENCES			

Strong, " Balloon Telescope Optics," Applied Optics, Vol. 6, No. 2, Feb. 1967 pp. 179-189.

Primary Examiner-David Schonberg
Assistant Examiner-Toby H. Kusmer
Attorneys-J. H. Warden, Monte F. Mott and G. T. McCoy

ABSTRACT: A reflector system having particularly advantageous application to line-of-sight pointing and tracking telescopes and characterized by a primary system including an arcuate, striplike segment of a dished, reffecting surface mounted for azimuth rotation and a secondary system supported for elevational rotation about an axis fixed relative so the surface of the segment at a point such that the secondary system is caused to describe an arc intersecting points adjacent to the foci of the primary system, whereby the surface of the segment serves as a primary light-gathering surface for an optical telescope as the telescope is employed to train and track a moving point-source of light throughout the celestial hemisphere.

SHEET 1 OF 2

notable arcuate reflectomsystem ron TELESCOPES
 ORIGIN OFINVENTION

The invention described herein was made in the performance of work under a NASA contract and se gubject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 USC 2457).

BACKGROUND OFTHEINVENTHON

1. Ficld of the lnvemtion

The invention relates to reflector telescopen and more particularly to an improved primary-secondary tefeccopic system having advantageous application to tracking tevices.
2. Description of the Prior Art

The prior art includes various types of reflectors employed as primary reflectors for large aperture telescopes. Normally, such reflectors are fabricated from a large number of blocklike members which are assembled so form a support for a parabolic or hemispheric mirror or reflecting surface. The mirror or reflecting surface is mounted in a manzer such as generally to be directed towards the portion of the celestial hemisphere to be scanned so that reffected light may be gathered and focused into a receiver lens or secondary mirror positioned at or near the focus of the curved surface. Where large aperture telescopes, such as, for example, the 200 inch and larger telescopes are employed, the support for the primary reflector necessarily requires a large number of compensating devices, and is of extensive mass. In order to observe celestial bodies located at different positions in space, it frequently is desirable to reorient the primary reflector relafive to the earth's surface. This reorientation or movement of the reflector and its supporting structure introduces surface distortion or optical misalignment in the reffecting surface due to rotation of the mass relative to the gravity vector as the reflector is moved. Various techniques have heretofore been employed in correcting the misalignmen. One of the techniques presently employed in minimizing such distortions is to adjust the individual support points on the primary reflector. However, such rechniques are complex and maintenance of alignment for the segments requires contimued mechanical realignment or, alternatively, a provision of a second level of counterweights which serve to compensate for gravily deflections of the structure employed to support and position the counterweighted segments. Therefore, reflector systems presently employed in the tracking of radiating bodies across the reaches of space have not proven to be emtirely satisfactory, particularly where rapid reorientation of large aperture op. tical systems is necessitated in operations similar to tracking operations.

OBIECTS AND SUMMARY OF THE TNYENTION

This invention overcomes the aforementioned difficulties through the use of a primary reflector inciuding a relatively small segment of one quadrant of the concave surface of a hemispheric reflector, operatively supported by hydrostatic bearing structure for rotation about an azinuth gris, and an elevatable secondary reflector system fixed relaive to the primary reflector, whereby reorientation of the primary renector is accommodated without introducing gravisy inducted deviation and optical misalignment.

Accordingly, an object of this invention is so provide an improved reflector system for telescopes.

Another object is to provide a primary refector for use in telescopes for tracking moving bodies through extraterrestrial space.

Another object is to provide an improved primary-secondary reflector system adapted to be rotated through 360° of azimuth in dual-mode, extraterrestrial tracking telescopes.

Still another object is to provide a rotatable mount for a primary reflector particularly adapted for use in telescopes and supported for rotation through 360° of azimuth rotation, while
minimizing or avoidimg gravity induced defection im the associated reflecing wurfece.

Another object is to provide a fayge pnimary optic systerm for ophical-wpace communication systerns adapted to be rotated about an azimuth while avoiding comples counterbalancing for overcoming the effects of gravity induced deflections normally encountered in the reorientation of primary reflectors employed in optical telescopes.

These sogether with other objects and advambages will become more readily apparent by reference to the following descripion and claimsiri light of ene accompanying drawings.

