REPLY TO ATTN OF: GP

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHington, D.C. 20546

```
TO: USI/Scientific & Technical Information Division Attention: Miss Winnie M. Morgan
FROM: GP/Office of Assistant General Counsel for Patent Matters
SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR
```

In accordance with the procedures contained in the Code GP to Code USI memorandum on this subject, dated June 8, 1970, the attached NASA-owned U.S. patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No.	$: 3.373 .069$
Corporate Source	$:$ Langley Research Center
Supplementary	
Corporate Source	
NASA Patent Case NO.: XLA-03497	

Enclosure:
Copy of Patent

Watha Julio
Watcher Jain
March $12,1968^{\circ}$ W. GILLESPIE, JR
METHOD OF MAKING AN INFLATABLE PANEL.

Watno frathoin ATTORNEYS
March 12, 1968 W. Glllespie, JR $\quad 3,373,069$

Original Filed Jan. 13, 1961
7 Sheets-Sheet 3

FIG. 7

FIG. 8

RNENTOR
WAREEN GILLESPME NR BY Wetho fruens ritronaiess

March 12, 1968
W. GILLESPIE, JR

3,373,069
AETHOD OR MAKTNG AN INFLATABLE PANEL
Original filed Jan 13,1961
7 Sheets-Sheet 5

INVENTOR
WAREN GMLESPIE, VIT.

F/G. 15

F/G. 16

INVENTOR
WAAREN GLLLESPIE, JR. Wolloo frulam

FIG. 17

FIG. 18
WARREN GILLESPIE, JR.
BY
Watbe fudwoin

3,373,069

MELYOD OF PMAENG AN TNELATARE PANEL Warren Cillespas, Er, Newport Netws, Va, assignor to the United Stakes of America as represemied by the AEgrimistrater of the National Aerousutics and Space Acministratios
Origimat appitication Jan. 13, 1961, Ser. Ne. 82,658, now Patent No. 3,230,004, dsted Nov. 23, 1965. Diviced and this application Auge 10, 1964, Ser. No. 392,992

2 Claims, (Cl. 156-285)

Abstract

AESTRACT OW THE DSSCXOSUKE This invention relates to a metho of forming inflatable panels for use as erectable radic - x_{2} nal reflecting space vehiches wherein two shects of the moteriat making up the inflatable are piaced in overlyiny relationship on a plate having a plurality of male protuberances thereon, a partial vacuum is created between the plate and the sheet of material adjacent thereto to draw the sheets into conformity with the male protuberances thereon, a fow of heated gas is directed against the top of said sheets to thereby further conform the sheets to the pattern on the plate through the combined erects of heat and pressure, a sublimatory infation material is inserted betwern the sheets and the peripheries of the sheets are bonded to thereby form an innatable panel.

The invention described berein may be manufactured and used by or for the Government of the United States of America for governmental purposes without the payment of any royalties thereon or tberefor.
This application is a division of appilication Ser. No. 82,658 filed Jan. 13, 1961, and now. U.S. Patent No. 3,220,004.
This invention relates generally to planetary obetal communication satellites and more specifically to a methos of making an exectable, inflatable radio signal reffecting space vehicles.

The realization in recent years of the ability to place a space vehicle in a long term orbit about the Earth has created a great deal of interest in the potential of such vehicles as passive communication satelites. Properiy constructed and placed in a reliable orbit, a passive communication sateflite, or a series of such vebicles, may serve to relay radio signals from one continent to another, and over obher great distances, by reflection of received signals. A communications system of this sert may serve to alleviate the slready over-burdened condition of transoceanic telepbone cables, or the like, and would be far more reliable tha unrelayed high freauency radio circuits, which are susceptible io disuption due to varying ionospheric conditions. With these advanteges in mind, research programs have been undertaken to study the feasibility of constructing and placing in orbit a passive communication relay satelitie. As a result of one such research program, conducted as pant of an undertakieg denominated "Troject Echo," a spherical space vehicle one hundred feet in diameter has been placed in Earth orbit, and radio sigaals have been sưccessfuily relayed by this satelite from one station to another far removed therefrom. The details of this passive communication satellite may be found by reference to an application for United States Letters Patent of William John O'Sulivan, Ser. No. 835,153 , fled Aug 20,1959 , now Patent No. $2,996,212$. Although the space vehicle constructed along the lines described in the above-identified patent is considered to be highly successful and to aftord the first practical embodiment of an erectable communication satellite, several advantages appear to be attainable by
modifying the spherical shape thereof, and in modifying the shin structure used therefor.

One inferent limitation in the use of a spberical satellite lies in the large size and weight thereof required to movife adequate refiective surface area. For cormunications relay purposes only a small segment of such a spheroid is actually utiized as a refiector or reflecting sirface, and the remainder of the sphere serves no function once a stable orbit has been achieved. Thus the greater portion of such a space vehicle is merely excess structure, creating booster rocket payiond capability waste probiems, while serving only to obviate the need for alignment or attitude control means, Further, by presenting a uniformbly renective surface in all directions, such a spherow is subjected to the onbit modifying effects of solar pressare. caused by the energy expended upon the satellite by the imingenent of light thereon, and the consequent reflection thereof. Further, since a spherical vehicle of this type possesses a relatively high volume to weight ratio, the perturbating effects of solar pressure are increased. In addition to these diffeuities in maintaining a reliable orbit, the satellite shape or configuration tends to be easily changed by both solar pressure and mictometeonite colisions.

