REPLY TO ATTN OF: GP

March 29. 1971

TO: USI/Scientific \& Technical Information Division Attention: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures contained in the code GP to Code USI memorandum on this subject, dated June 8, 1970, the attached NASA-owned U.S. patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:
U.S. Patent No. $: \quad 3,382,082$

Corporate Source
: Goddard Space Flight Center
Supplementary Corporate Source :

NASA Patent Case NO.: XGS-02435

Enclosure:
Copy of Patent

3,382,082
 FOAMED-IN-PLACE CERAMIC REFRACTORY
 insueating Material

Alfred G. Eubarks, Keusington, and Ronald E. Funkeler, Lamhim, Md, assigiors to the United States of America as representent by the Administrator of the Nationat Aeronantics and Space Administration
No Drawing. Filed Aug. 28, 1964, Ser. No. 392,965
22 Caims. (Cl. 106-40)

Abstract

OF THE DISCLOSURE Foamed-in-place coramic refractory composition and methot for making same. The composition comprises the following ingredients: powdered aluminum hydroxide, phosphoric acid, benonitc, powdered aluminum phosphate, and a metal powder above hydrogen in the electrochemical series. It also can inchde powdered silicon dioxide. In the process all specified quantities of the above named ingredients, except for the phorphoric acid, are thoroughly mixed. Then the phosphoric acid is added and the total mixture stirred until a slurry is formed: The slurry is poured into a container which houses an abject to be potted or not as the case may be and thereafter the slurry is allowed to stant until it has foamed sufficiently to fill the container. Finally, the container is phaced in an oven and the foamed slurry is cured at the relatively low temperatures of from 65 to 100 degrees centigrade.

The invertion described herein may be manufactured and used by and for the Government of the United States of America for governmental purposes without the payment of any royalties theicon or therefor.

The present invention relates to a now ceramic composition and the method for producing same, and more particularly, to the composition and method of producing a low-temperature cured foamed-in-place porous ceramic refractory insulating material.
It is essential when certain objects, particularly electrical components, are stubiscted to high temperature environmertal conditions, that they be thermally protected. It is also a requirement, in many instances, that these objects be provided with mechanical support for protection agsinst vibration. These objectives are geacrally accomplished by the use of a poting compound which is cured about the components to be protected. The known present day poting compositions, while providiag vibrational shiclding, do not sufficiently protect the potfed objects when they are subjected to extreme temperature conditions. For example, electronic componenis located on a spacecraft, leaving and/or re-entering the eirth's ntmosphere, may be subject to extremely high temperatures from which they must be protected. The composition of the present invention provides a pottable material which has excellent thernal insulation properties and which can be used also as a vibrational support for the components to be protected.

While many priot art refractory materials are known to have exceltent thermal properties, electrical componeuts can not be potted directly therein for the reason thit the extremely high temorature required in carrying cut t: c curing portion of the potting process wond damige of entirely destroy the components due to the interse beat. Instead; separately prepared refractory blocks
of various shapes had to be processed at a temperature in the tange of 500 degrees Fahrenheit or above. The produced blocks then had to be fitted about the objects to be protected. Such prior art techniques had the obvious disadvantages of requiring long time and high temperawire processing, costly equipment and labor to locate the refractory blocks about the objects to be protected; and a considerable consumption of time to assemble the final structure. in addition, by the curing taking a day or more for completion, the total process was extremely slow and tied up valuable space and equipment.

