NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

WASHINGTON, D.C. 20546
refer to ATTN OF: GP

TO: USI/Scientific s Technical Information Division Atcontions Mise Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U. S. Patents in STAR

In accordance with the procedures agreed upon by code GP and Code USI, the attached NASA-owned U. S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided
U. S. Patent No.

Government or
Corporate Employee

Supplementary Corporate Source (if applicable)

NASA Patent Case No.

NOTE - If this patent covers an invention made by a corporate employee of a NASA contractor, the following is applicable: Yes \square NO 2
pursuant to Section 305 (a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent: however, the name of the actual inventor (author) appears at the heading of column No. 1 of the specification, following the words . . . With respect to an innugntion of

Elizabeth A. Carter

Enclosure

Copy of Patent cited above

1721	Inventor	Robert J. Lesniewski Greenbelt, Md.
[21]	Appl No.	713,188
[22]	Filed	Mar. 14, 1968
[45]	Patented	June 28, 1971
[73]	Assignee	The United States of America as represented by the Administrator of the National Aeronautics and Space Admimistration

[54] VARIABLE DIGITAL PROCESSOR INCLUDING A REGISTER FOR SHIFTING AND ROTATING BITS IN EITHER DIRECTION 77 Claims, 6 Drawing Figs.
[52] U.S.Cl... 235/175,
235/164
[51] Imt. Cl.. G06if 7/50
[50] Field oi Search... 235/175, $174,173,164 ; 307 / 221,216,218 ; 328 / 37,159 ;$

References Cited UNITED STATES PATENTS
$3,239,764$
3/1966 Verma et al.
235/156X

3,375,358	3/1968	Franck	235/175
3,454,310	7/1969	Wilheim, Jr	235/152X
3,374,468	3/1968	Muir	235/164X
3,320,410	5/1967	Barrett et al................	235/175
3,348,069	10/1967	Petschaver	307/221
3,462,589	8/1969	Robertson	235/175X
3,480,259	9/1968	Maczko et al.	235/175X
Primary Examiner-Malcolm A. Morrison			
Assistant Examiner-David H. Malzahn			
Attorneys-R. F. Kempf, E. Levy and G. T. McCoy			

ABSTRACT: Disclosed is a data processor including a plurality of cascaded registers connected together to selectively perform left and right shifts, as well as right rotation. The register stages are selectively connected to feed and be responsive to a single data line at either end thereof. The register stages are selectively connected with parallel data lines to be responsive to signals on the data lines. Words stored in the register can be combined with words on the parallel data lines in accordance with logical functions such as AND, OR, EXCLUSIVE OR, ADDITION, and SUBTRACTION. The register stages can also combine signals from one of the serial data lines with signals stored therein and from the parallel data lines.

$\xrightarrow{81,15}-147$

PATENTEN Jum28日:

$3.588,483$
SHEET 1 OF 3

FIG. 1

Fig. 3

FIG. 4

FIG. 5

VAGIABLEDIGTAL PROCESSORINCLUDNGA EITNEREDNECTION

The invention described herein was mate by an employee of the United Statee Govermment and may be manufactured and used by or for the Government for geternmental purpowen without the payment of any royaliteg thereon or therefor.
The present invention relate to data procenmorg, and mowe particularly te a data processor includirg a piurality of regmer whage which are selectively interconnected with cach ofher b cffect a multiphicity of operationar.

With the advent of large scale invegrated circuite, it has become feasible no perform muhiphaperation which herelofore have beem considered impractical because of power and space requitemente. With diaccete and individual innograted cincuitu, it has generally been the practice to intercomect computer slements in a relatively rigid manner wherem the number of posibie functions that cousd be achieved was limited.

In accordance with the presemi invention, a plurality of register stages are imerconmected with ach other and seriat data sowrces commected to the least and mont significant stages to effect transfer of data in either direction and rotation thereof at will. Data are uranferred to and trom the register to lines conmected to the reast and mont cignincant bit atages to reduce the number of exteman leads to the system.

According wo another embodiment of the invention, words expressed as paralles bits are combined with words stored in the register stages in accordance with a pluratity of different operating insturtions, viz, logical AND, logical OR, EXCLU. STVE OR, nde. gublract the register word from the word on the lines, subvact the word on the lines from the register word, and load the external word into the register. fin addition, the register stages car be cleared to zero or set to one at will, and the Lowest order stage is selectively responsive to serial dau bits, as well as the paralle data bits. The most significant bit stage is selectively coupled to a serial data line or to an overhow indicator.
Preferably, the entire data processor comprises a large scale integrated circuin that may be mounted on a single chip to conserve space and power.

A further feature of the invention is that the parallel data Hines can an will either feed bits into the register or be responsive to words stored in the register. Also, the logic between stage is established so that negative number operations are peformed in the two's complement binary arithmetic.

It in, accordingly, an object of the present invention to provide a new and improved data processor having capability for multiple connections between a plurahiy of register stages.

An adcitional object of the presem invention is to provide a data procesuor capable of periorming multiple operations on parallel worde; such operations being, for example, addition, aubtachion, logical AND, logical OR, logial EXCLUSIVE $O R$, and one's and two's complementing.

A further object of the present invention is to provide a data processor including a plurality of register stages, the operation of which can be atiered at will to ernable left and right shifts, as well as feedback.
A further object of the present invention is to provide a data processor wherein serial and parallel data words cars be fed amto and derived from the computer on the same leads.
The above and still further objects, features and advantages of the present invention will become apparemt upon consideration of the following detailed description of one specific embodiment thereof, especially when taken in conjunction with the accompanying drawings, wherein:

FlG. 1 is a circuit diagram of a preferred network for a simgle registerstage;
FiG. 2 is a block diagram of a serial register in accordance With one embodiment of the present invention;
FIGS. 3,4 and 5 are block diagrams illustrating the manner by which several registers of the type illusirated by FIG. 2 may be interconmected; and
F1G. 6 is a block diagrom illustraing an embodiment of a parallel proceseor according to the present invention.

Prior to considering the apparaus of the peesent invention. consideration wili be given to the circuity compriming a basic shift register stage, by referring io FlG. I of the wawinge. The basic shift regiger stage of FIG. A comprises, in esemee, a pait of inverters, each heving inhercht memory prowishom, and separated by a pait of mormally clowed whighea. The batico whif reginter stage is described in congunction woth metal okide semiconductor tedd cffect tramainton (MOSFETN)
 it is to be underatood, hewever, that other mitabte devices
 chips.
The basic register stage comgrises inverter sections it amd 12, the formet having an inpue responsive to binary mertals at terminal 13 and the later deriving a binary omtput at semmed 14. Input and ourput terminals i\$ and it are setectryely connected together by normaily chosed swicch 15 , white gtages 1 . and 12 are selectively comected so ach onther by nomatly closed swich 16.
Each of inverters If and 1 includes a pair or opposite conductivity eype MOSFET's 17 and 18 , hawimg the source draim paths thereof connected in series botween a posivive, 10 -volt source at terminal 19 and ground. The gethe fectrodes of MOSFET's 17 and 1 are connected togemer and to the inpur terminal of the inverter, whereby only one of MOSFETY 1 tor 18 is forward biased at sry time. Rence, anty one of the MOSFET'S 17 or 18 has the sonce dram pat thereof ase fivated to a relatively low impedance fate, whte the wource drain path of the other MOSFET is virtualy open circuited. Because of the relathely harge NOSFET gate source. capacitance, AOSFET's 1 Th and 88 include caracitive memories and store charge upon the removal of a volage source from the gate electrodes.

Switches 15 and 16 comprise ant additional pair of MOSEET's 21 and 22, having heir source electrodes conm nected together and their drain electrodes similarly connected. The gate electrodes of MOSFET's 21 and 22 arc responsive to complementary voltages, whereby botion actue elements comprising the swich are simuitaneoully open- and short-circusted.

In nomal operation, with the tramistors comprisime swirches 15 and 16 driven to the closed state, a regenerative path is established between terminals 1 th and wimee the out put voliage of stage \mathbb{I} is of an opposite sense fromt the volcage at terminal 13 . The voltage at the output of stage 111 is coupled to the imput of stage 12 via switch 16 , whereby the voltage at terminal 14 is of the same polarify as ohe wolage at terminal 13. The voltage at cerminal 4 is coupted back to berminat is through closed awith 15 to establish the regenerative beed. back path.

To conaider a specific example of she register seage operation, assurne that terminal 13 has applied thereto a woltage equal to the voltage at terminal 1 . whereby a low impedance gource drain path subsists in tranciter 18, while the source drain path of MOSFET 17 is virtually am open corcuit. In consequence, a ground voltage is coupled to the drain electrode of MOSFET 18 and fed through closed switch 16 to the gate electrodes of stage 12. In response to the gromen potemtial applied to the gate electrodes of stage 12 , the source dratr path of MOSFET 17 of stage 12 is virtually shor-circuited, while the source drain path of MOSFET 1 g is open-autcuited. Thereby, the 10 -volt source at serminal 1 is coupled through MOSFET 17 of inverten 12 to output temmal 14 to fomm he regenerative loop. The regenerative loop continues to proviche a positive voltage at terminal 14 even though a source coupling a positive voltage to terminal 13 is uecoupica from the register stage of Fill. 1. The positive volkage is derived at terminal 14 until teminal 13 is connecred to a binamy zero in dicating ground potential, while switches 15 and 1 . are oper circuited.

Decause of the relatively large source gate capabily of MOSFET's 17 and 18 , inverter stages $1 / 1$ and 12 remain im be same state as they were previously driven even when no driving voltage is at terminal 13 and switches 16 and 1 直 are open-
 fnherent mertory capacity. whticicnt to enable the voltage at
 perce of switching operathom which would open sircuit \%wichus vollege shurces
The rxansmer by which the bamic shift register stage of fric.普 somploycd in a complete large scale integrated circuil shife regisur camable of beivg acsivated to four different operating moness in indichted by the circuit diagram of Fio. 2, to whinh reforence is now trate. The mint register inustrated by FiC. 2
 33, athough in uchai practice the number of stages is feneraty condideraly in excedo of hrec, urually being on the order af 16.
 nected wo red or be reaponave wo binary bis on external werab
 we.

Mode O. Shiwng data in either direction from and ineo terminals 34 and 35 ;
Modes. Shifeng datianco and from terminal 34 at the left end of the rester wihnout feeding data into and/or from perminal ss:
Mode 2. Shtung data into and out of verminal 35 at the fight wal of the regiser werbout feeding data into and/or from serminal 3a; and
Mode 3, Bypassum all of stages 31-33, whereby terminals 3 and 3s are dinectly comected.
The sewcrit stages 3y-33 comprising the entre register can be conmected logether whereby data are shinted leff or right. In Hith mutimg oper mitons, binary bits at the highest and towest
 gernat data finds 34 or 35 or decoupled from the remainder of the netwon. Im addition to the ehifting instruction or operawhon, register stages $31-33$ can be conmected in a reedback lonp 3 then diak are rotated either in the right or left decturn For bebt rotation, shif register stages $31-33$ are interconthected so that binary bits propagate from register 33 to regivter 34 to reginter 31 and back to register 33 . For righ rotation, the oppowite direction of data low occurs between prages 3 ….. 33 .

The bor moder stated supra are established by uchectively cloming whticher between lines 34 and 35 and the inpui and outpup termimation regher stages 31-33 (ohe imput and output wemhals ate always respectively shown on left and righe wides of the stages). 在 addition, the mode connections are prowided by neloctively grounding the input arod output of nitgem 31 amd 3 by cloming Ewitches. In particular, mode 0 ophation muotving shiting or rotating in the right direction is essabished by chosing switches 36 and 37 , respectively connected between hine 34 and the input of highest order stage 31 and between the cutput of lowest order suage 33 and line 35. Led shor and rotate connections for mode operation are catabished by clowng swinches 39 and 39 , respectively comnected bewwen hive 35 and the inpur of siage 33 and between
 parmimaln 3 and 3 sure directly connected together and the seages 3 - -3 are inolated therefrom, is establiched by closing Swith 40 contnecked berween terminals 34 and 35 .