The material disclosed in the aforementioned OSullivan patent, while it does possess a degree of stifness or rigidiy when once erecied and tensillely stressed in accordance with the teachings of such application, does not have sufficient rigidity to reliably maintain the desired configaration when exposed for leagthy periods of time to such environnemai hazard's as solar pressure, micrometeorite coilizions, and the like.

Is view of the desirability of providing passive communication satellites, and the himitations of presently known structures and materials available for constructing a reliable satellite of this type, it bas become desirable to design a novel structure to serve as a communications relay vehifle of reliable, maintainable configuration and orimptation. To construct such a space vehicle of improved design, the development of new materials has become a requirement, as heretofore utilized materials fail to provide suffient rigidity, and are unduly affected by solar pressure. Finelly, new processes have been required to make the novel materials desired for use in such space vehicles. The present invention is a result of considerable integrated research and development towards solving the problems encountered in providing a pracical passive communication relay satellite.

Accordingly, it is an object of this invention to provide a new and improved communication satellite.

Another object of the present invention is the provision of a new and improved automatically erectable structaral; element.
A futher object of the instant invention is to provide new and improved methods of forming ininatable stractaral panels.
Sill another object of this invention is the provision of an actively attitude oriented passive communication satellite.
Yet another object of the present invention is to provide a passively attitude oriented communication satellite.

A still farther object of the instant invention is the provision of a passive commumication satelite adapted to reffect radio frequency waves.
An additional object of this invention is to provide a passive communication satellite adapted to be pervious to light frequency waves.

Another additional object of the present invention is the provision of a space vehicle which is pervious to light frequency waves and impervious to radio frequency waves.

A further additional object of the instant invention is to provide an rrbital space vehicle adapted to be attitude-
stabilized by the gravitational-centrifegal force gradient. Still another additional object of the present invention is the provision of new atd improved methods of forming infiatable laminated panels of wame-ilike cross-section.

According to one aspect of the present invention, the fore-going and other objects are attained fy providing an inflatably erectable passive communication satelitite adapted to be folded into a compact package for storage in a launch vehicle nose cone or in the final stage of a multstage rocket, and baving upon infiation erection ai least one spberical section for presentation to a source of redio frequency signals transmitied from the Earth; such satelite being formed at least in part of inflatable elements cosstructed of material in sheet form adopted to refiect radio frequency waves and so constructed as to possess structural rigidity upon erection sufficient to retain an erected configuration in a interplatetary spatial vacuum without the presence of intemal pressure.

In accerdance with another aspect of this invention, the afonesaid and other objects are attained by providing a method of manafacturing infinable laminated structural pancis, comprising the steps of forming a wafle-like crosssectional shape in a plurality of sheets of material, juxtapositioning at least two of such sbeets, bonding such sheets together to form an envelope, and providing communication with the interior of such envelope for a pressure producing means.
The foregoing and other objects and many of the attendant advamtages of this invention will be readily arparent as the same become belter understoud by reference to the following detailed description when considered in connecticy with the accompanying drawings wherein:
FIG. it is a partial elevational view, party broken away, of a typical launch vebicle for a atellite;

FIG. 2 is a side view of one embodiment of a communication satelite according to the present invertion;
FIG. 3 is a sectional view taken atong line 3-3 of FIG. 2;
Fig. 4 is a side view of another embodiment of a communication satellite accerding to this invention;
FIG. 5 is a patial sectional view taken along line 5-5 of FIG. 4 ;
FIGS. $6 a, 6 b, 6 c$, and $6 d$ illustrate me satellite of Fics. 4 and 5 during the sequence of events occurting in a normal orbital mission thereof;
FIG. 7 is a side view of another entbodiment of a communication satellite according to the instant invention;
FIG. 8 is a sectional view taken along line 8-8 of FIG. 7;
FIG. 9 is a partial plan view of an inflatable panel designed for use in a satellite;
FIG. 10 is a sectional view taken along line $10-10$ of FIG. 9 .
FIG. 11 is a partial plan view of another infatable panel designed for use in a satellite;
FiG. 12 is a sectional view taken along line 12-12 of Fig. 115.
FIG. 13 is a partial plan wiew of another infatable panel ciesigned for use in a satellite; and
FIGS. 14-18 are partial detilied views of various structural components adapted for use in a typical satelite.
Referring now more paricularly to the drawings, wherein like reference numerals designate identical parts throughout the several views, and more particularly to FIG. 1, there is shown by way of illustration a passive communication satelite, generally designated by the reference numeral 11 , folded for storage within nose portion 12 of the final stage or payload contanier 13 of a launch vehicle, not shown. The exact positioning and mounting of satellite 11 within nose portion 12 forms no part of the present invention, and may be such as to permit ejection of the erectable sateliite il eilber forwardy or rearwardly along the longitudina' vehicle axis, of radially therefrom, upon reaching orbital velocity and altitude. As shown in FiG. 1, by way of example, satellite 11 may rest on a displaceable tray 14 which is temporanily restrained in the
the position shown but is adapied to be released upon separation of nose portion 12 from final stage 13 through the operation of conventional mechanisms, not stiown. A spring 10 may be provided in a normally compressed position so as to forcibly ciect satellite 11 and tray 14 from nose portion 12 when tray 14 is released. Any conventional devices may be provided to carry out the aforementioned operation within the scope of this invention. It is further, contemplates that a plurality of satellites it may be positioned withia a launch vehicle nose cone and ejected therefrom sequentially, as, for example, at each nose cone pass through the apogee of an elliptical orbit thereof, so as to provide a spaced series of communications satelites.