DESCRIPTION OF THE DRAWINGS

FIG. I is a sop pian view of an observatory including cherein a relescope and its rellector system supported by structure embodying the principles of the present invemtion.

FIG. 2 is a cross-actional side elevation of the observatory of FIG. I, particularly illustrating the mounting for the prima. ry reflector employed to direct the light to the secondary reflector system of the reflector system.

FIG. 3 is a perspective view of the primary amd secondary reflecior system illustrated in FIGS. 1 and 2.

FIG. 4 is a partially sectioned front elevational view of the reflector and an associated telescope.

DESCRIPTION OF THEINVENTION

With particular reference to FIG. I, There is illustrated a protective howsing or enclosure 10 within which is mounted a large aperture, optical telescope 11 , inchuding a rotatably displaceable primary renlector 12 . The primary reflector 12 is preferably disposed symmetrically aboue a versical phane and is provided with a compound curve reflecting gurface 14 having predetermined optical characteristics. Moumed in radial displacement relative to the surface 14 , for receiving light reflected from the surface 14 , there is provided a secondary optic system 16 . The secondary system, per se, is of well. knowr opticar design and no delalled description is deemed necescary to provide a complete understanding of the invention other than that it collects fighe reflected from the reflector 12 and permits in bo be focuscd for ocular examination, recurdiag or the like. Homsyer, it should be understood that the secondary sysem re is of aype which inchodes a secondary recever input 17 which may be a reflector or focusing lens, as preferred, mounted for rotacion in the plane of symmetry of the reflector 12 to be displaced through an arcuate path ad. jacent to the foci of the curved suriace 14 so that light reflected from the primary may be recelved at the input 17 of the secondary system 16.

Suitable means including a trumnion 18, FIG, 2 , is employed to support the secondary optic system 16 for elevational displacement about an axis extending ransversely with respect to the vertical plane within which the refector 12 is aisposed. It is to be mndersiood that the axis of rotation for trummon 18 is faxed relative to the reffector 12 so that the opuc system 16 can be rotated only in the plame of symmetry about she trun. nion so that the recaiver input 17 of the secondary $\$ y s t e m$. 6 may only be displaced along an arc adjacent to an arc defined by the foci of she reflector $\$ 2$.
fin practice, the fousing le is provided with a sloted opern. ing 20 through which light may be propagated from a celestial body to impirge upon the surface la of the reflector 1 音. As is common practice, a flexible, roller-and-track door 22 is em. ployed hor closing the opening 20, where such closure is cesired. As doors of this type are of weymmown design, 2 detalied description thereof is omitted, however, it showid be understood that the door is capable of being displaced along its track in a manner such as selectively to open portions of the slot 20 so that the input 17 of the secondary refector system of the telescope may be elevated or depressed through go for traching a radiating body disposed in extraterrescrial space as body-propagated light impinges on and is reflected trom uhe primary reflector surface 14.

The primaty reflecior 18 is rabricated in any suitable manner. Normaliy, such mucucture includss a pluraliy of blocklite suppor members 24 , which serve as a support for the reftectimg surface 14 . The materal from whith the reflect ind witaces it in fabricated may be any one of several wellknow materah such as, for example, ahminum evaporated on finkly polished glass blocks. The surace jo shaped as a griplike segment of one quadrant of the internai surface of a hemisphere or, alternatively, a paraboloid, and preferably is so fomed ma inchade arcuate side edget disposed in parailel plames. The tegment in of an operable lungh slighty yreaser than 90° mo that the sccotodaty optic eysterm may "fook" a the reflecting wrince of the primary rencector as it is chevared and depresued throwst an included angle of 90 .

Since the trumnion 18 is supported in hased position relative to the reftector 12, is is readily apparen that the receivar 17 recelven light fom only a portion of the surfacs if of the reflector $I 2$ at any given setuing. Hence, the parycular widih of the segment employed is determined by the largest portion af the refecting surfice which will be required to nill the imput or aperture of the secondary optic system. As a practical matrer the width of the segment approximates the diameler of the telescope's aperture, as illustrated in FlGS. 1.2 and 3, taken together. Hence, the area of the segmented primary reflector required for full hemispheric coverage is dictated by the area regured so provide the reflected light and the elevathem angle coverage required. This may be readily determined and esprensed as a ratio of the area of the mirnor of the primary optic system to the area of the aperture of the receiver for the secondary sydem, as follows:
 where A is area, and the lens aperture of the receiver 17 for secondary optic sysuem 16 is expressed as an f-number.