Selective opening and closing of switches 36-4b suablishee the four diferent operating modes indicated relaWve to extermat hues 34 and 35 . To selectively couple data bevwem he various shif register stages $31-33$ for left and right shifs, as well as rotations regardiess of the mode contigeration, the registur stages are interconnected with each other wia normally open-circuited series swiches 4- 16 . Switches AI 1 mad an are respectively connected between the output and inpur fermimek of stages 31 and 32 and between the output and mpus terminats of stages 32 and 33 to enable the propagaGon of bumary bits in the right-hand direction for either shifting on ronathon owerations. In contrast, swith 43 selectively connects the outyut emminal of stage 33 with the input terminal of

From Table II, it is appreciated that each mode number corresponds with the binary equivalent for the particular number. In mode 0 , generally switches connected to data limes 34 and 35 , namely switches $36-39$, are selectively energized; in mode 1 , swiches 36,39 and 48 are selectively energized; in
mode 2，switches 37,38 and 47 are selectuvely energized；and in mode 3 ，switches 47 and $4 \$$ are selectively energized，while switch $\$ 0$ is always energized．

In addition to controlling the mode connections of the switches which selectively couple data between lines 34 and 35 and the register stages between them，logic circuit 59 responds to the operation code signals $a-e$ to control opening and closing of switches $41-45$ independently of the mode signals C_{1} and C_{2}
A complete analysis of the circuis configurations established between register stages $31-33$ and data lines 34 and 35 is in－ dicated by Table II：
each other．Aher each of switches 15 and 16 in regider stages $31-33$ has been open－circuited，the second pulse on lead 5 s is derived to close swisches 38,43 ， 44 and 39 agan．The bin nary one signal stored in inverter 12 of register stage 33 is now coupled to inverter 11 of register 32 via switch 43 ．Inverter 1 I changes state from the zero previously loaded therem to one in response to the signal coupled to it chrough switch 43 because the inverter input is isolated from any other signal source．Simultaneously，inverter 11 in stage 33 is responsive to the binary one signat on lead 35 and thereby remams in the bi－ nary one state．Upon completion of the seconce pulse on lead 55 ，each of switches 38,43 ， 44 and 39 is again open－circuied

TABEE IT

	op code					Mode		Mode dependentswitch								$\begin{aligned} & \text { Mode } \\ & \text { independent } \\ & \text { sryitch } \end{aligned}$	
	a	U	c	d	c．	C	Cl_{1}	R_{n}	$\mathrm{R}_{\mathrm{T}_{3}}$	LT	BY	RT 。	LTo	Lo	$\mathrm{R}_{\text {o }}$	R	\pm
L．．．．．．．．．．．．	1	1	0	1	1	，		0	0	1	0	0	1	0	0	0	1
I．	1	1	0	1	D	0	1	0	0	1	0	0	0	1	0	0	
L．．．．．．．．．．．．－	1	1	0	1	D	1	0	0	0	0	0	0	1	9	0	0	
L．．．．．．．．．．．．．	1	1	0	1	D	1	1	0	0	0	1	0	0	1	0	0	
R．．．．．．．．．．．	1	1	1	0	D	0	0	0	1	0	0	1	0	9	0	1	
R．．．．．．．．．．．	1	1	1	0	D	1	1	0	1	0	0	0	0	0	0	1	0
R．	1	1	1	0	D	I	0	1	，	0	0	1	0	0	0	1	
R＿，	1	1	1	0	D	1	1	1	O	0	1	0	0	0	0	1	0
R_{0}	1	1	1	1	D	0	0	0	，	0	0	1	0	0	1	1	
R_{0}	1	1	1	1	$1)$	0	1	0	1	0	0	0	0	0	1	2	0
R_{0}	1	1	1	1	D	$\underline{1}$	0	0	0	0	0	1	0	0	1	1	0
R0．	1	1	1	1	\％	1	1	，	，	，		0		0	1	1	0

In Table II，the instructions，indicated by the columns denominated as $1, L, R$ and \mathbb{R}_{0} ，are indicative respectively of 30 instructions left shift，night shift and right rotate．Mode depen－ dent switches $47,36,39,40,37,38,48$ and 45 ，comirolled by signals C_{1} and C_{2} ，are respectively indicated by $\mathbb{R}_{n}, \mathbb{R}_{T_{1}}, L_{-1}$ ， $B Y, R_{T o} L_{m}$ ，and R_{0} ，while the mode independent right and left shif switches 41,42 and 43,48 are denominated R and \mathbb{L} ．In Table II，the presence of a binary one indicates a particular switch is closed for the duration of a pulse on lead 55 ，a zero indicates an open circuit condition of she switch，while a D can be zero or one，at the will of the designer．

To provide a more complete understanding as to the manner by which the register of FlG． 2 functions selectively to perform different instructions in the different connection modes，an example will be considered wherein a binary one signal，having a positive voltage，is continuously applied to ter－ minal 34 while the C_{1} and C_{2} signals are both equal to zero and stages 31－33 are all cleared to zero；i．e．，register connections are in accordance with mode 0 and the operation code signals， abcde，are respectively 11010 ．As indicated by the first line of Table II，logic network 59 responds to the siated mode and operation signals to shift data in the left direction from line 35 to line 34 ，whereby switches $38,43,44$ and 39 are closed in response to each pulse on lead 55 ．While and for a short time before and after each of switches $38,43,44$ and 39 is closed， switches 15 and 16 in each of register stages $31-33$ are openw circuited in response to signals derived on lead 54.

In response to the first pulse on lead 55 ，switch 38 is closed to gate the positive voltage at line 35 to the inpus of register stage 33 ．Simultaneously，swiches 15 and 16 in register stage 33 are in an open circuit condition，whereby inverter stage 1 I in register stage 33 is loaded with a binary one．The binary one signal on terminal 35 is decoupled from the input of inverter stage 11 as the first pulse on lead 53 teminates；however，in－ verter 11 remains loaded to the binary one state because of the gate source capacity of MOSFET＇s 17 and 18 ．In response to the termination of the positive voltage on lead 5 ，swithes 15 and 16 are closed and the binary one state of inverter 11 is coupled to inverter 12 within register stage 33 ．The binary one state of inverters 11 and 12 is maintained after the trailing edge of the first pulse on lead 54 because of the regenerative circuit established between reminals 13 and 14 through switches 15 and 16 ．

In response to the second pulse on lead 54，switches 15 and 16 in each of stages $31-33$ are again open－circuited and in－ verter stages $\mathbb{1 1}$ and 12 in each register stage are isolated from
to isolate the inverter stages 11 and 12 in axcly registh stage from any extemal source．Shorty ater inverters il of register stages $31-33$ are decoupled from the output of the preceding register stage，both inverters 11 and 12 within each stage are connected in a regenerative feedback loop in response to ter－ mination of the second pulse on lead 54．From the preceding description，if is believed obvious as to the mamer in which stages $31-33$ function in response to the signals appited to switches $38,39,43$ and 44 ．

The complete repertoire of right rotate，right ght and lef shift instructions for the four different modes will now be con－ sidered．

In the right rotate operation，data bits are transfered in sequence from stage 31 to stage 32 etc．，from the highest order stage to the lowest order stage．When a bit reaches lowest order stage 33，it is transferred back to the highest order stage through switch 45 ．In response to the register being activated into modes 0 or 2 ，bits are serially coupled from stage 33 ，hrough switch 37 to lead 3 第；in contrast，bits may be coupled from the register to line 34 from stage 31 yia switch 39 only while the register is activated into modes 0 or 1 ．

For shifing right，data bits are transferred in seguence from the highest order stage to the lowest orwer stage，ie，from stage 31 to stage 32 to stage 33 etc．，from lett right，省m mode 0 data bits are serially fed to the register from hmo 3 shrough switch 36 and coupled to line 35 via swirch 37 ．Ie no sishal source is comnected to line 34，the signal stored m the widnest order register stage 31 is not altered because the capacky of inverter stages 11 and 12 is sufficient to enable the stored signal to be maintained between closures of the switches within the stage．

For right shift in mode 1 ，any signal souree connected to line 34 is fed to register stage 31 through switch 3 ．Wh line 34 is Moating，most significant bit stage 31 remains activated to the same state it had in response to a prior signal being cou－ pled thereto．For both conditions of line 34, switch 3 wis opem－ circuited，whereby line 35 is isolated from the remainder of the register．For right shift mode 2 ，all connections of the re－ gister to terminal 34 are open－circuited，while any data bits through switch 37 to terminal 35 ．Switch 47 is closed in response to each pulse on lead 55 ，whereby most significant bit stage 31 is continuously loaded with binary zetos．Fon right shift，mode 3，any signals coupled to teminal 34 are fect to ter－ minal 35 via bypass switch 40 ，while the remainder of the re－
gister in decoupled from lines 3 and 33 . Simulaneously, biRary zeros are comimuoubly fed to the input of stage 31 Brough swich 4 and intermai shifls within the regiter occur

In all fown modet, left phir generally involves shifting the content of a lower order regimer sage io a higher order stage. f.e. shithing frome the cuiput of atage to the right, as illustrated by FM. 2. to the left. Por example, the conterts at the output of mage 3 3 we shinced to the input of efoge 32 and the

lin left shit, mode 0, data bith coupled to line 35 are fed
 mately coupled from register slage 34 through switch 39 fo data line 3A. We terminal 35 is decoupled from a mignal wource
 is was previously metivated in response to the las signal fed thercto. For lef shaft, mode 1 , the output of register stage $\$ 1$ is cowpled to lime 34 through swich 39, while line 35 is decoupled from stage 33 due to boh switches 37 and 38 being opencircuited. Binary zeros are continuously loaded into least sig. wincant bit register stage 33 im response to switch 48 being closed won the occurrence of each pulse on lead $\$ 5$. For left Shith, mode 2 , signal sources connected to line 35 are coupled to the mpur of register stage 33 via switch 38 while the output of stage 3 I is decoupled from lead 34 . If no sigmal source is commected to line 35 , but the line is floating, least significant bif venister stage 33 remains in the same state as the one to which it was previously activated. In left shift, mode 3, data limes ${ }^{3}$ and 3 are connected together and are decoupled from sllot the register circuitry.
muernally of the register, the contents of stages 31-33 are segwentially fed rom the lowest order register stage to the hishest order datag. As signals are read from the lowet order suage 33 , binary zeros are fed thereto in response to switch 48 being closed in gymchronism with each pulse on lead 55.

The registers of BlO. 2 can be interconnected with other regizers having the same configuration to form larger registers having sages which car be selectively interconnected. The registers can be connected in series with each other, in parallel with each other, or in series parallel combinations to provide varimble series operations. For example, it it were desired io provide a vaniable wegister having 48 stages, three 16 -stage registers could be interconnecied in series. Once the 48 -stage register was established, it is possible, for example, to segregate the 16 -stage registers into separate parts which may include 32 stoges and 16 stages. Data can be independently writen into and out of the 16 and 32 -stage registers, or different 16 -stage registers can be bypassed at will. In general, it can be stated that if N registers of the type illustrated by FlG. 2 are interconmected, 4^{N} different circuit combinations of Those reamistrs are possibite.

Exemplary of onte of the diferent combinations possible milizing thtee reginters of the type illustrated by FiG. 2 are circuld miown by FIGS. 3-5. In FIG. 3, each of registers 6t. 62 and \mathbf{b}^{3} is encrgizet wo mode 0 and the left and right dara lines or each respater are connected to the data lines of the adjacent register. Data are free to circulate between the various resisters b - 6 to form a complete feedback regisser having a towal of 48 stage. Data can be shifted in the right or lent direction between registers 61-63 and the individual registers can be activated, one as a time, to a rotate mode.