Passive communication satellite I may have any one of several configurations when erected, and the selection of one of such confarations wilf be determined in practice by consideration of various factors, such as the anticipated orbital altitude, the term of the desired ortit, the percentage of tine of exposure to solar pressure, the anticipated rate of micrometeorite activity in the orbital area, the degree of accuracy of attitude desired, the orbital weight capabilities of the launch vehicle to be used, and the Hike. Furtier, various materials may be used to form the several comporent parts of such a satellite, and the selection of these materials will be governed, in part, by the aforementionad considerations as well as the configuration to be used.

Basically, each of the configurations hervinafter to be described incluces a primary structure including a mast, an annular support means, and a plurality of lightly tensioned spokes interconnecting the mast and the support means. This primary stucture serves as a framework for a secondary structure which includes a refiecting surface formed in the stape of a portion of a sphere, and which may be termed a sphericil section. The dimensions required for such a spherical section, and, accordingly, the attendant primary stucture, may, in practice, be determined by normal engineering calculations; these calculations taking into accoint such variable factors as altitude, anticipated margin of error in satellite orlentation or attitude, and the distances between the several radio transmiting and receiving stations involved.
Referring now to FIGS. 2 and 3, there is shown one cmbodiment of passive commumicaion satellite 11 in erected condition, which may be accomplished by means bercinafier described upon attainment of orbital velocity and ahitude. Satelfite 1 , as shown in FIG. 2, is provided with a reflecting surface which comprises a generally spherical or spieroidal section 15 , a mast 16 mounted on and carried by spherical section 15 and extending along a radial line of the imaginary spliere 17 of which spherical saction 25 is a segment, and strengthening elements such as lightiy tensicned spokes 8 connected at one and thereof to ead 19 of mast 16 by spoke connecting means, not shown. Satellite in is preferably further provided with active atitude control means 2 , set forth more fully hereinafter. Spherical section 15 is surported at the outer, circular, periphery thereof by inflatable annular tube 22, best seen in FIG. 3, constituting a peripheral support means, which in turn may be connected in the other end of the spokes 18 and thereby interconnected with mast 16. For incresised structural rigidity, there may be included as an integral pari of satelite 11 a pluralify of wire spokes 23, Fighty tensioned, connected at one end thereof to spoke connecting means, not shown, mounted on mast 16 near the intersection thereof with spherical section 15, and at the cther end thereof to inflatable annular tube 22. The ends of spokes 18 and 23 adjacent and comected to mast 16 should be substantially equidistant from the plane of tube 22. Further, rib panels 24 may be mounted between scokes 23 and spherical section 15, and connected to both, thus affording greater-structural rigidity and aiding in forming the shape of spherical section 15 during erection:
Since satellite 11 is not a complete sphere, but defines
only a section of a sphere, it is pesirable to provide some means for insuring tbat splezical section 15 is oriented and maintained iri a preselected position relative to the surface of the Earth in order to properly reflect radio frequency siguals directed toward the passive commuaication satellite for relay to an Earth receiving station. Means of this type may be provided for both satelite 11 and each of the other satelite configurations hereinafter disclosed. As shown in Fig. 2, active atitude control means 22 is provided to perfora this Earth-ofienting function in satelite ir.