By the particular composition and process for producing same, both of wisich will be described in detail hereinafter, electrical components can very simply and inexpensively be potted, without being damaged in the curing step, in a foamed-in-place refractory insulating material. Further, it has been found that this composition can serve cqually as well as a thermal insulation having many other uses, such as, in furnaces, for example, and can also find many uses in the construction art as a low cost, easily workable insulating material.
Accordingly, it is an object of the present invention to provide foamed-in-place ceramic refraciory insulating matefials having improved properties and being produced at low temperatures in relatively short periods of time.
It is another object of the preseat invention to provide a potting material capable of encasing an object and thermally protecting it to temperatures of approximately 3000 degrees Fahrenheit.
It is still another object of the present invention to provide a new and improved foamed-in-piace ceramic material.
It is still a further object of tis present incention to provide a method for forming fonmed-in-place refractory ceramic high temperature insulation materials requiring a relatively low curing temperature.
These and otber objects are attained by the present invention which is a novel porous ceramic composition comprising the following ingredients: powdered aluminum hydroxide $\left[\mathrm{A}(\mathrm{OH})_{3}\right.$]; phophoric acid, e.g., orthophosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$; bentenite; powered aluminum phosphate, e.g., aiaminum er ho-phosph ste (. HPO_{4}); powdered silion dioxide (SiO_{2}); and a net: powder such as aluninum (Al). The invention further includes the process of \}orming the composition itzelf by thoroughy mixing in a container specified quatities, deffied more specifically hereinafter, of aluminem hydroxide, bentonite, aluminum ortho-phosplate, silicon dioxide, and aluminum powder; adding ertho-ptosphoric acid to the resulting mixture; and vigorcusly stiming the contents of the container unill a slarry is formed. This slurry is poured or transferred into a lubricated enclosure which provides the sbape of the final material or which contains the object to be polted by the formed ceramic. The enclosure, with the slurry, is allowed to stand at room temperature, for a short time, until the slurry has foamed sufficiently to til the enclosure. Finally, the enclosure is placed in an oven and the foamed slurry is cured at 65 to 100 degrees centigrade. The curing time required varies from 2 to 24 hours, depending upon the volume, density and curing temperature utilized.
To provide those shilled in the art with a better understanding of the invention, Table I lists the ingredients in percent (\%) b_{y} weight and particle size of the composition of the foanted-in-place ceramic refractory material.

TABLE 1

Ingredients:	Pereent by Weight	Particle Size
Phosphoric acid (14PO $)(8 \%)$......... 99 to 69 .$\qquad$$\qquad$ Beat results with 325 mesh or smaller, nowever, 29% can be up to 200 nesh.		
Totnt of phosphorie acid and almminnmbydroxide nutstan within the approxi-mate range.		
Metal ponder abore lordrogen in the eleo, 0.1 to 0.5 \qquad 60 mesh or smatler; best rewuls with ap trochemical series. proximiately $35 \geqslant 5$ microns.		
Aluminum phosphate (APO4)	chamity nexasary to bring ta	mesh or stazaller.

While Table I indicates that the percent by weight of the ingredients can be varied, it should be noted, as pointed out therein, that the total percent by weight of the phosphoric acid and afuminum hydroxide must be within the range of approximately 50 to 95 percent by weight. A detailed analysis of the combination of the ingredients in this table, to form the foamed ceramic composition, will be presented hereinafter.
First, however, a complete description of the steps for processing the novel foamed-in-place ceramic refractory insulating material is now presented:

Mixing.-The dry ingredients of aluminum hydroxide; bentonite, aluminum phosphate (e.g., aluminum orthophosphate), silicon dioxide and a metal powder (e.g., aluminum powder) are stirred together in a container at room temperature to form a blend to which is added the phospioric acid (e.g., ortho-phosphoric acid). The mixture is vigorously stirted at room temperature for approximately two (2) minutes at which time a chemical reaction, as defined bereinbelow, takes place. "Water that is formed as a result of this chemical reactica reduces the viscosity of the mixture to a slurry havirg a consistency generally that of a pancake batter.

Forming.-The slurry, as prepared, is poured into a lubricated miold (a lubricant such as silicoze oil can be used) containing the object to be potted, or, if potting is not desired, but, instead, the material is to be made to have a paricular shape, an empty mold, and allowed to stand at room temperature from zero to approximately. thirty (30) minutes, or until the siury bas foamed sufficiently to nearly fil the mold. The foaming is due, in the main, to the metal powder-ortho-pbosphoric acid reaction. The mineral bentonite acts as a stabilizer to control and regulate the foam pore structure. While a cover for the mold is not absolutely essential, it is suggested that one be uscd to prevent possibic overfow and to enhance the uniformity of the pore structure of the composition. It was found that a light hting cover on the mold will yield a better, more miform deasity composition. It should be noted that the slurfy foams at a rate similar to the reaction of yeast in the formation of bread.
Curing.-The foamed slurry, still in tae mold, is next cured by heating at a temperature between approximately 65 and 100 degrees centigrade for about 24 hours or less depending on the curing temperature selected from the above range and the volume of the mold-approximately 8 hours being the usual time for a foamed ceramic formed in a mold, the size thereof approximating the dimensions of a common building brick, being cured at 85. degrees centigrade and a shorter time, such as two bours, being usual for 100 degrees centigrade. The curing the is also dependent upon the amount of water of bydration which must be eliminated during curing, the volume and complexity of the mold, and whether the mold remains covered during the entire curing period. It has been noted that by uncovering the mold after about one hour of curing time the fotal curing time can be rediced.