In EIG. The same three registers of FlG. 3 are interconneceed, whereby registers 64 mind 66 are connected with each other and rempectively activated to modes 0 and 1 ; register 65 being activated into mode 3 到 isolated from registers 64 and 66. Thereby, register 65 is tintesponsive to circulation of data between registers 44 and 66 but can be energized for internal rotation and shits as indicated by Table II supra. Registers 64 and tis are inthrconnected with each other so that, for example, 慈 response to a right rotate operation code, the output of the least nigmificant stage of register 64 is fed to the most significan tage of register fa. Simulaneously, the most significant ntage of register Gu remains in the state to which it was
previously achvated by a signal source coupled thereto; the most significant bie stage of register 64 is urresponsive to signals from the least significant stage of register 66 because the lattes register is in mode 1 operation.

If the register configuration of FIG. Areceives the operation code indicative of a left shift, the most significant bit sage of regiser 6 is coupled wo the least giganifant bis niage of register 63 . Simultancously, the contents of the mode significant bit wage of regimer 6 are overflow, and can be indicated as wuch as neen infra. The most mignificam bit atage of reginter 63 is not coupled to the leame significant bit stage of reginter th because the latier register is in mode I, whereby the lean sige nificant bit stage thereof is repeatedly loaded with birary zero signals.

A further possible circuit configuration for a plurality of re* gisters is illustrated by $\mathbb{E N G} .5$ wherein register 67 is energized to mode 0 and is connected in series with the parallel combination of registers 68 and 69 , respectively energized to modes 1 and 2 . By virtue of the mode configurations, the right side data terminal of register 67 is connected to the left side data terminal of registers 68 and 69, while the right side data terminals of the latter registers are connected to the left side data ierminal of register 67.

With registers $67-69$ in the stated mode conditions and assuming a rotate right operation command, the least significant bit stage of register 67 fecos binary bits to the most significant bit stages of registers 67 and 68. The most significant bin stage of register 68 responds to the signals fed to it from registers 67 and 69 as an $O R$ circuit. The signal in the most significant stage of register 68 is circulated or rotated to the right, but outpur signals are not derived from the right outpur terminal of register 68. Register 69 , however, is unresponsive to the contents of the least significant stage of register 67 , by virtue of the former register being in mode 2 ; but register 69 continuously feeds the contents of its least gignificant bit stage to the most siguificant bir slage of register 67 . lin addition, the bits continuously derived from the least significant bit stage of register 69 are contimuously fed back to the most significant stage thereof in response to the right rotaion operation.

From the foregoing examples, it is believed obvious as to how a plurality of registers of the type illustrated by FIG. 2 can be imferconnected togener to provide various programmable functions as may be desired. The functions are not limited on an a prion basis but are completely amorphous and may be established at will in response to operation codes and mode comnections.

Consideration will now be given to the circuitry by which the basic register configuration of FIG. 2 can be cmployed as a large scale integrated circuit variable parallel processor, i.e. as a computer responsive to signals derived on parallelleads. and fed to parallel arithmetic compuing circuitry. The parallel processor illustrated by FiG. Gomprises three register stages $7 /-73$ interconnected winh each other selectively in a similar manner to register stages $31-33$ of FIG. 2 . Each of regituer stages 71-73 is substantially the same as the register stage illustrated by ElG. 1. A difference, however, exists between register slages 7 i- -73 and the stage of pla. 1 since the variable parallel processor of FIG. 6 is required to derive indications of the inverted state of a register. To this end, an output is derived from the gate clectrode connection of inverter 12 for each of the register stages $71-73$.

While the variable parallel processor of FIG .3 is illustrated as including only three stages, it is to be understood that in an actual practical system, the rumber of stages is considerably in excess of three and is generally on the order of 16 . By illustrating the variable parallel processor as having three stages, redundant circuitry associated with the central stages is eliminated from the drawing to simplify the exposition herein.

There are however many redundant switching components associated with each of stages 71-73. To simplify the description of these redundant componens, all switches associated with register stages 71, 72 and 73, are respectively assigned reference numerals in the 100 's, the 200 's and the 300 's. All
switches that are identically connected in each of the register stage circuitry have identical unit and sens reference numerals. In general, only the circuitry for switches associated with the central stage register 72 are described in detail. Any differences in the circuitry associated with register stages 71 and 73 relative to register stage 72 are described in detail.
Register stages 71-73 are selectively coupled to read binary bits in sequence to and from left and right serial data lines 74 and 75 ; in addition, each of the register stages is selectively responsive to and from a binary bit on each of parallel data lines 76-78.
Stages 71-73 are selectively interconnected by means of switches $36-95,97$ and 98 in the same manner as register stages $31-33$ are interconnected with switches $36-45,47$ and 48 to perform the same operations as the circuit of FIG. 2, as indicated by Table Il, supra. For purposes of convemience, the similarly connected switches of FIGS. 2 and 6 have identical unit reference numerals and tens reference numerals displaced by a factor of 5 .
Control of switches $86-95,97$ and 98 is in response to timing signals derived on leads 8 at the output of timing and control network 82 , which is generally similar to timing and control network 51, FIG. 2. Timing and control network 82 derives output signals for controlling switching within register stages $71-73$ in the same manner as stages $31-33$ are controlled in response to the signals fed into and derived from inverters 56-58.
In addition to the time controlled signals derived on leads 81 and 83 , timing and control network 82 responds to the operation code bits $a-e$ and mode control signals C_{1} and C_{2} to selectively activate other switches associated with each of register stages 71-73 independently of timing pulses. The time independent switches associated with stages $71-73$ respond to the operation code bits $a-d$ and the mode control signals C_{1} and C_{2} to enable 16 different instructions or commands to be performed by the parallel processor. The instructions are fed to the computer switches via leads 84 in response to the operation code bits $a-d$ to enable the contents of the stages $71-73$ to be: (1) selectively combined with signals on parallel input leads 76-78; (2) selectively combined with signals on serial leads 74 and 75 ; (3) cleared to zero or set to one; (4) shifted left and right; (5) loaded in response to the parallel data bits on leads 76-78; or (6) rendered into a nonoperating condition. Exemplary of how signals stored in stages 71-73 may be combined with the parallel data bits on leads 71-78 are the logic operations of AND, OR and EXCLUSIVE OR; and binary addition and subtraction in either the one's or two's complement mode. Subtraction may be effected so that the contents of registers 71-73 are either the minuend or subtrahend. The operation code bit e is derived at will for any combination of operation codes $a-d$. Thereby, the contents of register stages 71-73 are read out to parallel data lines 76--78 whenever the operation code e occurs.
Consideration is now given to the circuitry associated with the middle register stage 72, FIG. 6. Each of the switches to be described in conjunction with register stage 72 is operated in

TABLE M

I	Op code					Switches independent of time														Thme denendent swivones		
						N	$\overline{\mathrm{N}}$	X	$\overline{\mathrm{X}}$	K	B:	LG	B_{2}	2	Out				$\left(0, \frac{1}{n}\right)$			
	a	b	c	d	-															A	SUM	N
NOP.	0	0	0	0	0	D	0		0	0	0	0	0	0	0	0	0	0	0	0	\%	0
XOR.	0	0	0	1	0	1	0	1	0	0	0	1	0	0	${ }^{0}$	0	0	0	0	0	3	9
CNTD	0	0	1	0	0	1	0	0	0	0	1	0	0	1	0	0	1	1	1	0	2	0
CNTU.	0	0	1	1	0	1	0	0	0	1	0	0	0	1	0	1	0	1	1	0	1	13
SM	0	1	0	0	0	0	1	1	0	0	0	0	0	1	0	1	0	1	1	0	1	0
SMZ.	0	1	0	1	0	0	1	0	0	1	0	0	0	1	0	1	0	1	1	0	1	0
AD.	0	1	1	0	0	1	0	1	0	0	0	0	0	1	0	0	1	1	1	0	k	0
SUB.	0	1	1	1	0	1	0	0	1	0	0	0	0	1	0	1	0	1	1	0	1.	0
SET.	1	0	0	0	0	D	0	0	0	0	1	0	1	0	0	0	0	0	0	1	0	0
OR.	1	0	0	1	0	1	0	1	0	0	0	0	1	,	0	0	0	0	0	1	0	9
CLEAR	1	0	1	0	0	D	0	0	0	1	0	1	0	0	0	0	0	0	0	1	0	0
AND..	1	0	1	1	0	1	0	1	0	0	0	1	0	0	0	0	0	0	0	1	0	
IN...	1	1	0	0	0	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1	1	0	1	0	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
R	1	1	1	0	0	D	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	1	1	1	0	D	0	0	0	0	0	0	0	0	0	0	0	0	6	0	0	0
OCT.	D	D	D	D	1					of	bove				1	0	0	0	0			

To provide a compleve understanding of Table III, the following legend is provided:

LEGEND

$1=$ instuction;
$0=$ switch oper;
$1=$ switch closed;
$D=$ switch ether opened or closed;
$N O P=$ processor mot in operation;
$X O R=E X C L U S V E O R$;
$\mathrm{CNTD}=$ countdown, i.e., for each timing pulse derived in timing and control unit 82 a one is subtracted from the contents of the register comprising stages $71-73$;
$\mathrm{CNTU}=\mathrm{coumt}$ up, ie, a one is added to the contents of the register lommed by stages $71-73$ in response to each riming pulse;
$S M=$ subtract the conents of the register comprising stages $71-73$ rom the word on data lines $76-78$;
$S M Z=$ complement the contents of the register comprising stages 71-73 and add the binary signal on right data tine 75 to the register contents;
$\mathrm{AD}=$ add the contents of the register comprising sfages 71 --73 with the binary word on paralle data Mnes 7678;
$S U B=$ subtract the binary word on parallel data lines 76--78 from the contents of the register comprising stages 71--3 3 ;
$S E T=$ ser the conterts of each stage of the register comprising stages 7 - $1-73$ to one;
$O R=$ combine the binary bits on each of leads $76-78$ with the signal stored in each of register stages $71-73$ in accordance with the OR logic function;
$C L E A R=$ clear each of register stages $71-73$ to a zero binary level:
$\mathrm{AND}=$ combine the binary bits on each of leads 76-78 with the binary word sored in register stages $711-73$ in accordance with the logical AND function;
$\angle O A D=10 a d$ the binary bits on leads $76-78$ into register stages 71-73, respectively;
$L=$ shif the contents of register stages $71-73$ to the lef:;
$\mathrm{R}=$ shift the contents of register stages 71-..73 to the righr;
$R_{0}=$ rotate the contents of register stages $71-73$ to the wight and provide feedback from the output of stage 73 to the input of stage 71 ;
$\mathrm{OU}=$ feed the contents of register stages $71-73$ to parallel data limes $76-78$, respectively;
$N=$ switches 104,204 and 304 ;
$N=s w i t c h e s 105,205$ and 305 ;
$X=$ switches 111,211 and 311 ;
$X=$ switches 112,212 and 312 ;
$K=$ switches $\frac{16}{1} 6,216$ and 316 ;
$B_{1}=$ switches 15,215 and 315 ;
$L G=$ swisches 118,218 and $318 ;$
$B_{2}=$ switches 147,217 and 317 ;
$\mathbb{Z}=s w i \operatorname{ches} 121$ and 221 ; and
()$=$ modes switch is closed; in all other modes switch is open.

Additional switches are indicated in Table III by the legends $\mathrm{O}_{\text {mit }}, \mathrm{Q}, \mathcal{J}, \mathrm{C}_{a r}, \mathrm{M}, \mathrm{A}, \mathrm{SUM}$ and IN. As the description proceeds and these switches are described, they will be referred to by both reference numerals and letters intially. The letters zo which they are refered will correspond with the assignments given im Tabe In.

