TO: USI/Scientific \& Technical Information Division Attention: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U. S. Patents in STAR

In accordance with the procedures agreed upon by code $G P$ and Code USI, the attached NASA-owned U. S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U. S. Patent No.	3,501,648
Government or Corporate Employee	California Institute of Technology Pasadena, California 91109
Supplementary Corporate Source (if applicable)	$: \quad$ Jet.Propulsion Laboratory
NASA Patent Case No.	$: \quad$ XNP -06505

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable: Yes $x \quad$ NO \square
Pursuant to Section $305(a)$ of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent: however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification, following the words . . . With respect to

Elizabeth A. Carter Enclosure
Copy of Patent aited above

A1F 24797

March 17, 1970 JAMES E. wEEE 3,501,646
 administrator of the national aemonautics AND SFACE ADMINISTRATION SHITCHING CIRCUIT Filed June 29.1966

3,501,648

switching circuir

ABSTRACT OR THE DISCLOSUR2

A solid state switching circuit is disclosed in which AC signals at an input terminal are switched to an output terminal through a gating transistor, as a function of the transistor's state of conduction. The state of conduction is controlled by controlling the DC potential difference between its emitter and base and by means of a pair of control transistors, forming part of a DC control circuit. The relative states of conduction of the control transistors a function of the amplitude of a DC control signal.

The invention described herein was made in the performance of work under a NASA contract and is subjec to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 USC 2457)

This invention relates to switching circuitry and, more particularly, to a solid state circuit for switching AC (alternating current) signals between input and output terminals as a function of DC (direct current) controlling signals.

Generally, herebefore, DC control signals or voltages have been used to control or switch DC voltages to an appropriate DC load. It is a primary object of the pres DC invention therefore to provide a novel circuit in which DC control voltages are used to control the switching of AC signals.

Another object of the present invention is to provide a stable solid state switching circuit for AC signals.
A further object of the present invention is the provision of a solid state circuit employing transistors in which AC signals are switched in response to a DC control signal or voltage.
Still a further object of the present invention is to provide a simple relatively inexpensive transistorized switching circuit in which AC signals are switched in response to a DC control voltage of a selectable amplitude

These and other objects of the present invention ar achieved by providing a circuit in which the switching of AC signals, supplied to an input terminal, is controiled as a function of the state of conduction of a conducting device, such as a transistor. When the transistor is in a nonconducting state, the input AC signals, at the input terminal, are inhibited from being impressed or supplied to the output terminal. However. when the transistor is in a conducting state, the input $A C$ signals are impressed at the output terminal. The state of conduction of the transistor is controlled by a pair of transistors, the state of conduction of which is in turn controlled by the controlling $D C$ control voltage. In the absence of a $D C$ con trol voltage of the desired amplitude both transistors are substantially the same state of conduction so the the transistor connected between the input and output terminals is in a nonconducting state. However, when a DC control signal of the desired amplitude is supplied to the pair of transistors, one of the transistors is in a state of conduction different from that of the other transistor, re sulting in a potential difference, which is impressed be-
tween the base and emitter of the transistor connected between the input and output terminals. Consequently, the latter transistor is switched to its conducting state, resulting in the input AC signals being impressed at the output terminal of the circuit. Thus, the switching of the AC signals between the input and output terminals is controlled by the DC control signal
The novel features that are considered characteristic of this invention are set forth with particularity in the appended claims. The invention itself both as to its organization and method of operation, as well as additional objects and advantages thereof, will best be understood from the following description when read in connection with the accompanying drawing, which is a schematic diagram of the switching circuit of the present invention

Referring to the figure, there is shown a first semiconductor device such as a PNP transistor 11 having its emitter $11 e$ connected to an input terminal 12 and ins collector 11c connected to an output terminal 13 and through a resistor R1 to a source of negative potentia such as -20 volts. The emitter and collector may also be connected to the input and output terminals respec tively through coupling capacitors C1 and C2 (or trans formers). In addition, a variable resistor R2 may be placed between the emitter $11 e$ and the input terminal 12 in order to control the gain produced by transistor 11 The transistor also includes a base $11 b$, which together with the emitter 11e, are connected to a semiconductor control circuit, generally designated by numeral 15.
In accordance with the teachings of the present invention, AC signals supplied to input terminal 12 are alter nately transferred to the output terminal 13 when transistor 11 is in a condactive state, which is in turn controlled by the potential difference between the base $11 b$ and emitter 11c, produced by the control circuit 15. As seen from the figure, circuit 15 comprises a pair of NPN transistors 16 and 17 each having its respective base $16 b, 17 b$, collector $16 c, 17 c$, and emitter $16 e$, $17 e$ Col lectors $16 c$ and $17 c$ are connected to a source of posi tive potential such as +20 volts, through recistors R3 and 44 respectively Also collector 16 c is connected to the emitter 11 of transistor 11 . The emitters 16 and 17 the emitere to preferred embopposime the invention, insistor 5 com preferred embodiment of the invention, resistor R5 comprises a variable resistor, the movable arm of wich is conmected to a constant current source 20 . The function of the latter circuit is to provide constant emitter cur rent to the emitters of transistors 16 and 17 , in order to stabilize the operation of the switching circuit hereinde scribed. In one embodiment of the invention, the constan current source 20 comprised an NPN transintor 21 hav ing its collector 21 c connected to the movable arm of resistor R5, with the emitter $21 e$ being connected to the 55 source of -20 volts through a resistor R6. The base $211 b$ of transistor 21 was connected through a resistor R7 to a reference potential such as ground, with a 7ener diode Z1 being connected between the base $21 b$ and the -20 volt source. The base $16 b$ of transistor 16 was connected through serially connected resistors R8 and R9, forming a voltage divider, to the ground potential, while the base $17 b$ of transistor 17 was connected to the junction point between the two resistors, comprising the voltage divider The DC control valtage is supplied to an input terminal 25 which is directly connected to the base $\$ 6 b$ of transistor 16