In the process, just outlined above, the forming of the shurry during the mixing step occurs principaly due
to the chemical reactions between the aluminum bydroxide and the ortho-phosphoric acid as follows:

$$
\begin{gather*}
3 \mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{3}+3 \mathrm{H}_{2} \mathrm{O} \tag{1}\\
3 \mathrm{H}_{3} \mathrm{PO}_{4}+2 \mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{Al}_{2}\left(\mathrm{HPO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O} \tag{2}\\
\mathrm{H}_{3} \mathrm{PO}_{4}+\mathrm{Al}(\mathrm{OH})_{3} \rightarrow \mathrm{AlPO}_{4}+3 \mathrm{H}_{2} \mathrm{O} \tag{3}
\end{gather*}
$$

Where the reactions given by Equation 1 will always occur; while those given by Equations 2 and 3 may or may not occur to a significant degree depending on whether a sufficient amount of $\mathrm{Al}(\mathrm{OH})_{3}$,reinains from reaction 1.

During the forming step, a foaning reaction eceurs between the aluminum metal powder and the ortho-phosphoric acid to liberate hydrogen gas as given by the following equation:

$$
\begin{equation*}
2 \mathrm{Al}+2 \mathrm{H}_{3} \mathrm{PO}_{4} \rightarrow 2 \mathrm{AlPO}_{4}+3 \mathrm{H}_{2} \uparrow \tag{4}
\end{equation*}
$$

By observing the above equations it can be seen that there are limits pleced upon the amounts of ortho-phosphoric acid and aluminum hydroxide that can be ibcorporated in the mixture for it to produce a composition within the teaching of the invention. The limits in percent by weight for ortho-phosphoric acid (85% concentration) and the aluninum lydroxide to make the foamed ceramic cau be varied from approximately 39 percent to approximately 60 percent by weight and from approximately 10 to approximately 55 percent by weight, respectively. However, at the same time the sim of the percent by weight of the ortho-phospboric acill and aluminum hydroxide should total between approximately 50 and 95 percent by weight.
The composition includes, in addition to the aluminum bydroxide and ortho-phophoric acid, the following ingredients: metal powder, from 0.1 to 0.5 percent by weight; bentonite, from 0.7 to 4 percent by weight; ultrafine silicon dioxide powder (on the order of 10 to 20 milimicrons), from 0 to 5 percent by weight; and enough ahminam phosphate, e.g., aluminum ortho-phosphate, to complete 100 percent by weizht of the composition. These ingredients, it is believed, enhance the curing step by contriating to the strength of the final composition. The bentonite, in addition, mimarily acts as a foam stabilizer in the forming step.
While the ortho-phosphoric acid mentioned above is indicated as having a concentration of 85%, this percentage may be lowered slightly and can be increased up to 100%. Where only a highly concentrated orthophesphoric acid is available and it is desired that an 85% ortho-phosphoric acid be used in the preparation of the foamed composilion, then sufficient water should be added either directly to the acid itself or to the dry ingredients prior to adiling the acid thereto.
In carying pat the invention, the aluminum hydroxide can be either anhydrous or bydrous. Accordingly, standard conmercially availible aboninum hydroxide, which usually contains an anknown gutatity of chemically combined water and which he the chemical formula, $\mathrm{Al}(\mathrm{OH})_{3}, \mathrm{HI}_{2} \mathrm{O}$, is readily acap bie for use in the processing of the foamed ceranie, rituthory naterial. In either case, best rewults aie attained whea the paticle size thereff

3,382,082

5
is smaller than approximately 325 mesh. Up to 20 percen of the particles can be coarser and still be tolerated. However, these coatser particles should not be larger than about 200 mesh.

