CORE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TO\& USI/Scientific \& Technical Information Division Attentions Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters
-
SUBJECT: Announcement of NASA-Owned U. S. Patents in STAR
In accordance with the procedures agreed upon by code GP and Code USI, the attached NASA-owned U. S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:
U. S. Patent NO.

Government or Corporate Employee

Supplementary Corporate Source (if applicable)
:
NASA Patent Case No.

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable: Yes \square No X
Pursuant to Section $305(a)$ of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent: however, the name of the actual inventor (author) appears at the heading of Column No. 1 of the specification, following the words m. . . With respect to an invention of
Elizabeth A. Carter Enclosure
Copy of Patent cited above

4 Sheets-Sheet 1

FIG. 6

FIG. 2

WILLIAM E. HOWELL KAZMERE C. ROMANCZYK
BY

4 Sheets-Sheet 3

United States Patent

FRIN(iE COU NTER FOR INTERFEROMETERS

The invention described herein was made by employees of the United States Government and may be manufactured and used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.

The invention relates generally to a digital sensor and more specifically concerns a fringe counter for interferometers.
Interferometer technique utilizing lasers have been used in the past for determining the relative movement between two objects. These techniques produce fringes which are counted to give an indication of the relative movement. The counters used in the past to count interferometer fringes use two or more photomultiplier tubes which presents an alignment problem. Also the prior counters count whole fringes and do not directly count partial fringes. This limits the sensitivity of prior counters.
It is therefore an object of this invention to eliminate an alignment problem in interferometer fringe counters by using only one photomultiplier tube.
Another object of this invention is to improve the sensitivity 20 of interferometer fringe counters.

A further object of this invention is to improve the sensitivity of digital sensors beyond their least significant bit resolution.
Other objects and advantages of this invention will become 25 apparent hereinafter and in the drawings in which:
FIG. 1 is schematic drawing of an interferometer whose fringes are counted by the counter that constitutes the present invention;

FIG. 2 is a drawing of the waveforms, logic and the funda- 30 mental and second harmonies of a fringe produced by the interferometer in FIG. 1;

FIG. 3 is a block diagram of the fringe counter that constitutes the present invention;

FIG. 4 is a schematic drawing of a detector that can be used as phase sensitive detectors 34 and 36 in FIG. 3;

FIG. 5 is a block diagram of the logic circuit 42 in FIG. 3; and

FIG. 6 is a modification of the invention to increase its sensitivity.

While the technique used by this invention can be applied to most digital sensors, it can be best be understood by examining its application to a digital sensing interferometer. Consider the interferometer shown in FIG. 1. In most respects, it is fairly conventional, with a laser source 10 , a beam splitter 12 , a reference mirror 14 , and a second mirror 16 attached to an object 18 whose position is to be monitored. The reference mirror 14 is mounted on a piezoelectric wafer 20 which is driven by a 1000 Hz . oscillator 22 . The result is that the length of the reference arm is varied at a frequency of 1000 Hz . with the amplitude dependent upon the oscillator output. With a slight angle between the two mirrors, the output patterns is a set of fringes that oscillate across the face of the single photomultiplier tube 24 with an aperture 26 in front of it. This signal is processed by an electronics system to extract the amount and direction of motion of mirror 16 . To understand the present invention requires some analysis of the photomultiplier tube 24 output. The intensity distribution for a fringe produced at the output of tube 24 is given by the familiar cosine-squared function.

$$
\begin{equation*}
I=4 a^{2} \cos ^{2}\left(\frac{2 \pi d}{\lambda}\right) \tag{1}
\end{equation*}
$$

where
I is the intensity at any point on the fringe (or the output of 65 tube 24)
a is a constant dependent on laser power output
d is the difference in path length between the reference and unknown paths, in wavelengths
λ is the wavelength of light
Since the reference path length is being varied, d is a function of time

$$
d=\frac{A}{4} \lambda \sin (\omega t)
$$

where
A is the amplitude of piezoelectric oscillation in quarter wavelengths
ω is the frequency of oscillation (6280 radians $/ \mathrm{sec}$)
5 Another factor which influences d is the motion of mirror 16 from any initial setting. This can be represented by summing an unknown motion $k \lambda$ to the above equation giving

$$
\begin{equation*}
d=\frac{A}{4} \lambda \sin (\omega t)+k \lambda \tag{2}
\end{equation*}
$$