Active atitude control means 21, which may be mounted on satelite 11 as hereinbefore mentioned and which also may be utilized with any of the oroital satetite configurations hereinatier disclosed, may in practice be any conventional active attitude conitol means; for erample, that disclosed in the application for Letters Patent of the United States by Warren Gillespie, Ir. et al., Ser. No. 853,984, fled Nov. 18, 1959, now Pateat No. 3,058,077 or in United States Letters Patent 2,740,961, issued Apr. 3, 1956. Such active attiode control means may operate in various ways, such as, for example, by rotativeiy scanning the horizon of the Earth in order to detect any deviation from a generally horizontal reference piane. Regrardess of the specific operation of such a device in detecting deviations from an Eath oriented attitude, correction may be aforded by, for example, the automatic actuation of jet exhaust nozzles in proper directions to correct satellite atitude in accoriance with wiell recognized physical principles. Since the details of such an active attitude control means form no part of the present invention, they are not herein disclused. Any of the analogons prior art systems will suffice so long as they are capable of sensing and actively correcting attitude errors.
The various structural elements of satellite 11, aside from swekes 18 and 23 , may be formed of a thin fiexible material which is adapled to be compactly folded, as for example, shown in FIG. 1, wut which upon erection is adapted to reflect radio frequency signals and possesses a sufficient rigidity or stifness for reliable configuration retention when exposed in an interplanetary spatial vacuum to the various perturbations therein encountered. Such materials, which form an integral part of the present invention, are applicable to several conferations herein disclosed, as well as other structural shapes, and are therefore discussed more fully hereinafter, following the description of other satellite configurations. Similarly, a description of the various structural comections herein contemplated, such as the interconnection of spokes 18 to mast 16 and tube 22, and of wire spokes 23 to rib panels 24 , tube 22 , and similar jointure details, sipce they may be common to the several confgurations herein disclósed, are discussed following a consideration of the several configurations.
Having reference now to FIGS. 4 and 5, there is shown an alternative embodiment of a passive conmunication satellite according to the present invention, generally designated by the reference mumeral 31 , which difers from the embodiment of FIGS. 2 and 3 mainiy in that satelite 31 is adapted to be passively attitude oricnfed by the gravitational-centrifugal force gradient. Satellite 31 is provided with a reflecting surface which defines a sphenical section 32 similar to section 15 of FIG. 2, and constituting a section of an imaginary sphere indicated by dashed line 33. Mast 34, connected at an end thercof to spherical section 32 and extending along an imaginary radial line of sphere 33, serves to support a plurality of strengthening elements or spokes 35 which are interconnected Eetween mast 34 and an infatable annular tube 36 by conventional connecting means 40 so as to be lighty tenstoned. Tube 36 is contiguous with and is connected to the circular periphery of spherical section 32, and thas coustitutes a peripheral support means. As in satellite 11, satellite 31 may be provided with a plarality of spokes 37 connected under light tension to suast 34 and tube 36 , through con-
ventional spoke connecting means, not shown. The locts of the ends of each of the aformentioned spokes 35,37 adjacent mast 34 is preferably substantially equidistant from the plane of tube 36 . In order to prowide greater rigidity of this satellite configuration, rib panels 38 may be interconnected betwees spokes 37 and spherical section 32.

Retcring again to the satt mite configuration of FIGS. 2 and 3 , it is preferred that once orbital velocity and altitude bave been achieved, the satellihe 11 be detaebed completely from ail or most of the launch vehicle structure; and then erected and attitude-stabilized under the infinence of active atitude control means 22. On the other hand, satellite 31 may be attitute-stabilized in a different manner. Moxe particularly, satelite 3 may be so stored within its launch vehicle that upon attainment of the desired alitude and velocity, the satellite may be erected by means bereinafter described, but remains attached, through mast 34 , to a significam portion of the mass of the lacsch vehicle; for example, the final stage or the payload container thereof, as generally indicated and schematically iliustrated at 39, FIG. 4.
As illustrated in FIGS. $6 a, 6 b, 6 c$ and $6 d$, satelitite 31 and the attendant launch vehicle may sequentially pass through the stages of launch and acceleration to orbital altitude and velocily, as indicated at FIG. 6a, a pitching maneuver to align the axis of the entire vehicle with a raclial line from the Earth, as in FIG. 6b; erection of mast 34 which spaces spnericol surface 32 away from significant mass 39, as at FIG. $6 c$; and finally erecion of the entire satellite 31. Aligning mast 34 with a radial line extending from the center of the Earth in this. fashion, and thus causing significant mass 3) and the center of mass of spherical section 32 to lie along such a radial line, permits the entire safeilite 3 to be attitude-stabilized by the gravi-tational-centrifugal force gradient. In other words, as is well known, the two major forces acting upon a space vehicle during orbital travel in a closed circular or elliptical path are the atractive force of gravity and the opposing force known as centrifugal rorce. For a given orbit these forces are of substantially equal magnitude, and act on such a space vehicle generally along a radial line drawn through the center of the Earth. Therefore the space vehicle, or in the present case satellite 31, is most stable wih the two masses, spherical surface 15 and sigmificant mass 39 , ceatered along a radial line, since in non-centered positions a resultant force couple is established inducing a torgue tencing to move the two masses back toward the desired positon. Thus satellite 31 may be said to be passively attitude stabilized by the provision of a "dumbell" configuation such as shown in FIG. 6d.
The length of mast 34 should be such that the static moments or force couples occasioned by a deviation of the two masses from a radial line from the center of the Earth is at least somewhat greater than other perturbations such as solar pressure. Therefote, for erample, mast length should increase with orbit alitude Obviously, if satelite 37 were to be tumbling rapidly end-over-end upon initial erection, it would require a lengthy period of time for the gravitational-centrifugal force gradient to succeed in properly stablizing the satellite; therefore, it may be de irable to provide active or pessive damping devices to check such initial tumbling motion. An active attitude control means such as that described hercinbefore may serve this purpose. More ideally, angular motion sensing means, not shown, may be utilized to sense overly rapid. tumbling and forcibly correct such action; or structural elements, not shown, may serve to check such tumbling by creating inertial forces opposed to tumbling. Since such devices form no part of the present invention, they are not herein sperifically disclosed.

It is to be noted that satellite 31 may be Earth oriented either as shown in FIG. $6 a^{d}$ or in a position rotated 180 degrees, with mass 39 nearest the Earth, since in either position the curved reflecting surface provided by spherical section 32 may function to reflect radio siguals.