To read the contents of stages $71-73$ at will to parallel lines $76-78$, regardless of any other instruction fed to the parallel processor, O_{u} switch 222 , closed in response to the operation code e, is convected between the output of stage 72 and input
lead 77 . Since operation code e controls no other switch than readout switch 222 and corresponding switches 122 and 322 in the circuitry associated with registers $71-73$, it is seen that data are read out from stages $71-73$ at will, independently of any other operation being performed. The system is generally operated, however, so that switch 222 is never closed while any of switches 211,212 and readin switch (IN) 241 are closed so obviate coupling of data read from stage 72 back to the circuitry associated with that stage.
Consideration will now be givem to switches in the circuitry associated with registers 71 and 73 which are responsive to both mode control signals C_{1} and C_{2} and operation code signals $d-d$. There are no switches in the circuitry associated with middle register stage $7 / 2$ responsive to the mode control signals.

In modes 1 and 3 , I and Q switches 331 and 332 selectively connect the C and \bar{C} input terminals of full adder 30 to the binary zero and one levels at terminals 208 and 20%, respec. tively. For modes 0 and 2 , switches 331 and 332 are always open-circuited. In modes 0 and 2 , the C and C inputs of full adder 301 are selectively responsive to the serially derived bits which may be fed to terminal 75 as coupled through CAR switch 333 , always open-circuited for modes 1 and 3 . Selective coupling of the carry output of full adder 101 on tead 103 to the leht serial heminal 74 is accomplished by selectively closing M switch 2 stat whe system activated to modes 0 and 1. In response to the system being energized to modes 2 or 3 , however, swinch 134 remains always deacivated or open-circuited.

Each of the foregoing switches is activated independently of time in response to the signals derived from timing and control unit 82 on leads 84. To control proper operation of register stages $71-73$ in concert with switching of data therein as controlled by the timing signals derived on lead 83 , the circuitry associated with each of stages $71-73$ includes additional switches controlled by timing signals derived on leads 81. The timing signals derived on leads 81 of timing and control unit 82 control activation of switches $86-95,97$ and 98 at a time when the inverters in stages $71-73$ are decoupled from each other in a mamer similar to control of the FIG. 1 circuitry in response to the signals on leads 83 . Similarly, the switches about to be described are activated to the closed state only while inverters 11 and 12 in register stages 71-73 are decoupled.

The switches controlled by the time dependent pulses on lead 81 are IN switch 241 , SUM switch 242 and A switch 243. Switch 241 is selectively closed between the input terminal of stage 72 and the birary bit applied to lead 77 whenever it is desired to load stage 72 with a signal. The sum and carry signals respectively derived on leads 202 and 203 are selectively fed through switches 242 and 243 to the mput terminal of register 72 during the counting, arithmetic and logio operations.

It is noted that the circuitry associated with register stage 7 does not include a SUM switch; instead, it includes SIGN and SIGN switches 144 and 145 respectively responsive to the true and complementary sum signals derived from full adder 101 on lead 102; the complementary signal is fed to switch 145 through inverter 146 . Switches 144 and 145 are actuated to indicate the presence of an overflow from the highest order stage 71 in certain mode configurations. In synchronism with the operation of switches 144 and 145 overflow flip-flop 147 is actuated whenever SIGN switch 145 is energized.

The sign or polarity of words in the present computer is expressed in the well-known manner wherein the most signifi0 cant bit in a word, as stored in register 71 or on lead 76 , has bimary one and zero values respectively for negative and positive numbers. Hence, positive and negative numbers stored in the register comprising stages $71-73$ result respectively in stage 71 being activated to the zero and one states; positive and negative numbers coupled to parallel input leads $76-78$ are
indicated by the presence respectively of binary zeros and ones on data line 76 .

Activation of switches 144 and 145 is in response to the a -- d bits of the operation code, the polarity of the word applied by the register comprising stages $71-73$ to adder $101, S_{1}$, the polarity of the word applied by data lines $76-7810$ adder 101, S_{2}, the mode of regiseer stages 71 -73, as indicated by C_{3} for modes 2 or 3 , or $\overrightarrow{\mathrm{C}}_{2} 2$ modes 1 or 2 . These signals are logically combined in logic network 148 with the sum output signal of full adder 101 on lead 102 and a timing pulse, P, occurring in time coincidence with the iming pulse derived on leads 81 . In particular, logic network 148 responds to the inputs thereof to drive switch 104 to the closed state when the following expression has a binary one value:

$$
\begin{gathered}
\left.\left.\operatorname{SIGN}=S, b S_{1} S_{2}+S_{1} S_{1} 2 S_{2}\right) C_{2}+C_{2} a a(b+c+d)+C_{2}(a b c a b d)\right] P \\
(1)
\end{gathered}
$$

Logic nework 148 also drives switch 145 to the closed state while setting overflow fip-nop $1 A_{7} 7$ in accordance with:

$$
S I G N=\left(S, b 0 S_{1} S_{2}+S, S_{1} a S_{2}\right) a b_{3} P
$$

and resets flip-flop 1 H\% in response to:

$$
\left(S, S_{1} S_{2}+S_{1} S_{1} S_{2}\right) C_{2} P
$$

Control of switch 144 in accordance wih Equation (1) enables the switch to gate sum signation lead 52 to the mput of stage 71 for three different situations, viz: 1 . for mode 2 or 3 configuration, any of the operations involving arithmetic operations of the words on parallel daka leads $76-78$ and the contents of register stages $71-73$ (SMI, SMZ, AD and SUB); 2. for mode 0 or 1 configuration, any of the operations involving combining data on the serial and/or parallel data lines 75 --78 with the contents of register stages $71-73$ (XOR, CNTD, CNTU, SM, SML, AD and SUB); and 3. for mode 2 or 3 configuration, the counting and EXCEUSIVE OR operations (CNTD, CNTU and XOR), The first situation is indicated by the expression $\left\{S_{1} S_{1} S_{2}+S_{1} S_{1} S_{2}\right) C_{2} \bar{d} b$, while the second and third result from $\mathbb{C}_{2} a(b+c+d)$ and $C_{2}(\overline{b b c}+\overline{a b} d)$, respectively. It is noted that if ($\mathrm{S}_{1} \mathrm{~S}_{1} \mathrm{~S}_{2}+\mathrm{S}_{1} \mathrm{~S}_{1} \mathrm{~S}_{2}$) has a binary value of one no overflow is propagated.

A distinction between the circuitry associated with stage 73 relative to the circuitry associated with stage 72 is that in the former no carry switch, such as switch 221, is provided. The carry switch is not required in the lowest order of the register because there is no carry to propagate thereto, In effect, however, mode controlled switches 331,332 and 333 function similarly to carry switch 221 to feed binary zero and one signals to the C input terminal of adder 301 .

Attention is now given to the manner by which the computer of FIG. 6 performs each of the operations indicated by Table Ill, except for the left shift, right shift and right rotate instrucions, L, R and \mathbb{R}_{0}, which are performed in the same manner as described supra with regard to the embodiment of FIG. 2 and Table III. Initial consideration is given to the eight instructions which are performed in the same manner regardless of operating mode signals \mathbb{C}_{1} and \mathbb{C}_{2}. Thereafter, the more complicated instructions relating to operations that are controlled and changed by the mode signals are described. The description is given at all times in conjunction with Table III, supra.
For the nonoperating mode, NOP , the operating code bits a --d are all set to a value of zero. The abcd operating code bits 0000 are combined in timing and control logic unit 82 to open circuit each of the switches in the system, with the possible exception of switch 204 . The status of switch 204 is irrelevant because any response derived from full adder 201 on lead 202 cannot be propagated through switch 242. For the EXCLU. SIVE OR function, XOR, the uperating code biss a, b, c and d respectively have the values of $0,0,0,1$, to close switches 204 , 211 and 218 while each of the other time independent. switches are open-circuited. Time dependent switch 242 is closed in response to a timing pulse from timing and control
network 82 duting the instant the inverters of stages $71-73$ are decoupled from each other.

In response to switches 204,211 and 218 being activated 20 the closed state, the bits derived from stage 72 and fed to lead 77 are respectively applied to the A, \bar{A} and B, 8 input terminals of full adder 201 , while the C terminal of the full adder is grounded to terminal 208. In consequence, full adder 201 derives on sum lead 202 a signal indicative of the EXCLUSIVE OR function of the signals derived from stage 72 and the input bit on lead 77 . In response to a timing pulse from timing and control unit 82 , swith 242 is closed to feed the EXCLUSIVE OR signal on lead 202 to the input of register stage 72 while the inverters of the register stage are decoupled from each other, whereby the first inverter stage in in the register stage 72 is loaded with the resulant of the logic operation.

To set register stage 72 to the binary one state, SET, operation code bits a, b, c, d respectively have values of $1,0,0,0$, which results in switches 215 and 217 being closed indepentdently of timing pulses while switch 243 is closed im response to timing pulses generated by timing and control metwork 84 . In addition, switch 204 can be set to be either oper or chosed, depending upon the designer of the processot. In mesponse to switches 215 and 217 being closed, binary ones are applied to the B and C inputs of full adder 201 and the bimary sigral derived on lead 203 has a binary one value regardics of the value of the signal coupled to the A and \bar{A} terminals of the full adder. The binary one signal on lead 203 is coupled through swith 343 to the mput of register stage 72 in response to the derivation of a timing signal in timing and control unit 82 .

To combine the signal on terminal 77 with the stave of register stage 72 in accordance with the logical OR fanction, OR, operating code bits a, b, c, a respectively have values of 1 , $0,0,1$. In response to the operating code indicative of the $O R$ instruction, switches 204,211 and 217 are actuated, while switch 243 is closed in response to a timing pulse from timing and control unit 82 . In response to switch 217 being closed, a binary one signal is fed to the \mathbb{C} inpul terminal of full adder 201, whereby the signal derived by the full adder on carry lead 203 is indicative of the OR logic function of the bits on lead 77 and stored in register stage 72. The OR function signal derived on lead 203 is coupled through switch 263 to the imput of stage 72 in response to a timing pulse from timing and control unit 82 while the inverters of register stage 72 are decoupled from each other.

Clearing register stage 72 to a zero state, CLEAR, is performed in response to the operation code abcat=1010. The 1010 operation code actuates switches 216 and 218 to the closed state and enables switch 243 to be closed in response to a timing pulse. The clear instruction can be utilized to open or close switch 204 at the desire of the process designer. It response to switches 216 and 218 being closed, binary zero signals are fed to the B and C input terminals of full adder 201 , whereby the signal derived on carry lead 203 is a binary zero regardless of the signallevel fed to terminal A. Thereby, in response to switch 243 being closed by a timing pulse, a binary zero is coupled to the input of register stage $/ 2$.

The logical AND function, AND, combining the bit on lead 77 with the contemts of stage 72 , is performed in response to the operating code bits a, b, c, d having values respectively of $1,0,1,1$. The abci=1011 operating code closes swithes 204 , 211 and 218 and enables switch 243 to be closed in response to a timing pulse from timing and control umit 82 . In response to switches 204 and 211 being closed, the signals derived from register 72 and on lead 77 are respectively applied to the A and B inputs of full adder 201. Closure of switch 218 results in the application of a binary zero signal to the C input termimal of full adder 201 , whereby the signal derived on carry output lead 203 of the full adder is indicative of the AND logic function combining the contents of register stage 72 with the binary bit applied to lead 77. The AND function output on lead 203 is gated to the input of register 72 through switch 243 in response 10 a timing pulse being derived in timing and control unit 82.