Aithough aluminum is the preferred metal powder used to bring about the foaming reaction, other metals 26ove hydrogen in the electro-chemical series, such as, for example zinc and/or tin will serve in the same fashion. Finely divided powder of about 15 ± 5 microns gives excellent results. However, particles as coarse as 80 mesh (177 microns) are usable. Commercially available nowdered aluminum paint pigment has been found to be suitable.
The bentonite, forming part of the composition, is of extremely small particle size (smalier than 325 mesh) and serves in the process as a foam stabilizer to bring about an even distribution of the bubbles in the foam. It also provides, by a sintering action, improved high temperature strength characteristics when and if the foam is used in service above about 2000 degrees Fahremheit
For best results the aluminum ortho-thosphate particles should be 150 mesh (105 microns) or smaller in diameter and the ultra-fine silicon dioxide should be on the order of 10 to 20 millimicrons. It should be noted that these last two ingredients may be nmited if a lower strengih composition could be tolerated in a desired application.
While generally the consistency of the sturry is like a pancake batter, at the lower linits of phosphoric acid content of the composition, the slarry is more viscous and takes on a putty-like consistency. In this condition the slurry is dificult to pour but can be transferred into the mold with a spatula.
It has been found that compositions formed having a lower acid content than that listed as the lower limit in Table I result in high viscosity mixtures which cannot be poured. In some applications these high viscosity mixtures can be used as troweled-on insulatirg coatings. White the composition ranges presented in Table I above indicate that the sum of the ortho-phospteric acid and the aluminum hydroxide can be varied between 50 to 95 percent by weight, the preferred compsitions have sims of about 87 percent by weight with the ratio of orthophosphoric acid to aluminum hydroxide being approxinuately 1 to 1 :
The following tables (Tables II, III and IV) provide cata of sample mixes falling within the relationship referred to hercinabove and are given by the way of illustration only and not by the way of linitation, of the preferred compositions of the foamed-in-place ceramic refractory material. The particle size of the ingretients as Ifted in Table II, applies equally as well to Tables III and IV.

TABLC IE-SAMPLE MEX A

Intredients	Weinst (gixans)	premat by Weigit:
Orthombowheric acid (erm)	326	44.88
Alumbuma hydroxile (soialler than 200		
Sersobike (smbler than 305 mesh)	32. 69	43.85 1.43
Ahmsinam phosphate (Emaller than 200 resth)	6.50	9.31
Silion hioxide phwder (phrticle size of 10 to 25) 5initherons)	120	1.72
Alunafnum metol ponder (ista micron azateter yarticles).	0.15	. 21
Total.		100. 00

Ingredionts	Hersit (ayma)	irecent by Wrapht
Ortec-phompinoric nein ($8 \% \%$)	3) 99	49.54
A innimam liy drestex-......	25, 0	41. 0.5
Pemante	10	1. 60
Atre binm orthe phocphate	480	1. 65.
A ${ }^{\text {a minum }}$ powder....-.-.	\% 5	1. 25
Totas		1020 14

Ingredicats	Weight (srams)	Percent hy Weight
Ortho-phosphoric acid (65\%)	40.30	39.85 :
Aliminum hydruxide -	25.00	27.91
Bentonite. - -	200	1. 49
Alaminum ortho-phosphete	30.00	29.85
Alumimum powder - -----.	0.30	0.30.
Total		$100.0{ }^{\circ}$

It should be noted that Sample Mixes B and C, Tatles III and IV, respectively, do not include the ingrefient silicon dioxide (SiO_{2}). The inclusion of SiO_{2} in the mixture is not absolutely essential, its use in the composition, however, increases the strength thereof as previously mentioned:

Referting now to Sample Mix A (Table II), an explanation will be presented as to how the composition outlined therein meets the test for determining the amounts of the principal ingredients thereof spelied out in more detail hereisabove and summarized in Table I. The summation of the percent by weight of the orthophosphoric acid and the alumium bydroxide

$$
(44.38+42.95=87.33)
$$

meets the criteria previously set out above. This same analysis applies equally as well to Sample Mixes B and C, outlined in Tables III and IV, respectively, The other ingredients forming the ceramic compositions of Sample Mixes A, B, and C all fall within the limits prescrbed hereinabove.
Whereas the three sample mixes are given with no regard to the density of the ceramic material formed, the density thereof can be readily predicted or selected within the range of from approxiniately 20 pounds per mbic foot to 120 pounds per cubic foot by any one or a combintion of the three methods outlined hereinbelow.
Method 1.-The easiest method, and the most frequently used, is to pour pre-determined amounts of slurry into a given volume. The surrounding walls of the mold tend to constrain the foaming action so that the ceramic material is formed with smaller cell structure and higher density.

Method 2.-The density may be controlled by varying the particle size of the metallic powder aded to the mixture. Large size particles, bowever, that is, above about 50 mesh, tend to create large bubbles in the foam causing it to have a rather irregular cell structure.
Method 3.- By varying the amount of metallic powder added to the mixture, the density can also be rcguated
While no defitive data is available on the latter two methods, each has been practiced and has proveri satisfactory. In regard to Method 1, the weight of the slurry required per cubic inch of volume is shown in Table V as a function of desired density (pounds per cubic foot).
tablev

Deasity of Cured Ceramic Materind		Density of Slexty Prior lo Curing. Column C, mrans cubie inch
Column A, pounds! cubic foot	Column 3, grams/ clubic fuch	
20	5.3	6.0
30	7.9	8.9
40	10.5	11.8
50	13.1	147
60	15.8	77.6
70	18.4	30.6
80	21.0	23.5
30	23.6	26.4

In this table, Column C gives the density (weight/unit volume) of slurry before curing and Columns A and : 8 provide the resultant density (weight/unit volume in diffarent units) after curing. The difference between the corresponding values of Columns B and C, for a particular density value of Column A, represents the weight of water per cubic inch which must be climinated from the slurry during the curing step of the process. The data from this table was obtained by using Sample Mix A

7

(Table II) in a manner mute fully described hereinbelow.