The pitching maneexver for initially attaining the position shown in FIG. 66 may be accomplished by any conventional reaction jet or oher vehicle steering devices, not shown, which are not considered to be a part of the present invention.
Another atterative embodiment of a communication satellite in accordance with the instant invention is shown in FICS. 7, and 8. This satellite, generally cesignated by the reference numeral \&1, is provided with a rellecting surface which incluctes spherieal section 42 having intatable annular tube 43 cosnected to the outer periphery thereof, and constitutiag peripheral support means. Mast 44 is centrally commected to spherical section 42 and extends aloog a radial line therefrom. Whise spokes 45 may serve as strengthening efements and rib panels 46 may be provided in similar manner to those shown in FIGS. 3 and 5 to furnish increased structural rigidity. To the extent thus far described, it may be seen that satellite 41 is substantially icentical to satellites 11 and 3 ; further, as hereinbefore discussed, active attitude control means 47 may be mounted below mast 44 and may be similar to active atitude control means 21, FIG. 2.
Satellite 41 differs from those previously discussed herein in the provision of an upper spherical section 48 which may include wire spokes 49 and rib panels 51 serving the same function as do the similar elements hereinbefore disclosed, such as elemeats 23 and 24 in FIG. 3.
It should be noted that instead of, or in addition to, active attitude control means 47, passive attiude control means, no shown, might be readily provided for satelite 41 by extending mast 44 beyond surface 48 and connecting a significant niass thereto as more fully discussed hereinbefore with regard to FIGS. 4,5 nnd 6.
Several configurations for passive communication satellites having been hereinbefore disclosed in a general manner, particular attention is now directed to the materials which are preferably used to form the various components of the aforesaid configurations. It is to be understood that each of these materials may be utilized in part or in the whole for constructing any of the previously discussed condgurations or other sinaiar satellite siopes or planfornis:

The one hundred foot spiere similar to that disclosed in the O'Sulivan Patent. No. 2,996, 212 hereinbefore identified is adapted to be erected by introducing pressure into the interior thereof much as a conventional balloon is inflated, and differs from such a conmon infation operation by the provision of sufficient pressure to tensilely stress the satelite skin material beyond the elastic limit thereof. A significantly different erection procedure may be utilized in ereatiog the present sntelites, as will become readily apparent as the detailed description continues.
More particularly, the passive commanication satellites of the gresent invention ram be erected by inflating the component parts thereof. Thus, for example, satellite 11 may be erccted by inflating annular tube 22, mast 16 , rib paels 24, and spheital section 15. Simiarly, satelile 31 may be erected by infating annular tube 36, mast 34, rib panels 38, and spherical section 32; and erection of satellite all may be accomplished by infating annular tube 43, mast 44, rib panels 46, 51, and spherical sections 42, 48. Accordingly, inflatable anmular tubes 22,36 and 43 may be constructed of a thin, fiexible, lightweight material such as a laminate comprising outer layers of aluminum sandwiched about and bonded to an inner layer of polyester film such as Mylar. A laminate thickness of two thousandits of an inch has been found to be suitable for this purpose. Althongh this lamina:e is consideded preferable, others which may be used will accur readily to those skilled in the art, and, in fact, a sheet of pure Mylar may be used for this purpose, although such a sheet possesses hitte structural rigidity ever when rolled into tubular shape for use as a mast or annular tutiz
infition pressure producing means may be provided to tact between shaets 53,54 . It is to be noted, however, that indentations 56 are preferably somewhat more shallow than are indentations 55 so that when sheets 53 and 54 are placed together. as shown, with the convexities of sheet 53 telestoped within the concavities of sheet 54 , a scries of small, interconnected spaces 57 are formed where no contact exists between such sheets. Thus spaces 57 together constitute the enclosed space hereinbefore mantioned, sealer by the aforementioned contiauous 75 bonding of peripheries, $\mathbf{3 8}, 59$. Whthin one or more of the
spaces 57 there may be placed a material haviag sublimating characteristics and being adapted to sukime When placed in an interplanetary vacumon, as wherr in orbital travel. One such sublimatory material is chloroacetic acid ($\mathrm{ClCH}_{2} \mathrm{COOH}$), which subhmates at a ternperature of 61-63 of ciegrees centigrade. Alternatively, a material or materials of conventional type for gemerating a foam may be so placed, or any conventhal pressure producing means may be connected for communication with such space. Whatever means may be selected to perform this infating function, it is necessary only that a diferential pressure in the neighborhood of 0.3 pound per square inch be gewerated to inflate panel 52.
Shects 53,58 may be formed of various materials, and preferably may comprise aluminum cated Mylar of a thickness of approximately 0.00025 inch. Such a thickness may be attained by depositing aluminum on an- extremely thin sheet of Mylar by the vapor deposit method. Alternatively, one of shects 53,54 may be such a moterial and the other pure mylar.

In FIGS. 11 and 12, an alternative form of inflatable panel is shown. Panel 61 may comprise top or first shicet 62 and bottom or second sheet 63; each sheet having a phrality of indentations 64, 65, respectively, formed therein. As bereinbctore discussed with regard to the panel construction of FlGS. 9 and 10, the panel 61 is shown somewhat schematically, and each sheet thereof may in practice be someuhat more gently curved so as to assime a generally sinusoidal form baving only small fat portions at the base of each indentation. Panel 61 differs from panel 52 in that the respective convexities of eacin sheet are in contact, or, in other words, the sheets are placed in opposed or oppositely facing relationship, as clearly shown in FIG. 12. The sheets may be joined together by adbesive bonding or welding at each point of contact Hereof, as discussed with regard to the panel structure shown in FIGS. 9 and 10. Similialy, peripheries 67 of sheet 62, and 68 of sheet 63 , preferably are continuously joined so as to form an envelope enclosing intcrconnected spaces 66 between the sheets, thins rendering panel 61 inflatable.