Since the relative displacement between the primary reflector 12 and the secondary optic system 16 is limited to displacement in vertical directions when the plane of symmetry is vertical, it is necessary thas the suppor means be provided for supportimg the primary and secondary optic sysiems tor rotathon in aimuth, whereby the telescope 11 can be "pointed" toward any point of the compass. Theretore, a rotatable suppor plaze ze f provided as a member for operavely support ing both the primary and secondary optic sytemas.

In practice, the plate 26 is horizontally disposed in a leved dispotition and is supported by a concentrically aligned bydrosuatic bearing 3ी, which accommodates 360° of azmuth rotation for plate 26 and therefore the primary rellector 12 and its associated secondary optic system 16. As a practical matter, the plate 26 is ellso supported by a vertically aligned bearing structure 32 about which it is operatively rotated. The bearing 32 is of any suitabie design withits axis serving as the azimuth axis for the tebescope 11. The azimuth akis passes through the center of graviry of the entire rotaing structure including ine reflector 12 and the secondary optics package $\mathbf{1} 6$. Hence, it shonld be readily apparent that operative rotation of the selescope docs mot introdnce gravity induced deflectiont normally chcoumered when a primary reflector is reonmeted, or caused to be realigned in "course" alignment.

A planar supporincluding a coaxially aligned disclike aupport member 4 serves as a fixed base for supporting the bearins nirncturt 30 as the bearing structure supports the piaue 26. This support is provided with convertional footing 35 , as desited, and of a material possessing tensfie and compressive strength sumicient for supporting the total mass of the selercope.

The baring 30 is of channular conftguration fabricated from machined steel and mounted in supporiang concrete in a kown manmer for obviaing distortion of the bearimg surfaces. Furthermore, the hydrostatic bearing 30 includes sutabie means for connecrugg the bearing with suitable fuid pumps and luid heaters provided and arranged im a maner and for purposes well kmown to those familiar with the bearing art. As is common practice, the bearing 30 inchudes a sealed channell having swo opposed planar surfaces disposed therein and
manained is a mutualy spaced relationship by means including a thim thim of oin. The oil is maintaned under adequate presures and prevents an occurence of physical contact between the surfaces. The duid heaters and fluid pumps employed serve so supply he oil at appropriate temperatures thus tomaintain the destred pressure, viscosity and fum thickness in a charging ambien emperature environment, as is normally encountered in the operation of telescopes employed in celestial trackind Furkermore, the support plate 26 and planar support 3 ate of a rigid design in order to avoid the tendracy to wndery madensed bucking as is normally enconatered in supporsing a large mass.

While various means may be employed in driving the plate 2 2. as well whe the structure supported thereby, in rotation about the azimuh axis, a plurality of driven pinion gears 36 is provided. The gears 36 are synchronously driven by suitable motors 37, and are meshed with a ring gear 38 affixed to the base 26. The motors 37 are of any suitable design, but pelerably possess tideh-iogue, low-speed characteristics.

Since the reflecting surface 14 must "look" through the slot 30, it is mecessary that means be provided for rotating the housing 10 in synchronism with the rotation of the base 26 for thus maintaining the alignment established between the slot 30 and the surface 14. The rotation is achieved through means including suivable bearing structures mounted on a base 42 . The seructures 40 serve to support the housing 10 for rotation through 360° about a vertical anis, preferably coinciding with dhe ammuth axis about which she telescope 11 is operatively rotated.

It is interded that the enclosture 10 serve to protect the telescope 11 from the atverse effects of environment. particularly wind loads and eacessive thermal inputs or dissipation. The structure is of a relatively lightweight construction. Therefore, the beaning mechanism th is of simple design. In order to actieve the desired rotation for the housing 10 , an addinonal pinion and ring gear arrangement 44 preferably is inchuded for driving the housing 10 in synchronism with the driving of the wate 36 of ene felescope 11 . The ring and pinion gearing th is simitar in design to that of the pinion 36 and gear 38. Thetefore, a datailed description thereof is omitred in the intereatorbreviry.