Loading the binary bit at terminal 77 into register stage 72 , H, oceurs in response to the operating code bits a, b, c, d havThy values of : , 1, 0, 0, respectively. In response to the load operating sode and a timing pulse from timing and control whin 32, switch 2411 is closed while each of the other switches in the metwort is open-circuited, with the possible exception of switch 30 which may be either open or closed, depending upon the computer design. The status of switch 200 is irrelevani because nether the sum nor carry signals derived by full adder 201 on teads 202 and 203 is coupled to any other circuit elements the computer.
Each of she instruction codes which is not dependent upon an operating mode has now been described; the operating codes for left shift, right shift and right rotate, as well as for feeding data to parallel line 77 from the output of register stage $7 / 2$ have been discussed supra. Consideration, therefore, will now be given to the relatively complex instructions relating to: coundown, CNTD: count up, CNTU; subtracting the contents of the register comprising stages $71-73$ from the binaty word applied to lines 76-78, SM; complementing the contents of the register stages 71-73 and selectively adding the complement with a signal on righ data line $75, S M 2$; adding the word stored in the register comprising stages $71-73$ with the word on data lines 76-78, AD; and subtracting the deta word on lines $76-78$ from the word stored in the register comprising stages 7 -73 , SUB.

Connections between left and right serial data lines 74 and 75 and the internal register circuitry comprising siages $71-73$ for these six instructions depend on the mode configurations. lifgeneral for a particular mode, the connections are the same regardless of the instruction. In particular, for modes 0 and 2 , the signal on right serial data lead 75 is added to the word stomed ith the register comprising stages $71-73$ through the comnection established by switch 333 being closed in response to a timing pulse from unit 82; in mode 1 and 3 configurations the signat on tead 75 is decoupled from the register because swich 33 is always open. In modes 0 and I left serial data line 74 is responsive to overllow data derived on highest order carry lead 103 by closing swich 134 in response to timing pulses from anit 82 . In contrast, for modes 2 and 3 , swirch 134 is always open but the ovenfow indication is derived from liphop 14%, responsive to an output of logic network 148. Hereafter, the connections between the register and terminals 74,75 are not generally described for the different mode configurations, except in considering specific examples.

Consideration is mow given to the specific connections for each of the instructions denominated as: CNTD, CNTU, SM, SMZ.AD and SUB.
The operating code bits $a-d$ for the countdown, CNTD, instruction are respectively $0,0,1,0$. For all of the modes, switches 204,215 and 221 are energized to the closed state, while swich 242 is energized to the closed state in response to a timing signal from timing and control unit 82. Switches 134 , 33.1 and 333 are selectively energized to the closed state, depending upon the operating mode of the computer, while switch 332 always open-circuited, regardless of the mode condition.
To provide a better and more complete understanding as to the manner by which the register comprising stages 71-73 functions im response to the countdown instruction, the internal operation of the register, in mode 3 , will be initially considered. In mode 3 , switches 134 and 333 are open-circuited whereby register stages 7 - 73 and the circuitry associated therewith are decoupled from external serial lines 74 and 75 . The mode 3 signals, in combination with the countdown insuruction signate from the operational code, result in the closure of switches 3 31 to load a binary zero on the C input terminal of full adder 301 . Switches 104,204 and 304 are closed, whereby the true outpur signals of register stages 71-73 are fed to the A imput terminals of full adders 101,201 and 301 , respectively. \$witches 115,215 and 315 are closed to load binary ones into the sinput terminals of each of the full adders. The carry signals from the lower order full adders 301 and 201
are coupled through closed switches 221 and 121 to the C inputs of full adders 201 and 101 , respectively. Because of the stated conmections, the count stored in the register comprisimg stages $71-73$ is reduced by a factor of one in response io each timing pulse generated in timing and control unit 82.

The subtraction operation can be fully apprecialed by considering an example wherein stages 71, 72 and 73 are respec. tively loaded with the binary bits zero, one, one indicasive of the binary number representing +3 . In response to the staied conditions, the inputs to and outputs of the full adders are: for
 lead $302=0$; for full adder $201, A=1, B=1, C=1$ (the carry outpui of full adder 301), carry lead $203=1$, and sum lead $202=1$; for full adder $101, A=0, B=1, C=1$ (the carry ourpur of full adder 201), carry lead $103=1$, and sum lead $112=0$. In response to the first timing pulse derived in timing and control unit 82, switches 202 and 342 are both closed to load register stages 72 and 73 with binary bits respecively indicative of 1 and 0 since switch 144 responds to the signal on sum lead 102 to load a zero into stage 71 when the time dependent switches are closed. The sign or polarity signal stored in stage 71 remains a bimary zero even shough switch 146 is open-circuited because of the inherent memory properties of the circuitry within the stage.

Upon the completion of the first timing pulse and stages 71 --73 respectively storing binary bits zero, one, zero, the inputs to and outputs of the full adders are: for full adder $301, A=0$, $B=1, C=0$, sum lead $302=1$ and carry lead $303=0$; for full adder $201 . A=1, H=1,(=1)$ (the carry output of full adder 3 carry lead $203=1$ and sum lead $202=0$; for full adder 101 , $A=0, B=C=1$ (the carry output of full adder 201), sum lead $102=0$ and carry lead $103=1$. In response to the second timing pulse derived by iming and control nework 82 , swiches 202 and 342 are closed, whereby stages 72 and 73 are respectively loaded with the binary signals 01 , the result of subtracting one from the binary number 10 . Again a zero remains loaded in stage 71. From the preceding description, it is believed evident as to the manner by which numbers stored in the register comprising stages $71-73$ are subtracted from one in response bo each timing pulse derived from timing and control unit 82, while the coumt down instruction operating code abcdx0010 is being derived.

The operation of the system for the count down instruction in mode 1 is similar to the mode 3 operation in that mode switch 331 is closed to feed a binary zero level to the C input of full adder 301 . The sole distinction between the mode 1 and mode 3 operation is that switch 134 , connected between carry lead 103 and left serial line 74 , is closed. Thereby, any carries derived from full adder 101 in response to the subtraction operations are fed from the full adder carry output dermimal to the left serial line 75 .

The manner by which the polarity indication is obtained for mode 1 operation is seen by initially reviewing the examples of subtracting one from the positive numbers three and two, respectively stored as biss 011 and 010 in registers $71-73$. As indicated supra for both mumbers, the sum signal on lead 102 is a zero. The zero is fed back to the input of register stage 71 to maintain the stage in the zero, positive indicating state after each timing pulse. Now consider the sitwation if the number zero is stored in the register, whereby stages $71-73$ are loaded win 000 and the inputs and outputs of each of fant adders 301,201 and 101 are: $A=0, B=1, C=0$, sum lead $302=1$, carry load $303=0$. 1 ne response to a timing pulse, each of switches 144,242 and 342 is closed to load stages $71-73$ with 111 . The binary one stored in stage 71 indicates that the result is negative and the binary ones in stages 72 and 73 are indicative of the two's complement of one. When the next or second timing pulse occurs, binary ones are fed to the A and Binputs of adders 101,201 and 301 ; a binary zero is applied to the C input of adder 301 . Adder 301 derives a binary zero and one on its sum and carry leads 302 and 303 , whereby the sum and carry outputs of adders 201 and 101 are all binary one in value. Thereby, upon completion of the second pulse, stages
 nefation mumber having a vatue of two in two's complement binary methmetive

In mode 4 whichera 13 and 333 are bort closed. whide

 74 and 7 and poiarity indictiomg afe mbech to change. In geditions, swick 3 3n is cioned to crable the birary bita on right seral line 78 to be coupled to the C impue of hul adier 3hn. Coupling the righ serial hene 7 to the C terminal of adder 30r erables the register to subiract the conterns of stages $\%$ - 73 by one, while adding the binary sigmal on the right weriat line. This operation is evident if it is considered that the occurence of binary zero on the right scrall line bas the bame effect as closing suftek 33 , wiz, feding a $2 e r o$ to serminal C of adder 31). The presence of a binary one on right menial lime 75 thas the effect of addity one to the inheren subtraction operation occurbing duthg the coumt down insirnctiont.
 75 during the coum down inveruction, mode 2, the asme confochoma to full adder 301 subaigt as exinted during mode 0 operaton. The only diference betwen the mode 0 and mote
 outpu of full adder 101 and left serial line 74 , is operh-circuited. Theroby, no cary signals from sull adder Ithe are coupled so the lef semal hine and swich ust is closed so enable the polarivy hadicating signal to be stored in sage 71 .

Conaideration whil now be given to the manner by which the register comprisimg stages $7-73$ has the count stored therein advanced by one in response to each whing pulse derived in thming and control unit 82 , the count up instuction, CNTU, indicated by the operation code bits abch 0011 . In response to the operation code for the courn up instruction, switches 204, 216 and 221 are closed independently of hime and regandess of the mode configuration. Selectivoly closed are mode switches $134,33 \mathrm{and} 333$, while swich 331 is always open circuited. In response bo each iming pulse, switches 144 , 322 and 3 \& are closed to gate the sum signal outputs of full adder 101 . zely and 301 respectively to the inputs of revister stagem 7 筑, 2 ard 73 .

Th mode 3. the count up operation is independent of any ex. wermatam soures and no dag from within regiener stagea 7 I.
 nections are exablished by open circuting swichee Bu and 335 , whide switch 35 is cloaed to gate a binary one level to the C input of full adder 301 . The B input of fult adder 301 as well
 ground voltagea ndicathe of a binary zero level, as coupled through cloced swinches 316,21 and 1 16. The A input terminal of cach of full adders 101,201 and 301 is responsive to the ontput of regicter stages 71, 72 and 73 , respectively. In response to each timixg pulse derived in timing and control metwork 22 , switches 144,241 and 342 are closed enabing the sump signalis on leads 102,202 and 302 to be respectively stored in stages 7 , 7 , fnd 73 wo effect a binary addition of one. The carry signalls propagated from full adders 301 and 2411 to the C hnpits of full adiders 201 and 101 , respectively, enable the count up operation of proceed in a conventional binary couming manner. Because the input levels to each of the B terminals of adders 101,201 and 301 are of opposite poliarity from the 8 inputa to the adders for the court down instruction, fly hould be cvident that the count up operation functions in a shuilar, but oppovite, mamner from the count down operation.
 in a manner wimilay to the count up operation in mode 3. The only difference botwen ohe iwo moder in that in mode : awith rse in glosed, whereby the cary output of rull adder
 the regisher state is advanced in response to each timing pulse from timing and control unit $\$ 2$ regardess of signals on right serial chata line 7 路, while heding carry pulses to left serial data line 7 and the siate of polarily indicating stage 7 tis subject to varimion.

 ravenced by cowne of one or zerc, depandmg hpon the fuet

 right ental line 7 " is fed co the C inpun cominal of roll adder 301 with the same result as the application of a batary one level in response so closhre of sweht 312. The wreaence of a binary zero on serial hne 75 , howewer, alters the gematom performed by mull ader 30 whercy the carry output on tead 303 is always a binary zero and the sum sigmal on tead 003 is always the same binary bin as was preqiouaty stored im sage 73. Since no cary signals cam be derived from full adder 301 a
 and the sum wignals derived by ath of the fulf addere on lears

 - 73 remans constant in response to a binary acro level bebur

por mode 2 operation, the variable parallel wrocemsa me tions in virtually the bame swaner as was indicated suph with regard to mode 0 operation. The onfy bistrictian wowern the two operating modes is that swichi 134 is open chemfted tor mode 2 operation whereby no cany signal derved from full adder 10 l is coupled to heft seriah datame 74.

Consideration is now given to the farmaction for compla menting the contents of the register stages 71--73, SM2, derived in response so the operation code photwolot. Tha SMZ instruction operation code causes swinches 205 , 2lif and 22 to be ciosed as independent ime functions; swirches ${ }^{2} 42$ and 342 are closed in response so the time pulse derived rom
 selectively closed in response to the timing puses deperthimg upon the overlow conditions and mode contiguration extant. Switches 13 . 332 and 333 are selcchively closed indepen. dently of the timing pulses but in response to the operating mode, while swich 331 is always in the open condthon.