Infiation of panel 61 may be accomplished by providing a source of pressure, such as, for example, sublimatory material such as chloroacetic acid, from generating materials, or a conventional container of pressurized gas, communicating with spaces 66, as hereinofore discussed with respect to sheet 52, FIGS. 9 and 10.

Sheets 62 and 63 preferably may be of 0.00025 inch thicknesses of aluminum coated Mylar, or one of such sheets may be pure Mylar.

A most important property possessed by both panel 52 and panel 61 is that either may be folded flatiy into compact areas or spaces, but that upon inftation thereof, and even if subsequent to inflation the internal pressure thereof is dissipared, such panels exhibit grenter structural rigidity or stifiness than if left fiat and uninflated. In other jwords, rigidity of such panels is increased by infation thereof, and consequently such panels tends to retaia their infiated shape as shown in the drawings even if the internal pressure thereof should be subsequenty decreased. This propety is due to the generally cross-braced shape of the infiated parels, similar to a "space frame". structural shape.

The advantages of the aforesaid property in pazels designal for used in forming structural components for a passive communication satellite such as satelites 11, 3 . and $\frac{1}{1}$ should be obvicus. Once such a vehicle is prected and in orbit, puncture of the skin thereof by micrometeorites or the fike, or leaks occurring due to any cause, vith consequent loss of pressure in the panel intericis, wiil not cause a change of component shape. Thus a spherical section such as $15,32,42$ or 48 formed of a plurality of panels 52 or 61 having the shape of gores or other convenient shape possesses qualities and characteristios heretofore not available for such uses.

Panels 52 and 61 are also well suited to serve as rib panels such as panel 24, FIG. 3, panel 33, FIG. 5, and panels 46 and 51 , EIG. 7, since, as hereinbefore discussed, such panels exhibit a marked increase in strucfural rigidity subsequent io infation.

It is to be understood, therefore, that either panel 52 or panel 61 may be uilized as the basic structural elenent of any or all of the various spherical sections and rib panels herein disclosed; and, further, such infiatable pancls may be utilized in the same satellite. In olher words, panel 52 may be utilized for some components and panel 61 for cthers in the same satellite.

Thus, upen ejection from the final stage or prvioad container such as shown in FIG. 1 after attainment of orbial alitude and velocity, the passive communication sattelite may be erected by the pressurization and consequent inflation of the various components thereof by the action of pressure producing means such as those hereinbefore described. In each of satellites 11, 31 and 41, a major porion of the work necessary for erection may be performed 'y the annular tube provided. Further, a significent or major portion of such work may be accomplished by internaily pressurizing the space between, for example, spherical sections 42 and $4 B$, as hereinbefore discussed. Thus, as the tube assumes its anmular shape from an initial folded position, it draws with it the various spoles, rib panels, and sphencal sections. However, a not inconsiderable portion of the erection force nesessary is provided by the action of the erection gas within the inflatable panels forming the spherical sections and the rib panels, which tends to enlarge the spaces such as 57 in FiG. 10, thus serving to strenglhen and form each papel.

Of course, numerous methods of constructing and asscmbling panele such as 32 and 61 will occur readily to those skilled in the art, but two methods will now be described which have been found to be particularly suited to the forming of these panels without damaging the delicate components thereof. It is to be understocs that these methods are described merely as being illustrative fabribation procedures, and not by way of limitation as to the structure of the panels hereinbefore disclosed.

In order to fabricate panel 52 by the preferred method now to be set forth, there may be provided as fabricating equipment a metal plate having a plurality of maie protuberances thereon corresponding in shape and arrangement to the concavities formed by indentations 55 in sheet 53, FIGS. 9 and 10. Thus this metal plate; not shown, may be said to present a general appearance somewhat similar to a convantioneal waffe-iron plate. Passing through such plate there may be a plarality of regularly spaced holes or per: ations preferably beginning on the plate suriace betwin the adiaceint male protuberances and extending through the opposite side of the plate. In sealed relationship with such othex side of the plate, and thus in communication with tbe aforementioned plurality of boles there may be provided an evactation chamber which is in tern connected through a suitable hose or tube to a conventional evacuation means such as a vacuum pump. Mounted centrally or cthervise positioned above the plate there may be provided a suitable nozele or other distributor which is connected to a source of beated air or gas and directed so as to dischatge a flow of such air or gas upon the surface of the plate and generally normal thereto. With such equipment, or the equivalent thereof; a panel such as panel 52 may be fabricated by the following steps:
(1) Placing two sheets, such as 53,54 , in overlying relationship on the aforementioned plate;
(2) Creating a partial vacuum beneath the lower of the sheets by operating the evacuating means as hereinbefore described, thus tending to draw the sheets into conformity with the male protuberances on the plate;
(3) Directing a flow of heated gas from the provided 75 source upon the upper sheet, ihus further conforming the

11

sheets to the male protuberances through the combined effects of heat and pressure;
(4. If sublimatory of foam generating materiais are to be utitized, as hereinbefore described, inserting the desired material between the sheets along the peripheries thereof; and
(5) Bonding the perpheries of the sheets in order to form same into an envelore.