The trumion 18 employed for supporting the secondary optic systen 16 is seated in suitable bearings 46 . The bearings 45 are disposed within the uppermost portions of vertical support columns 4B. The columns \& are mounted on the base plate 26 at opposite sides of the primary reflector 12 . Since the primary reflector is of a limited width it should be readily appreciated that the span of the trumion 18 is of relatively limited tengeh. Thercfore, desired alignment of the trunnion 18 can readily be mannained whithin a practical range.
lo prachice, mans nuchuding a pair of servomotors 50 im chading thencib a sutable gear tram, are mounted on the columns 48 adjacent the pimion 18 and are geared to the pimion to impart the desired rotation thereto. The motors 50 , if desired, ase of a design similar to the mosors employed in driving the pinions $\$ \$$ and are selectively operable for imparting opposing rates of rotation to the trunnion 18 so that the receiver input 1 of of the secondary optic system 16 may be depressed or elevated at seleced rates. Since suitable motors and gear sama are readily availabie, an detaled description of the motore and the gearing cmployed for rotating the system 16 man munion 1 is also omitued in the interess of brevity.

ORERATHON

縣 is believed that the operation of the described embodimeat of the presemt imsention is readily apparent but such operation will be briefly reviewed at this point. In order for the telescope 11 to be effecively employed for acquiring and tracking an object paraing through extraterrestrial space, it is necessary for the shot 20 of the housing 10 to be opened and aligned so that light from the object may be propagated from the object to impinge on the reflecting surface 14. As light is
impinged upon the surface 14 , it is collected, reflected and focused at the receiver input 17 of the secondary optic system 16. As the body being tracked changes its relative position along a path extending between the horizon and the zenith, the input 17 is rotatably driven by the motora and gear trains 50 about the trunnion 18. Consequently, the body being tracked may be followed from the horizon to the zenith simply by elevating or depressing the secondary optic system so that the input 17 continues to be repositioned so that it continues to receive light focused by the surface 14 .

Since, as a practical matter, the body being tracked normally doea not pass directly from a point on the horizon to the zenith, it is necessary that the primary reflector 12 be rotated in azimuth for aligning the surface 14 so that it contitues to be operatively aligned with the body being tracked. This alignment is achieved by driving the pinions 36 causing them no act in cooperation with the ring gear 38 , whereby the telescope 11 is driven in azimuth rotation. Simultaneously with the actuation of the pinion 36, the ring and pinion 44 are activated for rotatably driving the housing 10 along the suriace of the bearing 40 . Hence, the entire optical system is driven in both elevation and azimuth simultaneously through the actuation of the pinions for tracking a body moving through the celestial hemisphere.

In view of the foregoing, it should be readily apparent that the described embodiment of the instant invention provides a practical structure for accommodating rapid reorientation of a telescope without introducing gravity induced deflection in the reflecting surface of the primary optic system.
Although the invention has been herein shown and described in what is conceived to be the most practical and preferred embodiment, it is recognized that departures may be made therefrom within the scope of the invention, which is not to be limited to the details disclosed herein but is to be accorded the full scope of the claims so as to embrace any and
all equivalent devices and apparatus.
Iclaim:

1. A device for use in line-of-sight tracking of a point source of radiation disposed im extraterrestrial space comprisimg:
a. a horizontally oriented base;
b. a hydrostatic bearing supported on said base;
c. a horizontally oriented base plate mounted on said bearings adapted to be rotated through 360° of azimuth rotation abour a hixed vertical axis;
d. a primary optics system including means defining a primary reflector surface having a configuration conforming to an elongated vertically disposed segment of a concave surface having an arcuate length in excess of 90°, symmetric with respect to a vertically disposed plane and adapted so focus reflected light al foci diaplaced atong an arc within the plane,
e. mounting means supporting the primary reflector on said base plate in a manner such that the vertical axis is extended through a lower end portion of the segment;
f. a trunnion normally related to said plane radially displaced from the surface of said segment; and
g. a secondary optic system, including a receiver supported by said trunnion adapted to be pivotally displaced relative to said surface in a manner such that the receiver is caused to traverse said arc, whereby a source of light rayy be tracked through a hemisphere as the primary optic system is rotated about said fixed vertical axis and said secondary system simultaneously is displaced relative to said surface in a manner such that the receiver is caused to traverse said are.
2. The device of claim 1 wherein the surface is a segment of a spheroid.
3. The device of claim wherein the surface is a segment of a paraboloid.