Closing the time and mode independemt swithece sesult in binary zeros being fed io the B inpur temmaly of each of the fult adders 101,204 and 30 . In additom, the complement of
 respectively fed to the A inpur terminate of fult mderars 10 , 20 and 30 . The \mathbb{C} input terminals of full adders 101 and 20 . are respectively responsive to the canty owtputs of full adiers 201 and 301 , white the C inpur terminal of fall adose 301 is dependenu upon mode swiches 332 and 33

In modes i and 3, the C inpur terninal of ful adder 30ll us connected with the binary one voltage fevel at teminal 347 since swich 332 is closed, in response so each timing pulse closing switches 242 and 342 , the contents of staces 72 and 73 are uw's complemented; in mode I the bit stored in stage 71 is wo's complemented since swich 1 dity is closed in response to each timing pulse in the same mannes as the contents of stages 72 and 73 are two's complemented.

The wo's complementing operation of the number cored in register comprising stages $71-73$ while the register mages are connected in mode I and responsive to the complemern im sturtion can best be described by considering an example wherein stages 71,72 and 73 store the binary bits 001 , respectively. The two's complement of 001 is H11; derived by com. plementing 001 and adding io the complememt.
 A inpur demminats of adder 101,204 and 301 as the binary

 ABC inputs to derive on sum and cary leads 30 and 303 bunay one and zero signabs, zespectively. The binary zero ngmel on cary lead 303 is coupled through swich at to the C impur of fun adder 4 H, the A and B inputs of which are respectively responsive to one and acro levels coupted throwgh swithers 5205 and 216. Full adder 201 responcis to the 100 inpurs
 nary fevel wa carry low 303 and a binary one on rum lead 202.
 Tull adder 1 th，the A and mpota of which are respectively remponmive to ons ard zero binary levely coupled mhrough
 whente binary onc on murn ouput lead 248 and a binary zewo on anry oupput head 103．The binary one levels derived on tach of sum leade 152,202 mad 32 arc fed back w the

 winimg pulse．Theroby，the register comprising stages 7 －-73 fondod with the binary word III，the tw 1 品 complement of 001.

The undinctions bewteen mode I and mode 3 operation are

 output of hut adocs 1012 is coupled so lef gerial data line 74 ， Whthe the le 㓭 werinl data line 74 is decoupled from the carry output of fulmader 3 in with ohe system in mode 3．In mode 3.
 Ha response to cach time pelse；simhlarly，switch 145 ，we well as the set and reser inpura of thp－fop 14 ，is selectively emergized Th response to the tming pilses．In particular，switch is is chosed amd the rese input of hip－hop 14 is energized only if mo overnow ences，as indicated by une exprestion：$\left(\$, S_{1} S_{2}+5,5\right.$
 whergede ontyin an overlow is extank．

In modes fand 2 for the complement operation instruction code，SMZ，the register conmections for the circuity as－ sociated with tuge ha are changed whereby the one＇s comple－ ment of the word stored in the register comprising stages 71 － －W 3 is taken ant anded with the level on right serial data line 5s．To mis end，Abe Cimput of rull adder 3011 is responsive to the rghe seriah data lins 75 ，as coupled through closed switch Wh．If the level of right semal data line 75 is a binary one，the reghter functions im modes 0 and 2 in a vary similar manner vo the furckonmg thereof in motes 1 and 3 ．This is eviden since the binary one level on dawa lead 75 feeds the same input to
 Thit he the deblenam aince complementing the contents of The revemer comprising stages 7 P－-73 and addimg a one Whatelo hate same atoming a two complement．

With a bimery zero on right seria data line 75，the contents of remer stages yi－．．．73 are inverted．Inversion occurs bebanac no cary signaik can be derived by rull adders 201 and 3NA on teads 305 and 303 ，with binary zeros applied to the B and a mput turminals of the full adders．The full adders respond to the inverted states of register stages 7 － 73 as cou－ phed through swith 1 Mg，L05 and 305 to derive on sum leads $02_{2}, 202$ and 30 signals indicative of the inverted register sume condutore．The inverued signals on the sum leads are cotpled thrown switches 242 and 342 wo the inputs of register whese 7 End wh whereby the register suages store the com－ phement of the viguat oniginally loaded therein．

The contrections and operations of modes 0 and 2 difier from each other in the wame manner as between rodes I and 2．Im muoves 0 and the switch 144 invarmbly closes in zemponse to the tming pulde generated by control umit 22 ．

The shree preceding instruction operations involve adding nend complememuing in response to bignals siored in regibter
 The coumb down，count up ror complerment indeructions is data
 may at whll be coupled to paraliel daca himes $70-76$ from re－
 code bit beinge equal to one since a value of em closes swithes 122,222 and 3 th to feed the register stage contents to the paraher thathers．

Consideration witl now be given to the three operations whercin hie contents of register stages $7 x-73$ are combined with the word on parallel data lines 76－78．These operations
are：（1）mbetract the contents of the register comprising stages 71－73 from he data word on paralle impur linat $76-78,5 M$ ； （2）add the word whed in the regeter stages 7 －-73 to the word on data lines＂6．－．＂$\%$ ，AD，and（3）guburack the word on data lines $76-3$－from she word stored in resser stages 71 ． …73，SUB．
The SM instruction，involving subtracting he register con＊ rente from the word on lines $76-7 B$ ，is pertormed in response so operation code bits cocchbeng equal to 0100．In response to the $S M$ operaion code，time independent swiches 203,211 and 224 are energized to the clowed state，while swiches 332 ， 333 and 134 are selectively energized to the closed suate de． pending upon the operating mode．Switches 248 and 3 ant are activated to the clobed state periodicathy in response to the
 while swisches 144 and 1045 are selectively closed in the same manner indicated supra for the SNZ inetruction，depending spon mode configuratiom．

In responst wo the stated switch conditions，the A implat ter－ mimats of full adders $\mathbf{1 0 1}, 201$ and 301 are respechively respondwe to the complements of he sighals stored in register
 ders are directy responsive to the signala on chata bines Ah，yy and 78 ，im ah four modes for the SM inseruction Fot modes and 3 ，switch 332 is closed whereby a bimary one is fied to the C impur of ruin adder 30 B ，white the C inpute of fun adders 201 and 101 are responsive to the cary ouputs on leads 303 and 203 of full adders 301 and 201 ，respectively．In response to the one level being coupled to the C input of full adder 301 ， the contents of register stages $71-73$ are two＇s comple－ mented and added to the word fed to parallel data lines 76 －78．Thercby，two＇s complement subtraction is acheved．

To provide a clear description as to the manner by which the word stored in register stages $7 /-73$ is subtracted from the word on paraliel dava line 76－78，with the system in mode 1 ，consider the example wherein the word on data lines 76,77 and 78 is the positive number three，represented by the binary levels 018 ，whd that the word sored in the register comprising stages＂ 7 － 73 is the positive number two，represented by the binary levels 010．The 010 levels stored in register stages 7 ． 72 and $\%$ are fed through switches 105,245 and $3 n 5$ to the A input terminass of thil adders 101,201 and 304 respectively． The C inpur serminal of full adder 30 is comected through switch 332 to the binary one voltage level at remminal 307 ． Thereby，full adder 301 derives a binary one level on each of its outpur heads 302 and 30 ．The binary one level on the carry outpur lead of full adder 30 畐 is coupled through switch 221 to the C inpur of full adder 201 ，the A and P inputs of which are respectively responsive to zero and one levels．Fan adder 201 responds to the A, E and C inputs thereof to derive a binary zero level on sum lend 202 and a birary one level on cary lead 203．The binary one level on lead 203 is coupled through switch 121 to the C input of full adder 101 ，the A and B inputs of which are respectively responsive to binary one and zero levels．Adder 101 responds to the A, B and C inputs thercof to derive a zeto on sum lead 102 and a one on carry lead 103 ．

In response to a timing pulse being derived by timing and control network 82 ，switches 144,242 and 342 are activated， whereby register stages 71，72 and 7\％ate loaded with the bi－ nary bits 001，the result of subtracting two from three．The resultant subtraction stored in register ctages 71,72 and 73 is read out from the register shages at wifi 80 parallel data lines 76－76 in reaponse to the e operation code bit having a binary One value which catasu swithes 122,222 and 322 so close．

The SM inderuction operations performed for moden I and 3 are distinguished in exactly the mame manmer as indicated suprat for the two moder with regard to the 3 ML inatruction．
The subraction operation，$S M$ ，for modes 0 and 2 involves one＂s complementing the contents of the register comprising stages $71-73$ and adding the complement to the binary level on right serial data line 75 and to the bimary word om parallel data lines $96-78$. To this end，swich 33 is closed so connect the right serial data line ofs to the C input of cull adder 3 ats．

The internal connections within the register remain the same as indicated supra with regard to modes 1 and 3 ．The presence of a binary one on right serial dati line 75 causes the regimer
 modes I and 3 since，in bofh insances，binary conew are fed w the C input of full adder 301 ．Hence，the presence of a binary one on right werial lime 75 enables motraction of she conetnta of reginter comprising ntagen $71-73$ from the word on paralich data lines $76-78$. In response to a binary gero om migh serian line 75 ，however，the word in the reginter comprinimg nagen 71 － 73 is one＇s complemented and then added with the word on parallel data lines 7 － 78 ．
To consider the operation of the register more fully with a binary zero on right serial daka line and the register activated to mode 0，again assume that stages 71，72 and 73 have 010 respectively loaded therein and that parallel data lines \％ are fed with 011，respectively．The binary zero signal stored in stage 73 is coupled as a binary one to the A input of full adder 301，the B and C inputs of which are respectively at the one and zero levels in response to the signals on leads 78 and 75. The output of full adder 301 is thereby a binary zero om sum lead 302 and a binary one on carty lead 303 ．The bimary one level on carry lead 303 is compled to the C input of Hull adeter 201，where it is combined witin the bomplemen．of the state w stage 72，a binary zero level，and the binary one inpment lead 77 ．Adder 201 responds to the $A B C=011$ inputs thercoff to derive on leads 202 and 203 binary zero and one fevebs． respectively．The binary one level on lead 203 is coupled to the \mathbb{C} input of full adder 104，the A and 8 inpus of which are binary one and zero levels derived from the complement of re－ gister stage 71 and the true value of data line 7 ，respectively． Adder 101 responds to the imputs thereof to derive on leads 102 and 103 binary zero and one levels．In response to the derivation of a timing pulse，switches 1 㚅 4,242 and 342 are closed whereby register stages $71 .-73$ are all loaded with bi－ nary zeros，the result of complementing the binary mumber 010 and adding the complememt to 011

In mode 0 ，the zero carry signal on lead 103 ，indicative of lack or presence of overlow，is coupled through swich II to lefi serial data line 74 ．In mode 2，however，swich 134 is open circuited，but one of the set or reset inpuis to overfow flip－ flop 157 is enabled in response so a timing pulse by the logic network 148 ，depending upon the overtow condition de－ tected by logic network 14 from the A and B irputs to and the sum output of full adder 101 ．Switches 104 and $14{ }^{3}$ ase also controlled by network 448 to be selectively open and closed for mode 2 operation，in dependence on the presence or absence of overfiow．

To understand more fully the functioning of switches 144, 145 and fip－flop 147 for mode 2 and 3 operation，again con－ sider the $S M Z$ operation of subtracing +2 from +3 ，assuming mode 3 configuration．Under the assumed conditions，the word stored in stages 71,72 and 73 is 010 and the input word on leads 74,75 and 76 is 011 ，whereby the inpute and outputs of full adders 101,201 and 301 are given supra．Repeating， the inputs and outputs of full adder 10 are：$A B C=1$ 蒠，carry $=1$, sum $=0$ ，whereby $S_{5}=0, S_{8}=1$ and $S_{2}=0$ ．Thereby，$S_{S} S_{1} S$ ${ }_{2}+S_{1} S_{1} \tilde{S}_{2}=0$ so that switch 44 is closed to gate a zero to the input of stage 71 and flip －flop 1 him is reset in response to a tim－ ing pulse．Since stages 72 and 73 are loaded with 01，as in－ dicated supra，the word stored in the register comprising stages 71－73 is indicative of a positive integer having a value of unity．Since no overlow is indicated by flip－flop 147，the correct result of the operation is realized．