As for the hereinbefore mentioned bonding of each convexity of sheet 53 to the corresponding concavity of sheet 54, this step, and the scquenciag thereof in the method just detalled, is, of course, governed by the types of material forming sheets 53,54 , and the type of bond ing desired. It is preferable that this step be accomplished pror to the introduction of a sublimatory materai between the sheets; this is especially so if heatige is necessary to create the bonds. On converient means of forming these small bonds in panels wherein cach sheet is alumanum coated, is by conventional sonic welding.

A similar process may be utitized in fabricatiag penels 6t, differing in that duplicate sets of the here necofore mentioned apparatus may be provided; the atwementioned male promrberanced plates being matching in form. Therefore, subsequent to the steps of placing an individual sheet 62 or 63 on each plate, creating partial vacuum therebeneath, and zpplying the heated air fow thereto from above, the respective sheets may be ryased together in the relationship shown in FIGS. 11 and 12. and suitably bonded, both at the peripheries thereof and intermediate of such peripheries, together with insertion of the desired materials between such sheets, as aforementioned.

It is to be understood that various methods other than those just described may, in practice, be devised and utilized.

Retering now to FlG: 13, there is shown by way of illustration a panel 71 which comprises a transparent sheet 72 and fery fine diameter wires 73 so positioned or mounted thereon as to form a grid pattern or mesh having square spaces 74 therein approximately two tenths of an inch or less on a side. Such a panel may be constricied by molding a sheet of Mylar about a grid formed of alurainum wire; and, further, a second sheet 75 be bonded at its periphery to the first skeet so as to form an envelone constituting an infatable panel 74. In a preferred form, wires 73 are aiummum and second sbeet 95 is Mylar fim. However, cther materials may be used for these elements, so long as the sheet material is transparent, or pervious to ligint, and the wire is of a material which will reflect rado froguency waves. Rather than being molded into sheet 72 , wires Th may be bonded thereto in known manner, or etched thereon, if desired.

So long as panel 71 is constructed so as to be pervious to hight but impervious to radio sigazis, it possesses qualities quite desirable for a structural element of a passive comithunitation satelite. The spacing of wires 73 at two tenths of an inctionart or less, as hereinbefore described, allows the combined Niylar and alwmum panel Tit to pass light therethrough. Thus, such a panel is substantially maffected by solar pressure, Conversely, this smane spacing is suficiently small or ciose to rellect radio signals up to frequencies of 10,000 megacyetes per second with a coefficient of refiection of approximately 80\%: Further, the aluninum wire mesh mozuted on or in the Mylar sheet exhibit greater structural rigidity than would a similar weighe of aluminum deposited evenly over a Mylar surface.

Erection of panel 7\% may be accomplished by infirtion thereof, which may be carried out by any of the methods heretofore discussed with regard to panels 52 or 61, such as placing a subliniating material between sheets 72 and 75 , or by connecting a source of pressurized gas, noi shown, to the space bel ween these sticets, or by foaming materials.

12

Obviously, a plurality of panels 71 may be used to form the spherical sections or rib panels hereinbefore disclosed, in the satie manner as discussed with regard to praels 52 and 61. While the various panels may be used in any of the satellite confgurations of FIGS. 2-8, certain of these panels are preferably utilized in certain of these confgarations, as will appear more clearly hereinafter.

More specifically, with reference to the embodiments of FIGS. 2, 3, 4 and 5 , is panels 52 or 63 are whized to form the various spherical sections and rib panels therein described, sunlight impinging upon the satellite from above; that is, striking the concave side of the spherical section, will be refiected against the mast, thus causing heatins problems of a possibly critical nature. If panels such as panels $71 /$ are used in these configurations, however, such reffection will nof occur, since panel 71 is pervious to sunlight, and therefore the problem of mast beating is avoifed. Similarly, in the confguration of FIGS. 7 and 8, if panels such as 52 or 67 are used for the upper and lower spherical sections, mast heating cannot occur since sunlight from any direction is reHected away thereby. However, in this confguration, it may be desirable to use upper spherical section 48 merely as an erection aid, in which case a weight saving could. be effected by using Mylar sheets alone for such inflatable panels or as nembranes, in which case mast beating would be a problem were panels such as 52 , 61 utilized for lower spherical section 42. Thus, although it is to be understood that the present invention in its broader aspects coniemplates the tise of any of these panels in any of the configurations disclosed, it is preferred that panels such as panel 71 be used in the confgurations of FIGS, 2, 3, 4 and 5, and also in FiGS. 7 and 8 if the upper spherical section thereof is transparent.