AWARDS ABSTRACT

Inventor: Willard H. Wells
JPL IR No. $30-1127$
NASA Case No. NPO-10468
Contractor: Jet Propulsion Laboratory
November, 1968
REFLECTOR SYSTEM FOR TELESCOPES
The present invention relates to an improved reflector system for optical telescopes whereby gravity induced deflection is obviated as the system operatively is reoriented.

The present invention capitalizes on the fact that only a small portion of the surface of a primary reflector is required at any given time for gathering and focusing light to a secondary system adjacent the primary optic system. The primary reflector 12 comprises a segment more than 90 degrees of a spherical surface mounted in a vertical plane on a rotatable support 26 aligned so as to receive both horizontally and vertically directed beams of light. Disposed near the axis of the reflector 12 there is mounted a secondary optic system. The system 16 is mounted for elevational and depressional rotation about a trunnion 18 so that its receiver 17 describes 90 degrees of an arc adjacent an arc established by the foci of the surface 14 . The rotatable support 26 is supported by a hydrostatic bearing 30 so that the primary reflector may be rotated to face all points of the compass about an axis extending through the center of gravity. Since the secondary system is mounted for rotation through 90 degrees from the horizon, and the primary is adapted to face all points of the compass, all points within the celestial hemisphere may be viewed by the system.

Hence, a simplified system has been provided for reorienting a primary reflector without inducing gravity vector deflection in the surface of the reflector.

Serial No. 787,846
Filed December 30,1968

TO ALL WHOM IT MAY CONCERN:

BE IT KNOWN THAT WILLARD H. WELLS, citizen of the United States of America, residing at Altadena, County of Los Angeles, State of California, has invented a new and useful

REFLECTOR SYSTEM FOR TELESCOPES
of which the following is a specification:

ABSTRACT OF THE DISCLOSURE

A reflector system having particularly advantageous application to line-of-sight pointing and tracking telescopes and characterized by a primary system including an arcuate, strip-like segment of a dished, reflecting surface mounted for azimuth rotation and a secondary system supported for elevational rotation about an axis fixed relative to the surface of the segment at a point such that the secondary system is caused to describe an arc intersecting points adjacent to the foci of the primary system, whereby the surface of the segment serves as a primary lightgathering surface for an optical telescope as the telescope is employed to train and track a moving point-source of light throughout the celestial hemisphere.

ORIGIN OF INVENTION

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law $55-568$ (72 Stat. 435; 42 USC 2457).

BACRGROUND OP THE INVENTION

1. Field of the Invention:

The invention relates to reflector celescopes and mote particularly to an improved primary-secondary telescopic system having advantageous application to tracking devices.

2. Description of the Raior Art:

The prior anc includes various eypes of reflectors employed as primary reflectors for large aperture telescopes. Normally, such reflectors are fabricated from a large number of block-like members which are assembled to form a support for a parabolic or hemispheric mirror or reflecting surface. The mirror or reflecting surface is mounted in a manner such as generally to be directed cowards the portion of the celestial hemisphere to be
scanned so that reflected light may be gathered and focused into a receiver lens or secondary mirror positioned at or near the focus of the curved surface. Where large aperture telescopes, such as, for example, the 200 inch and liarger telescopes are employed, the support for the primary reflector necessarily requires a large number of compensating devices, and is of extensive mass. In order to observe celestial bodies located at different positions in space, it frequently is desirable to re-orient the primaxy reflector relative to the earth's surface. This re-orientation or movement of the reflector and its supporting structure introduces surface distortion or optical misalignment in the reflecting surface due to rotation of the mass relative to the gravity vector as the reflector is moved. Various techniques have heretofore been employed in correcting the misalignment. One of the techniques presently employed in minimizing such distortions is to adjust the individual support points on the primary reflector. However, such techniques are complex and maintenance of alignment for the segments requires continued mechanical re-alignment or, alternatively, a provision of a second level of counterwelghts which serve to compensate for gravity deflections of the structure employed to support and position the counterweighted segments. Therefore, reflector systems presently employed in the tracking of radiating bodies across the reaches of space have not proven to be entirely satisfactory, particularly where rapid re-orientation of large aperture optical systems is necessitated in operations similar to tracking operations.