It is this unknown value k which must be determined in both magnitude and direction. If the value for d given in equation
(2) is substituted into equation (1) and the identity
$\cos ^{2} \theta=1 / 2+1 / 2 \cos (2 \theta)$
(3)
is applied, the resultant is
Tube $24_{o u t p u}=P=2 a \cos A \pi \sin (\omega t)+4 \pi k \quad$ (4)
applying a second identity
$\cos (\alpha+)=\cos (\alpha) \cos (\beta)-\sin (\alpha) \sin (\beta) \quad$ (5)
to equation (4) gives
$P_{0}=2 a^{2} 2 a^{2} \cos (A \pi \sin (\omega t)) \cos (4 k)$
$-\sin (A \pi \sin (\omega t))$ $\sin (4 \pi)$
(6)

Using the Bessel expansions
$\cos (A \pi \sin (\omega t))=J_{0}(A \pi)++2 J_{2}(A \pi) \cos (2 \omega t)+2 J_{4}(A \pi)$ $\cos (4 \omega)+\ldots \quad$ (7)
$\operatorname{Sin}(A \pi \sin (\omega t))=2 J_{1}(A \pi) \sin (\omega t)+2 J_{3}(A \pi) \sin (3 t)$ $+\ldots$ (8)
on equation (6) gives
$P_{0}=2 a^{2} 2 a^{2} J_{o}(A \pi) \cos (4 \pi) \quad$ (9a)
$-4 a^{2} J_{1}(A \pi) \sin (4 \pi k) \sin (\omega t) \quad(9 b)$
$-4 a^{2} J_{3}(A \pi) \sin (4 \pi k) \sin (3 \omega t)-\ldots \quad(9 c)$
$+4 a^{2} J_{2}(A \pi) \cos (4 \pi k) \cos (2 \omega t) \quad$ (9d) $+4 a^{2} J_{4}(A \pi) \cos (4 \pi k) \cos (4 \omega t)+\ldots \quad(9 e)$
Note the coefficients of the fundamental and second hamonic terms. The first consists of a constant term $\left(4 a^{2} /_{1}(A \pi)\right)$ and a term of the form $\sin (4 \pi k)$. Therefore, for every guarter wavelength traveled by the mirror 16 , this term will assume values from zero to one and back to zero. Furthermore, as mirror 16 continues to move from one-quarter wavelength to onc-half wavelength ($1 / 4 \leqq k \leqq 1 / 2$) this term will assume values from zero to minus one and back to zero. The total effect of this change is to vary the amplitude of the fundamental and iss phase. Similarly the term $\cos (4 \pi k)$ varies the amplitude and phase of the second harmonic. As an example of the way the system works, suppose mirror 16 is moved in one direction at a constant rate, then k will be proportional to time. The amm plitude and phase of the carrier will change as shown in FIG.
2. The top part of the drawing shows the envelope of the fundamental and the bottom part of the drawing shows that of the second harmonic. While it is impossible to simultaneously show the modulation envelope and the carrier phase, the carrier frequency at each succeeding maximum is opposite in phase to its predecessor. The same is true for the second harmonic. The remaining factor of importance is that the $\sin (4 \pi k$) and $\cos (4 \pi k)$ terms are orthogonal functions, hence the envelopes of the two frequencies reach maximums at different values of k. This is shown graphically by FIG. 2. The second harmonic peak occurs at the valley of the fundamental and vice versa. By taking advantage of this fact and keeping track of how the phase of the carrier changes, each one-eight wavelength motion of the moving mirror can be detected and recorded. The electronic system which accomplishes this is shown in block diagram form in FIG. 3 .

Referring now to FIG. 3, the output of photomultiplier tube 24 is applied through a preamplifier 28 to a 1000 Hz . filter 30 and a 2000 Hz . filter 32 . The outputs of filters 30 and 32 correspond, respectively, to the fundamental and second harmonic envelopes in FIG. 2. The outputs of filters 30 and 32 are applied to the inputs of phase sensitive detectors 34 and 36 , respectively. The output of oscillator 22 has its phase shifted by a phase shifter 38 and then applied to phase sensitive detector 34. The output of phase shifter 38 is also applied to a second harmonic generator 40 whose output is applied to phase sensitive detector 36 . The output of detector 36 is
shown as the fundamental wave in FIG. 2 and the output of defector 36 is shown as the second harmonic waveform in FIG. 2. The waveforms at the outputs of detectors 34 and 36 are applied to a logic circuit 42 which produces a pulse each time there is a change in one of the two waveforms. If the change is from lef to right, logic circuit 42 generates a pulse on one of its two cutputs. We will say that the pulse is generated on the upper output of logic circuit 42 and call it an up pulse. If the change in one of the waveforms is from right to left a down puise will be generated on the lower output of logic circuit 42 . The pulses generated by logic circuit 42 are counted by a bidirectional counter 44. The count on counter 44 at any givern cime is indicative of the position of object 18 relative to its starting position. The filters, phase shifter, second harmonic generator and bidirectional counter are well known devices and will not be disclosed in detail in this specification. The phase semsivive detectors and logic circuit will be disclosed im more detall in the following paragraphs.
A chrcuit suitable for use as phase sensitive detectors 34 and 36 are showe in FIG. 4. If used as detector 34 the output from flter 30 is applied to terminal 46 and the output from phase shitter 38 is applied to terminal 48. These outputs are applied across the primary of a transformer 50 . If the two outputs are out of phase with each other there will not be any voltage induced in the secondary of transformer 50 . However, if they are in phase a voltage is induced in the secondary which is gectited by diodes 52 and 54 and then smoothed by a filter 56 . The output from filter 56 is applied to a Schmitt trigger 58 which produces the fundamental waveform.
A circuit sutable for use as logic circuit 42 is shown in FIG. 5. This circuit consists of squaring amplifiers 60 and 62 , inverters 64, 66 and 68, OR gates 70, 72 and 74, AND gates 76, 78, $80,82,84$ and 86 , one-shot multivibrator 88 , flip-flop 90 and differentiating circuit 92 all interconnected as shown. The function performed by this circuit is described in the following Boolean uquations:
$U P=5 n c_{0}$ Snino