Nexi consider SMZ，mode 3 operation when +3 is stored in atages $71-73$ as 011 and is mobtracted from 42 applied to
 dependent input and output nepmath ove the haf addere ure：for
 201，ABC＝010，wum will gary wif for full adder fill， ABC $=001$ ．sum $=1$ ．carry man．Switch 14 is chosed and hip－
 ${ }_{2}+\mathrm{S}_{3} \bar{S}_{1} \bar{S}_{2}=0$ ．Thereby，in response to a timing pulse，the binary
one oupput on cach of sum leads 102,202 and 302 is loaded into siages 75,72 and 73 ，and the meganive bimary valus of one，in two＇s complement code，is stored in the register

A furber cample involves SM ，rnode 3 operation wherein -3 is bored in stages $71-73$ in the ？wo＇s complemem code as
 i．e．，the operation of $+2-(-3)$ mat is performed．The input
 are：for full adder 301，ABC＝60日，shman ！carry $=0$ ，for foll adder 201．ABC： 10. mum $=0$ ，carry wn for full soder bor．
 that switch $\frac{1}{6}$ is closed to couphe the inverted sum wignal to the input of register 71 and the set inpur of hip－hop 847 is energized in response to a timing pulse．The siming pulac oc－ currence thereby loads stages $71-73$ with the binary bis 001． the fourts complement of $2-(-3)=5$ ．The activation on setimg of overflow fip－flop 147 indicates that any posithe number stored in the register comprising stages 7 Th－m 73 mus be adted to fow to provide an accurate indication of the opectavion．

Consideration will now be given to the manner by which the Variable parallel processor adds words stored in the regester comprising stages $71-73$ with words on parallel datilimes $\%$ \％－ －7－ 7 ，the AD inctraction energized by the operation code hav－ ing tatuc of abod＝0110．In response to the addion instruc－ for，the foblowing tome incependent switches are chosed： swiches 104 ．304 and 304 of feed the true signais stoned in re－ gister slages 71.72 and 73 wo khe A inpu terminafs of lull ad．
 que bits on dats hines 76,77 and 78 to fhe B inputs terminals of full adiers 101,201 and 301 ，respectively；and swhehes 121 and 221 so feed the carry outpuis of full adders 3011 and 201 to the C imputs of full adders 191 and 201 ，respectively．In addition，swiches 331,333 and 134 are selectively closed de－ pending upon the mode conditions established while switch 332 always remains open circuited．The sum sighals developed on output leads 202 and 302 of full adders 101,201 and 301 are periodically gated through switches 242 and 342 to the in－ puts of register stages 72 and 73 in response to the derivation of a timing puise by timing and control unit 2, white swiches 144 and 145 ，as well as lip 147 are selectively cnergized in response to the timing pulse，depending on the mode configu－ ration．
ln modes 1 and 3 ，switch 331 is chosed to feed a binary zero to the C input serminal of full adder 301 ．Thereby，the sum and carry outputs of fult adter 301 on leads 302 and 303 ， respectively，are indicative solely of the result of adding the contents of stage 73 witt the bit on lead $\% 8$ ．The carry signat on lead 303 is propagated to the C input termimal of full adder 201 which functions in the uswal manner in response to the signals derived from stage 72 and on lead 7 ．Ander 101 also functions in the usual addition mode in response to the cary and data signals applied thereto．

In modes 0 and 2，the binary level of righ serial han 75 added to the sum of the words siored in regincer sages $74-\ldots 7$ and on data limes $76-78$ by virtue of switch 333 being closed and switeh 331 being open circuited．For a binary zero on right scrial line 75 ，full adder 301 functions in axactly the same manner indicated supra for modes ：and 3 ．In response to a binary one level being on right serial lime＂g，the full adder 301 functions in the same manmer as a higher order full adder， for example，full adder 201 or 101 ，responding to a carry signal．Thereby，the effect of coupling right serial line 74 to the C input of full adder 301 is the same as adding the signal on the right data line to the sum of the word stored in the re－ gister comprising stages 71－73 and the word on datalines \％6． -78.

For moder 2 and 3，nwich 134 is open circuited whereby mo
 overfon indication are derived nelectively by lagic network
 cloned，whereby overflow indication can be coupled to lett serial data line 74，but the logic in network 148 imhibits actua－ tion of fip－flop 145 to the set or overflow indicator output．

Consideration in now given wo the instruction for subtracting the data word on lines $76-78$ from the contents of register stages 71-73, as controlled by the operation code bits abcd having values of O111, respectively. In response to the SUB ingruction, the following oime independent swiches are invariably clowed, regardless of mode configuration: switches 104, 204 and 304, he feed the ouppuss of registers 71, 72 and 73 wo the A impurs of full adders 101, 201 and 301 , respectively; switches 112,212 and 312 , to feed the complements of the bitw on dawa lines 76,77 and 78 so the finpul terminaly of full
 2" connected between the carry outputs of full adders 201 arnd 301 to the C imputs of adders 101 and 201. respectively. The mode awiches selecrively energized to the closed states are switches 332,333 and 134 ; switch 331 is never energized to the closed state for the SUB instruction. Switches 242 and 342 are closed in response to each timing pulse generated by timing and control unit 82 while switches 144 and 145 are selectively closed, depending upon the mode configuration, in response to the timing pulse.
In modes I and 3 of the subtraction instruction, the two's compiement of the binary word on data leads $76-78$ is taken and added with the word in register stages $71-73$ to perform the subtraction. To this end, switch 332 is closed co load a bimaty one tevel on the \mathbb{C} input of full adder 301 . Full adders 101, 201 and 301 respond to the inputs thereof in the same mamner indicated supra with regard to the SMZ instruction, except that the word on the parallel data line is two's complememted, rather than the word stored in stages 71-73. This result should be evident since the complement of the word on the parallel data lines and the true indication of the register stage word is fed to each of full adders 101,201 and 301 since the full adders respond to their A and B inputs in the same manner. Utilizing similar reasoning, the processor one's complements the word on data lines $76-78$ and adds the complenent to the signal on right serial line 75 with the word stored in register stages 71-73 with the system in mode 0 or 2 operawion, wherein switch 333 is closed and switch 332 is open-circuited.
For modes 0 and 1 , switch 134 is closed whereby overflow indications derived on the carry outpus of full adder 103 are gated to left serial line 74 and the sum signal is fed to the input of register 711 through switch 144 in response to cach timing pulse. ln modes 2 and 3 , switch 134 is open and the overflow signal on lead 103 is not coupled to left serial data line 74 , but logic circuic 149 selectively energizes overflow indicator 147 and one of switches 1448 or 145 in response to each timing pulse.
A plurality of parallel processes of the type illustrated in FIG. G can be advantageously cascaded together or connected in paraliel in the same manner as the serial registers as indicated, for example, by FIGS. 3-5. If, for example, binary words having paralled bits of the same order are derived in sequence for differemt orders, as frequently exiss in binary coded decimal notation, are employed in the processor, all of the bite in one word cam be applied to one of the registers comprising slages 71-73 and then shifted to a second register prior to the application of the next lower order word.
While there has been described and illustrated one specific cmbodiment of the invention, it will be clear that variations in thite detaill of the embodiment specifically illustrated and described may be made without departing from the true spinit and scope of the invention as defined in the appended claims. For ewample, it is to be understood that other types of circuits can be employed for the specific register stages and that instead of utilizing a pair of timing pulses as described, masterslave flip-flops may be employed.

Iclaim:

1. A data processor comprising a plurality, N , of register stages, each of said stages having an input and an output terminal, one of said stages being the highest order stage and another being the lowest order stage, first and second data limes for feeding signals to and from said highest and lowest
order stages, respectively, switch means for selectively connecting: (1) said first data line to the input terminal of said highest order stage while connecting the ouiput terminal of Baid lowest order stage to said second dara line and while connecting the output terminal of each higher order stage, on, to the input terminal of the next lower order stage, -1 ; or (2) the output derminal of each lower order stage, m, to the input terminal of the next higher order stage, mat +1 , while connecting the output terminal of said highest orcter stage was sad first line and while connecting the inpul ferminal of said lowent order
 1 , and means for shifting signals stored in sad stages loward either of said lines, said wwich means including means for at will connecting the output terminal of the lowest order stage with the inpur terminal of the highest order stage; and means for at will connecting said lines together and for decouping said highest and lowest order stages from said lines while enabling the stored signals to be shifted.
2. The processor of clam i further including means for loading a predetermined binary signal in one of said stages in response to each shift of the signals between said stages while said highest and lowest order stages are decoupled from said lines.
3. The processor of claim 2 wherein said switch means further includes means for selectively decoupling either of said highest or lowest order stages from said first and second lines.
4. The processor of claim 3 further including means for loading a predetermined binary signal invo the highest or lowest order stage in response to the lowest and highest order stages being respectively decoupled from the datalines.
5. A data processor comprising a plurality, N, of register stages, each of said stages having an input and an output terminal, one of said stages being the highest order stage and another being the lowest order stage, first and second data lines for feeding signals to and from said highest and lowest order stages, respectively, switch means for selectively connecting: (1) said first data line to the input terminal of said highest order stage while connecting the output terminal of said lowest order slage to said second data line and while connecting the output terminal of each higher order stage, n to the input terminals of the next lower order stage on-1; (2) the outpur terminals of each lower order stage, m, to the input terminal of the nexi higher order stage, $m-1$, while connecting the input terminal of said lowest order stage to said second line and while connecting the output terminal of the highest order stage to said first line; where $n=2,3 \ldots N$, and me $=1,2$.
$\mathrm{N}-1$, and mears for shifting signals stored in said stages toward either of said lines, wherein said switch means furber includes means for at will connecting said lines together and for decoupling said highest and lowest onder stages from said lines while enabling the stored signals to be shifted.
6. The processor of claim 5 further inchuding means for loading a predetermined binary signal in one of said stages in response to each shift of the signals between said stages while said highest and lowest order stages are decoupled from said lines.
7. A data processor comprising a pluralizy, N, of register stages, each of said stages having an input and an output terminal, one of said stages being the highest order mage snd the other being the lowest order stage, first and second data lines for feeding signals to and from said highest and lowest order stages, respectively, switch means for selectively connecting: (1) said first data line to the inpui terminal of said highest order stage while connecting the output terminal of said lowest order stage to said second data line and while connecting the outpul terminal of each higher order stage, n, to the input terminal of the next lower order stage $n-1$; or (2) the output terminal of each lower order stage, m, to the input terminal of the next higher order stage, m+1, while connecting the output terminal of said highest order stage to said first line and while connecting the input terminal of said lowest order stage to said second line; where $n=2,3 \ldots N$, and $m=1,2 \ldots$