OBJECTS AND SUMMARY OF THE INVENTION

This invention overcomes the aforementioned difficulties through the use of a primary reflector including a relatively small segment of one quadrant of the concave surface of a hemispheric reflector, operatively supported by hydrostatic bearing staucture for rotation about an azimuth axis, and an elevatable secondary reflector system fixed relative to the primary reflector, whereby re-orientation of the primaxy reflector is accomodated without introducing gravity inducted deviation and optical misalignment.

Accordingly, an object of this invention is to provide an improved reflector system for telescopes.

Another objecu is to provide a primary -ethector for use in telescopes for trackang moving bodies chrough excraterestrial space.

Another object is to provide an improved primarysecondary reflector syscem adapted to be rotated through 360° of azimuth in dual-mode, excraterrestrial tracking telescopes.

Still another object is co provide a rotatable mount for a primary reflector particularly adapted for use in telescopes and supported for rotation through 360° of azimuth rotation, while minimizing or avoiding gravity induced deflection in the associated reflecting surface.

Another object is to provide a large primary optic system for optical-space communication systems adapted to be rotated about an azimuth while avoiding complex counterbalancing for overcoming the effects of gravity induced deflections normally encountered in the re-orientation of primary reflectors employed in optical telescopes.

These together with other objects and advantages will become moxe readily apparent by reference to the following description and claims in light of the accompanying drawings.

DESCRTRTION OR RHE DRAWINGS

Fig. 1 is a top plan view of an obsecvacory including therein a telescope and its reflector system supported by structure embodying the principles of the presenc invention.

Fig. 2 is a cross sectional side elevation of the observatory of Fig. 1, particularly illustrating the mounting for the primary reflector employed to direct the light to the secondary reflector system of the reflector system.

Reg. 3 is a perspective view of the primary and secondary reflector system illustrated in Figs. 1 and 2.

Fig. 4 is a partially sectioned front elevational view of the reflector and an associated telescope.

DESCRIPTION OF THE INVENTION

With particular reference to Fig. 1, there is illustrated a protective housing or enclosure 10 within which is mounted a large aperture, optical telescope 11, including a rotatably displaceable primary reflector 12. The primary reflector 12 is preferably disposed symmetrically about a vertical plane and is provided with a light-gathering reflecting surface 14 having predetermined optical characteristics. Mounted in radial displacement relative to the surface 14 , for receiving light reflected from the surface 14, there is provided a secondary optic system 16. The secondary system, per se, is of well-known optical design and no detailed description is deemed necessary to provide a complete understanding of the invention other than that it collects light reflected from the reflector 12 and permits it to be focused for ocular examination, recording or the like. However, it should be understood that the secondary system 16 is of a type which includes a secondary receiver input 17 which may be a reflector or focusing lens, as preferred, mounted for rotation in the plane of symmetry of the reflector 12 to be displaced through an arcuate path adjacent to the foci of the curved surface 14 so that light reflected from the primary may be received at the input 17 of the secondary system 16 。

Suitable means including a trunnion 18, Fig. 2, is employed to support the secondary optic system 16 for elevational displacement about an axis extending transversely with respect to the vertical plane within which the reflector 12 is disposed. It is to be understood that the axis of rotation for trunkion 18 is fixed relative to the reflector 12 so that the optic system 16 can be rotated only in the plane of symmetry about the trunnion so that the receiver input 17 of the secondary system 16 may only be displaced along an arc adjacenc to an arc defined by the foci of the reflector 12 .

In practice, the housing 10 is provided wth a slotted openime 20 through which ight may be propagated from a celestial bocy to impinge upon the surface 14 of the meflecto. 12. As is common practice, a flexible, foller-and-teack door 22 . 2 employed for closing the opening 20, where such closure is desited. As doors of this type ane of well-known design, a detailed description thereof is onitted, however; it should be understood that the door is capable of being displaced along its txack in a manner such as selectively to open portions of the slot 20 so that the input 17 of the secondary zeflector system of the telescope may be elevated or depressed through 90° for trackumg a radiating body disposed in extraterrestrial space as body-propagated light impinges on and is reflected from the primary reflectoz surface 14.