Thas is, an ip puise is produced at the output of OR gate 72 if SnFo is true or if SnFo is true; and a down pulse is produced at the output of OR gate 74 if $S n F O$ is true or if $S n F O$ is true. $S n$ is the state of the second harmonic waveform at any given instant and fo was the state of the fundamental waveform just prior to the last change of state of either the fundamental or second harmonic waveform. Suppose that the waveforms are changing from left to right (object 18 is moving in one direction) then if $S n$ is 1 Fo is 0 or if $S n$ is 0 Fo is 1 . Now suppose the waveloms are changing from right to lef (object 19 is moving in the other direction) then if S_{n} is $1 F o$ is 1 and if S_{n} is 0 Fo is 0. The upper output of flip-thop 90 is $F o$ and the lower ouppr of mp- fiop 90 is

To better understand how the logic circuit in FIG. 5 operates a specific example will be used. Referring to the logic at the botom of FIC. 2 , suppose that object 18 is moving such that a 1 is applied to the imput of amplifier 60 and a 1 is appled so amplifer 6z. We known that this logic will produce a puise at one of the outputs. If object 18 is moving such that the waveforms are moving from left to right, Fo is 1 and $F O$ is 0 . Thas logic sppears at the output of flip-flop 90. The output of armpinier 62 has a rising output which when applied to differentiawng circuit 92 produces a sharp pulse which is applied through OR gate 70 to one-shot multivibrator 88. Multivibrator 88 produces a pulse which is inverted and applied to flipflop 90 and $A N D$ gates $80,82,84$ and 86 . The output of ampince 62 is also applied to AMD gates 82 and 84 . One can readily see that the only one of the AND gates that has a 1 apphes toeach of is three inputs is AND gate 82. Hence gate 82 produces a pulse that is applied through OR gate 72 as an up pulse. Herce $2 s$ object 18 moves to cause the wave to move from tef wo righe up pulses are produced. The purpose of inverter 64 and AND gates "7 and 78 is to store Fo in the flipthop for the mex count. If the waveforms move from right to det down pulses are produced.

For most applications, the sensitivity of the device described in FIG. 3 is entirely sufficient. However, it is possible to significantly improve it. For example, the sensitivity would be doubled if the argument of the $\sin (4 \pi k)$ term were doubled from 4 to 8 . This can be accomplished if the outpui of photomultiplier tube 24 is electronically squared (multiplied by itself) yielding an equation of the form shown below. The equation is obtained by seting equation (4) equal to equation (9) and transposing the terms of equation (9a). This removes the $D C$ eerms of equation (4) and is accomplished electronically by the preamplifier 28 which passes only AC. The resultant equation in closed form is
$P_{0}(A C)=2 a^{2}\left[\cos (A \pi \sin (\omega t)+4 \pi k)-J_{0}(A \pi) \cos (4 \pi k)\right]$
The squared output S^{2} is
$S^{2}=4 a^{4} \cos ^{2}(A \pi \sin (\omega t)+4 \pi k)-2 ل_{0}(A \pi) \cos (4 \pi)$
$\left.\cos (A \pi \sin (\omega t)+4 \pi k)+J_{0}^{2}(A \pi) \cos ^{2}(4 \pi)\right]$
By applying equations (3) and (5) and
$\sin \theta \cos \theta=1 / 2 \sin 2 \theta$
and the Bessel expansion (7) and (8), the output can be written, neglecting $D C$ terms introduced by the squaring circuit as
$S^{2} / 4 a^{4}=l_{1}(2 A \pi) \sin (8 \pi h) \sin (\omega t)-\ldots$
$+2 J_{0}(A \pi) J_{1}(A \pi) \sin (8 k) \sin (\omega t)+\ldots$
$+H_{2}(2 A \pi) \cos (8 \pi) \cos (2 \omega)+\ldots$
$-2 J_{n}(A \pi) J_{2}(A \pi) \cos (8 k) \cos (2 \omega t)-\ldots$
$-2 J_{0}(A \pi) J_{2}(A \pi) \cos (2 t)-\ldots$
The fundamental and second harmonic now have coefficients involving $\sin (8 \pi k)$ and the $\cos (8 \pi k)$, respectively, which doubles the counting frequency or sensitivity of the system yielding a count every one-sixteenth wavelength of motion. In accordance with the above discussion the sensitivity of the sysiem can be increased to yield a count every one-sixteenth wavelength of motion instead of every one-eighth wavelength of motion merely by placing a multiplier 94 between photomutiplier sube 24 and preamplifer 28 as shown in FIG. 6.