The various structural details such as connecting means between various components of the several configurations disclosed herein may differ greatly, in specinc applications. However, the elements next to be described are considerea to be well suited to serve the necessary functions thereof winle at the same time providing simple, rugged, lightweight, compart structural members.
In EIG. 14 there is shown the upger portion 81 of a mast 82 which may correspond to any of the masts hereinbefore ${ }^{\text {ecscribed. In order to prowtde means for }}$ congecting the wine spokes 33 to mast 82 , a spoke connectiog means or cap piate 84 is rigidy mounted on end 81 hereof, as by means of an adhesive, not shown. As more clearly shown in FIO. 15 , cap plate 84 may be a generally circular plate shaped into a dish configuration having a puratity of holes ss drilled or tapped therethrough in racially spaced relation arond the periphery therecf. Spokes 83 may be monacted to cap plate \& 4 through holes 5 in any convenient manner, as; for example, by means of a convemional eye splice and thinble arrangement, illustrated schematically ai a6, T1G. 14 ;

Fr. 16 shows the lower portion 87 of mast 82 , which may correspond to the lower end of any of the masts hereinbefore bisclosed. The end of lower potion 87 is secured between an inwer base plate 88 baving an anmular peripheral flange 39 integrai therewith, and tensioning ring 91, which may take any convenient form and serves to mount a plurality of tensioning eye bolts 92 which, in tum, are connected to respective wire spokes 93, thus constituting spoke connecting means. Secured, as by an adhesive bond, to each wire spoke 93 is a rib panel sef, which may also be bonded or welded to an adjacent panel 95 of the spherical reflector section. Obviously, wire spokes 93 , rib pariels 94, and panels 95 may correspond to the similar elements disclosed in FIGS. $2-8$ and hereintefore described. Housing 96 may be supported by base plate 88 and may contain, for example, an active atitude control means or other instrumentation or controls. A collar 97 may connect panel

95 to tensioning ring 91, and may be iormed of a Mylar and aluminom laminate and adhesively bonded or welded to these elements.
In FIG. 17 there is shown somewhat sciaematically one preferred construction of the inferconnected annular tabe, sphetical section, tib panels, spokes and the lite, which obvibusty may be my of these eleibents hereintefore disclosed. Anmular infintable tube 1 公等 bas secured thereto tabs 102 , 163 which may be of senerally triangular shape as best shown in FiG. 18 and which are preferably adhesively bonded or welded to tube 191. In tum, wire spokes 104, 105 may be bonded or welded or suitably attached to their respective tabs, one of the latter being provided for each spoke. Foffatable panels 106,167 of the type previonsly deseribed are secared to tube 101 in suitable manner, as, for example, in overiapping relaticnship to the adjacent tabs, and one or more of the spokes 104, 105 may have an infiatable tib panel such as 108 attached thereto and to the adjacent infintable panel.

Obviously many modifications and variations of the present invention are possible in the bight of the above teachings. It is thenefore to be understood that within the scope of the appented claims the invertion may be practiced othervise than as specifically described.
What is claimed as new and desired to be secured by 2 Letters Patent of the United States is:

1. A method of fabricating an infatable panel for use as a structural component of an inflatable reflective satellite, comprising the steps of:
placing a pair of thin sheets of metallic coated phastics material in overlying relationship upon a plate having a plurality of male protuberances thereon, said material having the inherent physical properiy cliaracteristics of developing a permanent set when subjected to beat and pressure,
creating a partial vacuum between the lower of such shieets anci said plate so as to cause said lower sheet to conform to the contour of sid plate and of sutficient force as to stretch and cause thinning of said lower sheet, and to cause the upper of said sheets to be drawn into essential conformity with said piate while remaining spaced, in part, from said lower sheet,
directing a flow of heated gas upon the upper of said sheets of sufficient intensity to develop a permanent set in both said sheets as caused by said vacuum and said plate protuberances,
inserting a sublimatory material within the spacing provided between said sheets, and
bonding the peripheries of said sheets together.
2. A method of fabricating an inflatable panel for use as a structural composent of an inflatable reflective satellite comprising the steps of:
placing a first thin shect of a metallic coated plastics material on a plate having a plurality of male protuberances thereon,
creating a partial vacimm between said first sheet and said plate.
directing a flow of heated gas upon said first sheet,
placing a second thin sheet of a metalic coated plastics material on the plate having a pluraity of male protuberances thereon,
creating a partial vacuma between said second sheet and said plate,
directing a flow of heated gas upon said second sheet, said metallic coated plastics material makiag up said sheets having the innerent physical property. characteristics of developing a permanent set when subjected to said vacuum and said flow of heated gas,
placing said first and secoud sheets in abuting face-to-face relationship,
inserting a sublimatory material between said sheets, and
bonding the peripheries of said sheets together so as to form an enclosed space therebetween with said space being characterized by sections thereie conforming to essentially twice the height of said male protuberances on said plate.

References Cited

UNITED STATES PATENTS

1,920,961	8/1933	Anderson ---------156-292
2,862,543	12/1958.	Kaminsty --
3,080,910	3/1963	
3,142,599	7/1964	Chavannes _-m-u-m- $156-210$
2,474,035	6/1949	Crandon-.- $156-285$
2,670,501	3/1954	Michiels _--_----156-210 X
2,778,173	1/1957	Taunton _-.-.-
2,915,427	12/1959.	Schriner et al. .-n-a- 156-214
2,983,638	5/1961	Qochl -----------156-581
3,048,514	8/1962	Wentele et al. .-.-.- 156-292 X
3,098,563	7/1963	
2,740,961	$4 / 1956$	Slater --mon-m-318-489 XR
2,996,212	8/1961	C'Sullivan _-..-.- 156-165 XR
3,038,077	6/1962	Gillespie, et al. $-\ldots .250-234 \mathrm{XR}$

EARX M. BERGERT, Primary Examiner.
0 1I. F. EPSTEIN, Assistant Examiner.