The primary reflector 12 is fabricated in any suitable manner. Normally, such structure includes a plurality of blocklike support members 24 , which serve as a support for the reflecting surface 14. The material from which the reflecting surfaces 14 is fabricated may be any one of several well-known materials such as, for example, aluminum evaporated on highly polished glass blocks. The surface is shaped as a strip-like segment of one quadrant of the internal surface of a hemisphere and is preferably so formed as to include parallel side edges. The segment is of an operable length slightiy greater than 90° so that the secondary optic system may "look" at the reflecting surface of the primary reflector as it is elevated and depressed through an included angle of 90°.

Since the trunnion 18 is supported in fixed position relative to the reflector 12 , it is readily apparent that the receiver 17 receives light from only a portion of the surface 14 of the reflector 12 at any given setting. Hence, the particular width of the segment employed is determined by the largest portion of the reflecting surface which will be employed at any one instant in time in obtaining full hemispheric coverage, that is, the diameter of the area required to fill the input or aperture of the secondary optic system. Hence, the width of the segmented primary reflector required for full hemispheric coverage is dictated by the area required to provide the reflected light.

This may be readily determined and expressed as a ratio of the area of the mirror of the primary optic system to the area of the aperture of the receiver for the secondary system, as follows: $\frac{A_{\text {mirror }}}{A_{\text {aperture }}}=8(5 / \mathrm{mo}) \quad\left[4(6 / \mathrm{no})-\sqrt{\left.16(5 / \mathrm{nog})^{2}-1+1 / 2\right]:}\right.$ where A is area, and the lens aperture of the receiver 17 for secondary optic system 16 is expressed as an $\mathcal{F -}$ number.

Since the reladive displacement between the primary reflector 12 and the secondary optic system 16 is 11 mited to displacement in vertical directions when the plane of symmetry is vertical, the is necessamy that the suppore means be provided for supporcing the primary and secondary optic systems for zotation in azimuch, whereby the telescope il can be "pointed" coward any point of the compass. Therefore, a rotacable support plate 26 is provided as a member for operactively supporting both the primary and secondary optic systems.

In practice, the plate 26 is horizontally disposed in a level disposition and is supported by a concentrically aligned hydrostatic bearing 30 , which accommodates 360° of azimuth rotation for plate 26 and therefore the primary reflector 12 and
its associated secondary optic system 16. As a practical mattex, the plate 26 is also supported by a vertically aligned bearing structure 32 about which it is operatively rotated. The bearing 32 is of any suitable design with its axis serving as the azimuth axis for the telescope 11. The azimuth axis passes through the center of gravicy of the entire rotating structure including the reflector 12 and the secondary optics package 16. Hence, it should be readily apparcac thu- operative rotation of the telescope does not introduce gravity induced deflections normally encountered when a primary reflector is re-orineted, or caused to be re-aligned in "course" alignment.

A planax suppozt including a coaxially aligned disk-like support member 34 serves as a Etxed base for supporting the beering structure 30 as the bearkng structure suppotcs the plate 26. This support is provided with conventional footings 35 , as desired, and is of a mucerdal possessung tensile and compressive strength sufficient for supporting the cotal mass of the telescope.

The bearing 30 is of a channular configuration fabricated from wachined steel and mounted in supporting concrete in a known manner for obviating distortion of the bearing surfaces. Furthermore, the hydrostatic bearing 30 includes suitable means for
connecting the bearing with suitable fluid pumps and fluid heaters provided and arranged in a manner and for purposes well known to those familiar with the bearing art. As is common practice, the bearing 30 includes a sealed channel having two opposed planar surfaces disposed therein and maintained in a mutually spaced relationship by means including a thin film of oil. The oil is maintained under adequate pressures and prevents an occurrence of physical contact between the surfaces. The fluid heacers and fluid pumps employed serve to supply the oll at appropziate temperatures thus to maintain the desired pressure, viscosity and film thickness in a changing ambient cemperature environment, as is normally encountered in the operation of telescopes employed in celestial tracking. Furthermore, the support plate 26 and planar support 34 are of a rigid design in order to avoid the tendency to undergo undedired bucking as is normally encountered in supporting a large mavs.

While various means may be employed in driving the plate 26, as well as the structure supported thereby, in sotation about the azimuth axis, a pluralicy of driven pinion gears 36 is provided. The gears 36 are synchronously driven by sulcable motors 37, and are meshed with a ring gear 38 affixed to the base 26. The motors 37 are of any suitable design, but preferably possess high-torque, low-speed characteristics.