The first step in preparing a foam of desired density, by using Method 1, is to calculate the interior volume of the mold to be used. Since, for the most part, it is desired that a material be formed having a uniform density, the mold itself should be designed to be rigid. Once the interior volume of the mold is known the weight of the slurry per cubic inch required to make a specific density composition cän be extrapolated from Column C of Table V. The next step is to calculate, by direct proportion, the exact amount of eawh iogredient required by using as a basis the data for a typical mixture, for instance, Sample Mix A disclosed in Table II. This is illustrated by the following examples:

Example 1

To fill a 12 -cubic inch mold with the foamed ceramic material having a density, when cured, of approximately 50 pounds per cubic foot, it is determined from Column C of Table V that 14.7 grams per cubic inch or a total of 176.4 grams (14.7 grams per cubic inch $\times 12$ cubic inches $=176.4$ grams) of slurry is required.
The calculated quantities for each ingredient are as. follows:

TABLE VI

Ingredient	Typical Miture, Pemem by Weight	Weight of Imgredient (grams)
Orthophosphotic acini.	44.38	78.29
Aluninum hydroside.	43.95 1.43	${ }^{75.77}$
Alumimum ortho-piosphate	9.31	16.42
Silicon dioxide--....	1.72	3.03
Aluminun metal powder,	0. 21	0.37
Total weight of slury		176.4

Example 2

To fill a 12 -cubic inch moid with the foamed ceramic material having a density, when cured, of approximately 20 pounds per cubic foot, it is determined from Column C of Table V that 6.0 grams per cubic inch or a total of 72 grams of slarry is required.
The caicuiated quantities for each ingredient are as follows:

Ingredient	Typleal Risture, Percent by Weight	Weight of Ingrediant (grams)
Ortho-phosphorie acid.	44.38	31.96
Aluminam bydroxde.	42.95	30.93
Bentomite-	1.43	1.02
Silicon dioxde.	1.72	1.24
Aluminum metat powder.	0.21	0.15
Total weight of slurry		72.ec

Example 3

To fill a 12 -cubic inch mold with the foamed ceramic material having a deasity, when cured, of approximately 90 pounds per cubic foot ${ }_{1}$ it is determined from Column C of Table V that 26.4 grams per cubic inch or a total of 316.8 grams of slurry is required.

The calculated quantities for each ingredient are as follows:

\therefore Ingredient	Typies Mature, Percent by Weigh	Weight of Ingredicat ((rams)
Ortho-phosphonic acia Alamaum hydroxide.	44.38 42.95	14.59 136.09
Bentonite...-....	1.43	4.53
Ahminam orthe-phosphate	${ }^{9.31}$	29.49 5.44
Aluminumantal powder:	0.21	0.66
Total weight of slurry.		316.80

It should be noted that in the examples given above in Tables VI, VII and VIII the exact amount of slurry icquired to give the desired densities for the 12 -cabic inch mold was calculated. As a practical matter, however, these calculated quantities of slurry must be increased by approximately 5%, or enough to compensate for the loss of slurry incurred due to the normal adhernnce thereof to the mixing container. One means for compensating for this loss of slurry has been to increase the weight of each of the ingredients by approximately 10% over the amounts given above in the tables so that the total quantity of slutry will be increased by 10%. Then even though some slurry will adhere to the mixing container there will be a sufficient amount available so that the precise weight of slurry can be pourcd into the mold. By first weighing the mold and then pouring the slurry into the mold, with the mold on a scale, the exact quantity of slurry in the mold can be readily measured.
While Table V and Examples 1, 2 and 3 presented in Tables VI, VII and VIII, respectively, were all derived using Sample Mir A (Table II) as a basis, the discussion relating to them applies equally as well to the use of other mixes as long as they fall within the limits set out in Table I above. Once a sample mix is derived all that is necessary for it to ke used in producing a ceramic having a desired density is that a slumy thereof be made and a predetermined quanity (weight/unit volume) thereoi be poured into a mold of a known volume. This step should be repeated a number of times except that in each case the quantity (weight/unit volume) of the slurry poured into the mold should be different. In each instance, after the slurry is poured into the mold, the mold is covered with a tight fitiong cover to prevent an overflow of the slurry and to achieve an accurate control of density of the resuhing composition. Since the mold is of a known volume, the weight/init volume of the slurry is known and the density of the cured ceramic materiat can be easily calculated, a table similar to Table V above can be made. By the use, as described hereinabove, of such a table the density of the particular sample mir can be readily selected. This discussion applies equally as well as to any sample mix.
White Method 1 is particularly applicable in obtaining densities from 20 pounds per cubic foot to 90 pounds per cubic foot, should densities of above 90 pounds per cubic foot and up to appronimattely 120 pounds per cubic foot be desired; they can be obtained as described by Method 3 by reducing the metal powder content of the typical mixture seiected as a basis.
It is to be understod that volumes smaller or larger than 12 cubic inches may be prepared by appropriately calculating the amounts of each constituent following the procedure described in connection with Tables VI, VII and VIIT:

In addition to having the qualities outined above and being simple to produce, the ceramic material described herein is susceptible to many machine shop practices. For example, it can be cut with a hacksaw, shaped with a wood rasp, bored with an ordinary dill bit and ground with an abrasive wheel. The texture and shape of the surface or surfaces of the material can be varied from very rough to bighiy glossy by appropriately choosing the interior mold surface; for example, a smooth curved surface is obtained by foaming the material against a watch glass that has been lightly coated with a lubricant and placed in the bottom of the mold. Such a surface, if say constructed in a parabolic shape would be an ideal infrared or heat reflector as well as an insulator.
The ceramic material of the instant invention possesses the following added advantages: it adheres conveniently to some metals, such as aluminim and galvanized stee), and is susceptible to color additives. To adhere to other metals or materials it may be necessary to use a ligh temperature adhesive.
Small percettages of ceramic coloring matenials (chromiza on de for green, manganese oxide for grey,
ctc.) can be added to the basic mixture to prodiuce a permanent insoluble coloring effect The following examples given in Tables IX and X below, using Sample Mix A (Table II) as a basis, with a minor variation to allow for the addition of the color additives, are typical of a green-colored and grey-colored foam ceramic, respectively:

Ingredient	Percent by Weight.	Weight of Ingredient (grams)
Ortho-phospiontic asia.	44.09	31
Aluminum hydroxide	4204	30
Rentontie............	1.12	1
Aluminum onhomphosphate	9.23	6.3
Silicon dioxide............	1.71	1.2
Alaminum pourder ($\mathrm{Cr}^{\text {Corom }}$) (less	0.21	0.15
Caromium oxide ($\mathrm{Cr}_{3} \mathrm{O}_{3}$) (less ingn 325 neshi)	0.71	0.5
TABLE S		
Ingredjent	Percent by Weight	Weight of Ingredient (gramis)
Orthomhosphorie asid.	43.30	31
	41.79	30
	1.39	${ }_{6} 5$
	8. 96	6.5
Silicon diaxide	3.68 0.20	1.2 0.15
Aluminum posder Manganese dioxide (anOz) (less than mesh) \qquad	2. 28	2.0

While the primary use of the inctant invention is for foamed in-place refractory poting materials, it may also find application because of its unique characteristics and ease of preparation, as a building and in wiation material. In ihis respect, we to its thermal insulating properties, it has beer used as an enclosure for a bigh intensity light source for a cryogenic environment to provent heat gencrated from the light source from pascing through the enclosure into the cryogenic environament.

Although the foregoing disclosure relaies to preferred embodiments of the inyention, it is obvious that numercus modifications ard alterations may be made therein without departing from the spirit and scope of the invention set forth in the appended claims.

What is claimed is:

1. A composition for producing a foamed-in-place ceramic refractory insulating material, the composition consisting essentially of: phosphoric acid of 39 to 60 percent by weight; aluminum hydroxide of 10 to 55 percent by weight, the total of said phosphoric acid and said aluminum liydroxide being 50 percent to 95 percent by weight; a metal powder above hydrogen in the electrochemical series of 0.1 to 0.5 parcent by weight, bentonite of 0.7 to 4 percent by weigh and aluminum phosphate of quantity sufficient to bring the percent by weight of the composition up to about 100 percent.
2. The compesition of cham 1 furner including silicon dicxide of u_{2} to 5 percent by weight.
3. The composition of clam 2 wherein said phosphoric acid is 85% concentrated, said alumimin hydroxide is of perticle size of 325 mesh or smaller, said metal powder is. or particle size of 80 mesh or smatler, said bentonite is of particle size of 325 mesh or smstler, said aluminum phorphate is of particle size of 150 nesh or smaller and said silicon dioxide is of particle size of 10 to 20 millinicfons.
4. The composition of claim 3 wherein said metal pouder is aluminum, said phosphoris acid is ortho-phesphorie acid and said aluminim phosphate is aluminum ortio phosphate.
5. A composition for producing a foamed s ramic refractory insulatiag material consisting essentally of orthophosphoric acid of approximately 85 to concentrotion and zopoximately 44.38 percent by weight; aluminum hym droxide smaller than 200 mesh in particle size and approximately 42.95 percent by weight; bentonite sntaller than 325 mesh in particle size and approximately 1.43 per-
cent by weight; aluminum ortho-phosphate smaller than 200 mesh in particle size and approximately 9.31 percent by weight, silicon dieride powder of 10 to 20 millimicrons in particle size and 1.72 percent by weight; and aluminum powder of 15 ± 5 micron diameter particle size and 21 percent by weight.
6. A method of preparing a foamed-in-place ceramic refractory insulating matedil comprising the steps of: adding 39 to 60 percent by weight of phosphoric acid to a mixture of ingredients of 10 to 55 percent by weigit of aluminum hydroxide, 0.7 to 4 percent by weizht of ben tonite, 0.1 to 0.5 percent by weight of a metal powder above hydrogen in the electrochemical series, and a percent by weight of aluminum phosphate to bring the percent by weight of the mixture up to about 100 percent, said ingredients being of small particle size; stirring said acid mixture to form a slurry; transferring said slurry into a mold wherein it foams; curing said foamed slurry at a temperature between approximately 65 to 100 degrees centigrade until said slurry is cured.
7. A method of preparing a foamed-in-place ceramic refractory insulating material comprising the steps of: inrimately mixing together small size particies of 10 to 55 percent by weight of aluminum bydraxide, 0.7 to 4 percent by weight of bentonite, 6 to 30 percent by weight of aluminum phosphate and 0.1 to 0.5 percent by weight of a metal powder above hydrogen in the electrorhemical series to form a blend, adding 39 to 60 percent by weight of phosphoric acid to said blend, vigorously stirring said acid mixture at room temperuture until a chemial reaction takes pisce in which a slurry is formed; transferring said slurry into a lubricated nold; keeping said shurry containing mold at room temperature until it has foamed suffciently tie nearly fill suid mold; and curing said foamed slury at temperature of approximaiely 65 degrees centigrate or higher matil said slurry is cuted.
8. The methed of claim 7 further including the addition to said blend of small size particles of up to 5 percent by weisht of silicon dioxive.
9. A method of preparing a ceranic refractory insulating material tompricing the steps of: adding 39 to 60 percent by weight of phosphotic acid to a mixture of 10 to 55 percent by weight of aluminum hydroxide of partiele size of approximately 325 mesh or smaller, 0.7 to 4 percent by weight of bentonite of particle size of approximately 325 mesh or smaller, 0.1 to 0.5 percent by weight of a mesal powder above hydrogen in the electrochemioal series and of particle size of approximately 80 mesh or smaller, and a percent by weight of aluminum phosphate of particle size of 150 mesh or smaller sufficient to bring the percent by weight of the mixture up to about 100 percent; stiring said acid mixture to form a slury; transferring said slumy into a lubricated mold; keeping said slury containing mold at room temperature until it has foamed sufficiently to nearly fill said mold; and curing said foamed slurry at a temperature between approximately 65 and 100 degrees centigrade until said slurry is cared.
10. The method of claim 9 furtber including in said mixture up to 5 percent by weight of silicon dioxide of particle size of 10 to 20 millimicrens.
11. A method of preparing a refractory ceramic insulating material comprising the steps of: adding 39 to 60 percent by weight of phosphoric acid to a mixture of 10 to 55 percent by weight of aluminum hydroxide of particle size of approximately 325 mesh or smaller, 0.7 to 4 percent by weight of bentonite of particle size of approxinately 325 mesh or smaller, 0.1 to 0.5 percent by weight of powdered aluminum of particle size of approximately is $\ddagger 5$ microns, up to 5 percent by weight of silicon dioxide of perticle size of approximately 10 to 20 milimicrors, and aluminum phosphate of particle size of 150 mesh or smaller sufficient to bring the percent by weight of the mixture up to 100 pe cent; stirfing said acid misture to form a slurry; transferring said slurry into a lubricated mold; keeping said slury containing mold at-room