Nol. and mearg for shithng signals stored in said stages boward either of said linas, whereins said awitch mesne forther inchudes means for selechirely decompling either of said hathest or lowest order bager from waid frat and second hnes.
6. The procksor of clam 7 furter inchuding meams for boding a predelermined binary signal imo the bighert on lowest order giage in reaponw to the lowest and highest order thayes being respecively decoupled from the data lines.
9. A data procesbor comprising a plurality, M, of register stages, cach of sam stages having an input and an outpur terminal, one of said whages being the highen order sitage and the other being the bowest order stage, frati arne second deta lines for feeding signaty to and from said highest and loweet order
 Ub and hrat dataline to the inpout cerminal of said highest order stage whike conthecing the output terminal of waid lowesh order stage to said second data line and while conmecting ths outpur terminal of math higher order stage, m, to the input serminal of the next lower order stage, $n-1 ;$ on (2) the output tarminal of each lower order shage, m, to the input terminal of the next higher order stage, $n+1$, whibe connecting the output cerminat of said highest order stage to said first line sud while connecting the input emminal of said lowest order atage to said second line; where $n=2,3 \ldots N$, m $=1,2 \ldots$ N-1, and means for shitumg whats stored in satu stages toward ehther of said limes, Whagic networks, means for connecting each of said loghe network to be rexponsive to the signal sword in a different one of said stages, and means for coupling gnother signal to cach of said logic networks, and means for coupling an ounpus signal from each of said stages, except stage N, as ar input to the logic nequork responsive to the signal from another register atage, and means for selectively coupling an ontput from each logic networt to the input terminal of a difiesent one of said stages.
10. The processor of claim further including a data lead for each of said stages, and means for selecively coupling a ignal frome each of said stages to a diferent one of said data leads.
B. The processor of ciaim 10 further including means for selectively combinaing the signal on one of the data lines with a word stored in the register stages.
12. The processor of clam in further including means for selectively coupling ofe signal stored in one of the highest or lowest order stages to the other of said lines.
13. The processor of clam 12 further including means for compling a signal on each of said data leads to an input of a different one of said logic networks.
34. The processor of clam 1 wherein said swich means includes mesm for connecing each of said logic networks with a different one of said stager and data leads so that the signal stored in each stage after each activation of said shifing means is a predefermined logic function of the signals previously stored in the glages and on the data leadu.
15. The procewsor inchmmen whereim sad function is OR.
36. The processos of cham no wherem said function is AND.
17. The processor of clam 14 wherein said function is Ex CLUSIVEOR.
18. The processor of claim 14 wherein said switch means includes means for selectively establishing the predetermined furncion as any of AMD, OR, or EXCLUSIVE OR.
19. The processor of ciaim 18 wherein satid switch means includes means for establishing the predetermined function so that a word on the data leads is added with a word stored in the regizter stages.
20. The processor of chaim 18 wherein said switch means includes means for establishing the predetermined function so that word on the data leads is subtracted from a word stored in the register stages.
21. The processor of claim 24 including means for selectively performing the subtruction in one's or two's complement bimary arithmetic.
22. The processor of cham 18 wherein gatd swith meanc inchudes meant for establishing the predetemmined function so shat a word scored in the reginuct suages is subtracted from a word on the data leads.
23. The processor of clam 22 inciuding means for sekective. yperforming the subvacesonimone's or tho complement binary atithmetic.
24. The processon of cham 18 wherein said wwinch means in cludes means for selectively establishang the pratotcmmed function so that: (1) a word on fibe data leada is aded with a word shored in the regisfer mages; (2) a worlon the data leads sa subracted from thord ghored im the regiger giagea; or (3) a word notod in the register seagen is gubtrached from 2 word on the data leads.
 by performing either of the subtractions im one wor whe's comphement binary antumenc.
26. The processor of cham 2 wherein the logio network regponsive to the highest order stage includes meams for frex dicating an overflow condition of the register, and means for selectively couplisg owertow sighals from the highos order shage to said indicating means or the first datating.
27. The processor of cham 26 whersin sad swich mexns includes means for selectively addimg a bintry one to a word shored in the reginter stages.
24. The processor of claim 26 whereir said swhef mand includes means for velectively subracting ab binvy one from a word stored in the reginter stages.
29. The proceswor of cham 26 wherein satd swith means inchudes means for selecively complememneg ow word stored in the register stages.
30. The processor of claim 2t wherein sad trumeh means im. cludes means for sefectively one's complementing the ward.
31. The processor of cham 29 whereim said swich meams in. cludes means for selectively two's complementing the word.
32. The processor of clam 29 wererein said swich means includes means for selectively one's or two's complementrive the word.
33. The processor of claim 26 wherein said switch means imcludes means for selectively: (1) adding a binary one to a wad stored in the register stages; (2) subtracting a bnary one from a word stored in the register stages; or (3) complomenting a word stored in the register stages.
34. The processor of clam 33 whereir each of said logic networks comprises a full adder having sum and cary outpuis. the ith one of said full adders having a nist input responvive to the state of the th register stage, a second imput selectively responsive to the signal on the in lead, and a thiry impur selec. tively responsive to the cary oupput of the (i-t) fh full adder, where $=1,2,3 \ldots$ N, for the full adder of stage far , means for selectively coupling binary levels to the third imput.
35. The processor of claim syrmer includime meand for selecrively combinang he zigmabom one of the data lines with a wond atored in the reginter sages.
36. The processor of cham 35 furber inctudimg meamy fon selectively coupling the signal wored in ong of the highest or lowest order stages the other of waid lines.
37. The processor of cham further including a data lead for cach of said stages, and means for coupling a signat on each of said data leads to an input of a different one of said logic networks.
38. The processor of clam 3y wherein sald swich seans includes means for connecting each of said logic networks with a different one of said stages and data leats so that the signal stored in each stage after each activation of said shifing means is a predetermined logic function of the sigmals prexiously stored in the stages and on the data isads.
39. The processor of claim 38 wherein said fuction is On
40. The processor of clam 38 whercim asid function is AND.
41. The processor of claim 36 wherein said tunction is $E X$ CLUSIVEOR.

S2. The processor of cham 38 whereir said switch means inwhdes wewas for selectively establishing the predetermined Twachon as any of $A N D$, OR, or EXCLUSVEOR

43 The processor of cham 37 wherein said switch means includes means for establishing the predetermined function so Hhat a word on the data leads is added with a word stored in the register whemes.

4*) The processor of claim 37 wherein said switch means inchudes means for establishing the predetermined function so that : word on the data leads is suberacted from a mord stored in the regiser stages.
45. The processor of claim 44 including means for selectivey pertormime the suburaction in one's or two's complement bimary arthmenc.
4. The processor of ciaim 37 wherein said switch means imcludes means for cstablishing the predetermined function so that a wort stored in the register stages is subtracted from a word on the chata leads.
4. The proesaxor of claim A6 including means for selectivefy pertommag the subtradion in one's or two's complement binary arimumetic.
48. The processor of claim 37 wherein said switch means inclucs means for selectively establishing the predetermined fumction se that. (1) a word on the data leads is added with a word swored in the regiser stages; (2) a word on the data leads is subtracted fom a word stored in the register stages; or (3) a word stored in the register stages is subtacted from a word on the data leads.
49. The processor of claim 48 including means for selectiveby pertommingether of the subtractions in one's or two's complemont himary arithmetic.
30. The processon of claim 38 wherein the logic network responsive to the highest order stage includes means for inWheating an oventow condition of the register, and means for selectively couplum overtlow signals from the highest order stage to sat indicating means or the firs data line.

ST The processor of clam 50 wherein said swich means inchexes mems for selectively adding a binary one to a word stored in the register stages.

3n. The processor of claim 30 wherein said switch means indudes means for selectively subtracting a binary one from a Word stored in the register stages.
35. The processor of clam 50 wherein said switch means includes means for selectively complementing a word stored in the reginter stages.
36. The processor of clairs 53 wherein said switch means inchudes rxeans for selectively one's complemerting the word.
33. The processor of claim 53 wherein said switch means inchdes means for selectively two's complementing the word.

S5. The processor of clam 53 wherein said switch means includes means for selectively one's or two's complementing the word.

Wh. The processor of claim 53 wherein said switch means includet neaws for selectively: (1) adding a binary one to a word stored in the register stages; (2) subtracting a binary one from a word stored in the register stages; or (3) complementing a word stored the the register stages.
58. The processor of clam 37 wherein each of said logic networs comprises a fall adder having sum and carry outputs, the th one sh sidn full adders having a first input responsive to the state of the ith register stage, a second input selectively responsive to the signal on the ith lead, and a third input selecGvely responsive to the carry oupput of the ($i-1$) th full adder, Wheat $\dot{z}=1,2,3 \ldots$, W, for he full adoder of siage $i=1$, means for selectely couphng binary levels to the thind input.
59. A diata processor comprising N register stages I .. N, N bogic networks |.. N, first means for selectively coupling the hth logic network to be responsive to the signal stored in the kth sege, where $/ \mathrm{N}$, second means for selectively coupling an oupart signal from stage n through the nth logic network as an imput to the $n+1$ logic network, where $1 n \mathrm{~N}-1$, third means for selectively coupling an ousput signal from the k th logic network to the input of the k th stage, N data leads 1 ... N ,
fourth means for selectively couping a signal on the kth data fead to an input of the kth logic network, and means for comtrobing said first, second, third and fourth coupling means so that the signals stored in the stages are one of a plurality of predetermined logic and binary arinmetic functions of the signals previously stored in the stages and on the data leads.
60. The processor of claim 39 wherein one of said functions is OR.
\%1. The processor of ciaim 59 wherein one of said functions is AND.
62. The processor of claim 59 wherein one of said functions is EXCLUSUVEOR.
63. The processor of cham 59 wherem said swinch means in cludes means for selectively establishing the predetermined function as any of AND, OR, or EXCLUSIVEOR.
64. The processor of clam 59 wheren said switch means includes means for establishing the predetermimed function so that a word on the data leads is added with a word stored in the register stages.
65. The processor of claim 59 wherein said swituct means in cludes means for establishing the predetermined function so that a word on the data leads is subtraced hrom a word stored in the register stages.
66. The processor of clain 54 including means for selectiveby performing the subtraction in one's or two's complement ni" nary arithmetic.
67. The processor of clam 39 wherein sad switch means ha. cludes means for establishing the predetermined function so that a word stored in the register stages is subtracted from a word on the data leads.
68. The processor of claim 67 including means for selectively performing the subtraction in one's or two's complement binary arithmetic.
69. The processor of claim 59 wherein said swinch means includes means for selectively establishing the predetermined function so that: (1) a word on the data leads is added with a word stored in the register stages; (2) a word on the data leads is subtracted from a word stored in the register stages; or (3) a word stored in the register stages is subtracted from a word on the data leads.
70. The processor of claim 69 including means for selectiveby performing einher of the subractions in one's or two's complement bimary arithmetic.
71. The processor of clam 59 wherein each of said logic networks comprises a full adder having sum and carry outputs, the th one of said full adders having a first input response to the state of the ith register stage, a second input selectively responsive to the signal on the th tead, and a third input selectively responsive to the carry output of the $(i-1)$)h full adder, where $i=1,2,3 \ldots \mathrm{~N}$, for the full adder of stage $t=1$, means for selectively coupling binary levels to the third input.
72. The processor of claim 59 wherein said switch means further includes means for selectively shifting the bits stored in the stages from one stage to another in cither direction.
73. The processor of claim 59 wherein said switch means further includes switch means for conpling signals between said stages so that a word stored therein is selectively either complemented, advanced by a count of one or subtraced from by a count of one.
74. A data processor comprising a plurality of register stages, and switch means for coupling signals between said stages, said switch means including means responsive to a single pulse for selectively complementing a word stored in the register stages, for advancing a word stored in the register stages by a predetermined count, and for subtracting a count of one from a word stored in the register stages, said switch means further including means for selectively shifting bits stored in the stages to other stages in either direction.
75. A data processor comprising N register stages, N logic networks, means for connecting each of said logic networks to be responsive to the signal stored in a different one of said stages, means for coupling another signal to each of said logic networks, means for coupling an output signal from each of

30

said stagen, crecpt stage N, an an input to a logic neiwork responsive to the signal from another register stage, means for telectively coupling an outpur from ach logic netwonk to an imput of a different one of said stages, and means for selectiveIy couplivg thift and carry bits from a angle input lead to the firse of said atages and the logic network reaponaive to the signal atored in the inter nhage, respectively.
T6. A dath processor comprising N register magen, \mathbb{N} logic metworka, means for conmecting cach of waid logic networks to be responaive to the signal wiored in a differemt one of said wages, meano for coupling another signat forech of aaid logic networks, means for coupling an output signal from cach of