Since the reflecting surface 14 must "look" through the slot 20 , it is necessary that means be provided for rotating the housing 10 in synchronlsm with the rotation of the base 26 for thus maintaining the alignment established between the slot 20 and the surface 14. The rotation is achieved through means including suitable bearing structures mounted on a base 42. The structures 40 serve to support the housing 10 for rotation through 360° about a vertical axis, preferably coinciding with the azimuth axis about which the teaescope 12 - operatively rotated.

It is intended that the enclosure 10 serve to protect the telescope 11 from the adverse effects of enviromment, particularly wind locde and exeessive themmil inputs or dissipation. The structure is of a reativeny Iightweight conseruction. Theresore, the bearing wananism 40 is of simple design. In order to achleve the desired rotation for the housing 10 , an additional pinion and ring gear arrangemenc 44 preferably is included for driving the housing 10 in synchnonism with the driving of the plate 26 of the telescope 11. The ring and pimion gearing 44 is similar in design to that of the pinion 36 and geax 38. Therefore, a decailed description thereof is omitted in the interest of brevity.

The trunnion 18 employed for supporting the secondary optic system 16 is seated in suitable bearings 46 . The bearings 46 are disposed within the uppermost portions of vertical support columns 48. The columns 48 are mounted on the base plate 26 at opposite sides of the primary reflector 12 . Since the primary reflector is of a limecd width ic should be readily appreciated that the span of che tumion 28 is of relatively limited length. Therefore, desired aligment of the crunnon 18 can readily be maintained within a praccical zange.

In practice, means including a pair of servomotors 50 including therein a suitable gear train, are mounted on the columns 48 adjacent the pinion 18 and are geared to the pinion to impart the desired rotation thereto. The motors 50, in desired, are of a design similat to the motors employed in driving the pinions 38 and ane selectively operable Eoz impaxting opposing rates of rotation to the trunition 18 so that the receiver input 17 of the secondary optic system 26 may be depressed or elevated at selected rates. Since suitable motors and gear trains are readily available, a detailed description of the motors and the gearing employed for rotating the system 16 and trunmion 18 is also omitced in the interest of brevity.

OPERATION

It is believed that the operation of the described embodiment of the present invention is readily apparent but such operation will be briefly reviewed at this point. In order for the telescope 11 to be effectively employed for acquiring and tracking an object passing through extracerrestrial space, it is necessary for the clot 20 of the housing 10 co be opened and aligned so that lighe from the object may be propagated from the object to impinge on the zeflecting surface 14. As light is impinged upot the surface 14, it is collected, reflected and focused at the receiver mput 27 of the secondary optic system 16. As the body being trackeo changes its relative position along a path extending between the horizon and the zenith, the u nput 17 is rotatably driven by che motors and gear trains 50 about the trunnion 18. Consequently, the body being cracked may be followed from the horizon to the zenith simply by elevating or depressing the secondary optic systen so that the input 17 continues to be repositioned so that it sontinues to receive ilght focused by the surface 14 .

Since, as a practical matter, the body being tracked normaliy does not pass directly from a point on the horizon to the zenith, it is necessary that the primary reflector 12 be rotated in azimuth for aligning the surface 14 so that it continues to be
operatively aligned with the body being tracked. This alignment is achieved by driving the pinions 36 causing them to act in cooperation with the ring gear 38, whereby the telescope 11 is driven in azimuth rotation. Simultaneously with the actuation of the pinion 36, the ring and pinion 44 are activated for rocatably driving the housing 10 along the surface of the bearing 40 . Hence, the entire optical system is driven in both elevation and azimuth simultaneously through the actuation of the pinions for tracking a body moving through the celestial hemisphere.

In view of the Eoregong, it should be readily apparent that the described embociment of the instant inventzon provides a practical structure fow ecommodating rapid re-ozEatation of a telescope without introcucing gravity induced deflection th the reflecting sursace of the primary optic system.

Although the invention has been herein shown and described in what is conceived to be the most practical and preferred embodiment, $4 t$ is recognized that departures may be made therefrom within the scope of the invention, which is not to be limited to the details disclosed herein but is to be accorded the full scope of the claims so as to embrace any and all equivalent devices and apparatus.