11
temperature until it has foamed sufficiently to nearly fill said mold; and curing said foamed slurry at a temperature between approximately 65 and 100 degrees centrigrade for 24 hours or less depending on the curing selected from the above range and the volume of said mold.
12. The method of claim 11 wherein said phosphoric acid and said aluminum hydroxide have a total percent by weight of 50 to 95 percent.
13. The method of claim 12 wherein said phosphoric acid is ortho-phosphoric acid 85% concentrated and said aluminum phosphate is aluminum ortho-phosphate.
14. A method of preparing a foamed ceramic refractory insulating material comprising the s'eps of: adding approximately 44.38 percent by weight of 85% orthophosphioric acid to a mixture of approximately 42.95 percent by weight of aluminum hydroxide smaller than 200 mesh farticle size, approximately 1.43 percent by weight of bentonite smaller than 325 mesh in particle size, approximately 9.31 percent by weight of aluminum orthophosphate smaller than 200 mesh in particle size, approximately 1.72 percent by weight of silicon dioxide powder of 10 to 20 milhmicrons in particle size, and approximately .21 percent by weight of aluminum powder of 15 ± 5 micron diameter particle size; stirring said acid mixture to form a slurry; pouring said slury into a hubricated mold; keeping said slurry containing mold at room temperature ontil it has foamed sufficiently to nearly fill said mold; and curing said foamed slurry at approximately 85 degrees until sad shary is cured.
15. A method of potting an electrical component by foamed-in-place ceramic refractory insulating material comprising the steps of; adding 39 to 60 percent by weight of phosphoric acid to a mixture of ingredients of 10 to 55 percent by weight of aluminum hydroxide, 0.7 to 4 percent by weight of bentonite, 0.1 to 0.5 percent hy weight of a metal powder above hydrogen in the electrochemical series, up to 5 percent by weight of sidicon dioxide, and aiuminum phosphate in an amount necessary to bring the mixture to 100 percent by weight, said ingredients being of small particle size, stirring said mixture to form a slurry; placing said electrical component into a form; transferring said slurry into said form about said electrical component; allowing said slarty to foam for a short time in said form at room temperature; and curing said foamed slurry in said form at a temperature greater than approximately 65 to 100 degrees centigrade for two to twenty-four hours depending upon the cuing temperature and volume of the mold.
16. The method of claim 15 wherein said phosphoric acid is approximately 85% concentrated, said aluminum hydroxide and said bentonite are of particle size of approximately 325 mesh or smaller, said metal powder is of particle size of approximately $15+5$ microns, said silicon dfoxide is of particle size of approximately 10 to 20 millimicrons, and said aluminun phosphate is of particle size of 150 mesh or smaller.
17. The method of claim 16 wherein the sum of said phosphoric acid and said aluminum hydroxide is 50 to 95 pertent by weight.
18. A method of producing a foamed ceramic refractory iasulating material comprising the steps of: adding 39 to 60 percent by weight of phosphoric acid to a mixture of ingredients of 10 to 55 percent by weight of aluminum hydroxide, 0.7 to 4 percent by weight of bentonite, 0.1 to 0.5 percent by weight of a powdered natal higher than hydrogen in the electrochemical series, and a percent by weight of aluminim phosphate to bring the percent by weight of the mixture up to about 100 percent, said ingredients being of small particle size; stirring said acid mixture to form a slarry; transferring a predetermined amount of said slurry into a given volume mold; allowing said sturry to foam; affixing a cover on said mold; and curing said foamed slurry at a temperature greater than approximately 65 degrees centigrade for twienty-four hours or less based on the curing temperature selected.
19. The method of claim 18 wherein said cover is removed after approximately one hour of curing time to bring about a reduced curing period.
20. The methed of claim 18 wherein said foaming of said slurry is cone at room temperature for about thisty minutes; wherein said nixture further includes silicon dioxide of up to .5 percent by weight.
21. The method of chim 20 wherein said phosphoric acid is approximately $\mathbf{3 5 \%}$ concentrated, said aluminum hydroxide and said bentonite are of particle size of approximately 325 mesh or smaller, said powdered metal is aluminum powder of particle size of approximately 15 ± 5 microns, said silicon dioxide is of particle size of approximately 10 to 20 millimicrons and said aluminum phospbate is of particle size of 150 mesh or smaller.
22. The method of claim 21 wherein the sum of said phosphoric acid and said aluminum hydroxide is 50 to 95 percent by weight and said mold is of a rigid construction.

References Cifed

UNITED STATES PATENTS

TOBIAS E. LEVOW, Pimary Examiner.

JAMES E. POER, Exominer.