The advantages of this invention are obvious. An interferometer with a single detector is used to determine the magnitude and direction of motion of an object to a digital sensitivity of one-eight or one-sixteenth wavelength. Further, there is no obvious reason why the clectronic squaring technique could not be used repeatedly to further increase the system sensitivity. For example, if the output of multiplier is applied to the two inputs of another multiplier the system sensitivity would be increased to one thiry-secondth wavelength

We claim:

1. A device for counting electrical fringes whose wavelength varies proportional to a variable comprising:
means receiving said electrical fringes for producing the fundamental and second harmonic envelopes of said fringes;
means receiving said fundamental envelopes for producing a first voltage level when the carrier in said fundamental envelopes is a first phase and for producing a second voltage level when the carrier in said fundamental envelopes is a second phase;
means receiving said second harmonic envelopes for producing said first voltage level when the camier in said second harmonic envelopes is said lirst phase and for producing said second voltage level when the carrier in said second harmonic envelopes is said second phase;
logic circuit means receiving the outputs from the last two mentioned means for producing a pulse on the firsi of its two output terminals when there is a change in the output level of either of the last two mentioned means and the last change was one of two possible changes and for producing a pulse on the second of its two output terminals when there is a change in the outpur level of either of the two last mentioned means and the last change was the other of two possible changes; and
a bidirectional counter for counting the pulses produced by said logic circuit means whereby the count on said bidirectional counter at any instant is indicative of the value of said variable at that instant.
2. A device for counting electrical fringes according to claim 1 wherein said second voltage level is ground potential.
3. A device for counting electrical fringes according to clain Including means for squaring said fringes before the fundamental and second harmonic envelopes are produced whereby the sensitivity of the counter is doubled.
4. A device for counting che fringes produced by an interferometer of the type that includes a laser source, a beam splitter, a reference mirror driven at a given frequency and a second mirror attached to the object whose position is to be monitored combined such that the fringes produced thereby oscillate across the face of a single photomuitiplier tube comprising:
means connected to the output of said photomultiplier tube for producing the fundamental and second harmonic envelopes of said fringes;
means receiving said fundamental envelop for producing a first voliage level during alternate cycles of said fundamental envelope and for producing a second voltage level during the other alternate cycles of said fundamental envelope;
means receiving said second harmonic envelope for producing said frast voltage fevel during alternate cycles of said second harmonic envelope and for producing said second voleage level during the other alternate cycles of said second harmonic envelope;
logic circuit means receiving the outputs from the last two mentioned meams for producing a pulse on the first of its two output hermimals when there is a change in the output level of einher of the last two mentioned means and the
last change was one of two changes and for producing a pulse on the second of its two output terminals when there is a change in output of either of the fwo last mentioned means and the last change was the other of two possible changes; and
a bidirectional counter for counting the pulses produced by said logic circuit means whereby the count on said bidirectional counter at any instane is indicative of the position of said object at that instamt.
5. A device for counting fringes in accordance with clam a wherein the two mears for producing frot and second voltage levels are both phase-sensitive detectors.
6. A device for counting fringes in accordance with claim A including means for squaring the outpur of said photomulepplicr tube before it is applied to the remander of the circuit whereby the sensitivity of the device is cloubled.
7. A device for counting fringes in accordunce with clam 4 wherein said logic circuit means inchuces circuitry for produc-
 and includes circuitry for producing a pulse on its second ousput terminal when $\bar{S}_{n} F O+S_{n} F$ is true where S_{n} is alogical 1 when said means receiving said second harmonvic envelope produces said first voltage level and is a logical 0 when it produces said second voltage level and where Fo is a logicall if just prior to the last change in voltage kevel of ether the means receiving the fundamental or the means receiving the second harmonic, the means receiving the fundamertal was producing said first voltage level and Fo is a logical of this means was producing said second voltage tevel.