From the foregoing description, and from the figure, it should be appreciated by those familiar with the art that in the absence of a DC control voltage of an amplitude sufficient to produce large enough a potential difference between the base 11b and emitter 11e of transistor 11 to switch the transistor to its conductive state,
path for the AC signals between input and output terminals when it is switched to its conducting state, while inhibiting the fow of signals therebetween when being in the noncon ductive state. The state of conduction of the particular ransistor is controlled by a pair of transistors, which in the absence of a DC contro signal of sufficient amplitude, maintains the transistor in a nonconductive state. How ever, when the amplitude of the DC control signal reaches a selected amplitude, the two controlling transistors are switched to different states of conduction, because of the voltage divider R8, R9, providing a potential difference be tween the base and emitter of the transistor connected between the input and output terminals. Consequently, the latter transistor is switched to the conductive state and thereby provides a path for the AC signals from the input terminal to be supplied to the output terminals.

It is appreciated that those familiar with the art may make modifications and/or substitute equivalents in the specific arrangements hereinbefore described for explana tory purposes, without departing from the true spirit of the invention. Therefore, all such modifications and/or equivalents are deemed to fall within the scope of the invention as defined in the appended claims.

What is claimed is:

1. A signal switching circuit comprising:
an input terminal for receiving alternating current input signals;
an output terminal;
a first transistor having conductive and nonconductive states, coupled between said input and output terminals, for switching said input signals from said input terminal to said output terminal when said first tran sistor is in said conductive state, said transistor having a base electrode, an emitter electrode coupled to said input terminal, and a collector electrode coupled to said output electrode; and
semiconductor control means including second and third transistors respectively coupled to the base electrode and to the emitter electrode of said first transistor fo selectively controlling the potential difference between the base and emitter electrodes of said first transistor in the absence of input signals to be a function of the relative conductive states of said second and thiro transistors, said potential difference including a selected potential difference of a first polarity whereby said first transistor is in a nonconductive state so tha an output signal is present at said output terminal only when the input signal at said input terminal has an amplitude above said selected potential difference and of a second polarity opposite said first polarity said semiconductor control means further including means responsive to a direci-current control signal fo controlling the relative conduction states of said sec ond and third transistors as a function of at least the amplitude of said direct-current control signal.
2. A switching circuit comprising:
an input terminal for receiving alternating current sig nals;
an output terminal;
a first source of reference potential;
a first transistor having emitter, collector and base elec trodes, said transistor being switchable between con ductive and nonconductive states;
means coupling the emitter and collector of said first transistor to said input and output terminals respec tively;
first resistive means coupled between said collector and said first source of reference potential
a control terminal for receiving a direct current control signal; and
control means coupled to said control terminal and the emitter and base electrodes of said first transistor fo controlling the direct-current potential difference be tween said emitter and base electrodes said control means including means for selectively controlling the
potential difference in the absence of said direct current control signal at said control terminal, to be of a first polarity, whereby satd first transistor is in a nonconduclive state, with said current signals which have conducive stite, with said current signals which havo an amplitute below said first potental difference beminal.
3. The circuit defined in claim 2 wherein said contro 3. The circuit defined include second and third 2 wherein said control means include second and third transistors respectively coupled to the base and emitter electrodes of said first transistor, and circuit means coupled to sald hirst and second transistors and to said control terminal for controlling said second and third transistors to be in selected states of conduction so as to provide a selected direct-current potential difference between the base and emitter electrodes of said first transistor when the amplitude of said control signal is above a selected level.
4. The circuit defined in claim 3 wherein each of said second and third transistors includes a base electrode, an emitter electrode and a collector electrode, said control means including means for coupling the collector electrode of said second transistor to the base electrode of said first transistor, means for coupling the collector electrode of
said third transistor to the emitter clectrole of said first transistor, manually adiustable control means for providing the emitter electrodes of said second and third iransistors with controllable emitter currents, and means connected to said control terminal for controlling the relative potentials at the collector electrodes of said second and third transistors as a function of the potentials at the emiter electrodes of suid second and third transistors and the ter electrodes of said second and amplitudes of said control signal.
10
B. P. DAVIS, Assistant Examiner
U.S. Cl. X.R,

307-235, 237; 330—30

