Jan. 16, 1968
JAMES E WEBE
3,364,311 ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
ELIMINATION OF FREQUENCY SHIFT IN A MULTIPLEX COMMUNICATION SYSTEM

2 Sheets-Sheet 1

hegeiving eno

Filed Feb. 7, 1964

$\left[\begin{array}{l}\square \\ \square \\ \vdots\end{array}=\right.$ \approx

Jan．16， 1968
3，364，311
ADMINISTRATOR OF THE NATIONAL AERONAUTICS
AND SPACE ADMENISTRATION
ELIMINATIOA OF FREQUENCY SEIFT IN A MULTIFLEX
ELIMINATION OE EREQUENCY SHIFT IN
COMHONIGATION SYSTEM
Filed Feb．7， 1964
2 Sheets－Sheet 2

FIG． 3 （b）
FIG． 3 （a）
（1） 1
凡几几
（2）B
い几に
（3）$C \cdot A \cdot B+\bar{A} \cdot \bar{B}$

（4）DIFF．
Midmand
GARY L．PARKER INVENTOR
（5）BS INTEGR．
（6）HOLD CT．-9
BY
\qquad

3,364,311
ELIMINATION OF FREQUENCY SHIFT IN A S.ULTIPREX COMMUNICATION SYSTEM

James E. Webb, Administrator of the National Aeronautics and Space Administration with respect to an invention of Gary L. Parker, La Crescenta, Calif.

Filed Feb. 7, 1964, Ser. No. 343,426
5 Claims. (Cl. 179-15)

Abstract

ABSERACT OF TEE DISCLOSURE A multiplexed communication system suitable for carrying data requiring end-to-end frequency coherence and including means for automatically correcting transmission errors introduced by frequency spectrum shifts. The sys tem includes means for generating a pair of test signals whose frequencies are discretely related and transmitting these signals over the same channel along with the data to be transmitted. By shifting the frequency of both the data and test signals at the receiving end to cause the frequencies of the pair of test signals to assume the same discrete relationship at the receiving end as was assumed at the sending end, the data will be correctly repositioned in the frequency spectrum.

Origin of the invention

The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of Section 305 of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 435; 42 USC 2457).

This invention relates generally to communication systems and more particularly to a method and apparatus for compensating for frequexcy tramslation effects which are, for example, often encoumtered in the use of telephone company transmission systems employing multiplex equipment.

Common carrier communication systems today make extensive use of multiplex equipment in order to provide the maximum number of communication channels per physical line employed. Although the use of state of the art multiplex techniques provides very adequate performance in a great many applications, e.g. standard voice communication, performance is not acceptable where the transmission link is used to carry data requiring end-to-end frequency coberence. Unacceptable performance results from the baseband shift or frequency translation often introduced by the multiplex equipment. For example, such translation occurs in a single sideband, frequency division multiplex system when the frequency of the injection signal used in demodulation is not precisely the same as the frequency of the carrier suppressed at the transmitting end of the line.

End-to-end frequency coherence is often required in systems for transmitting telemetry data from a remote location, as e.g. a missile tracking station, to a central data processing facility. As an example of such a system, consider a telemetry baseband consisting of a number of commatated and continuous subcarrier channels where the commutator timing information for the time shared channels is inherent in the non-deviated frequency of the continuous or reference subchannel. If the entire spectrum

2

is translated in transmission, as migbt be expected using conventional multiplex equipment, the reference frequency is shifted. The sampling rate information on each commutated channel on the other hand is embodied in the carrier-to-sideband relationship and inasmuch as both of these quantities are shifted by the same amount, this information is not effected by the frequency spectrum shift. Thus, with the reference frequency shifted and the sampling rate remaining unchanged, the ability to effeetively decommutate is lost.

Certain solations have been suggested for circumventing this frequency shift problem but for one reason or another ncne of the solutions has been satisfactory. For example, it has been proposed to employ a broad band data chansel utilizing an amplitude modulated carrier in its center with the information thas being carried in the sum-diference relationship between the carrier and its sidebands. Aithough such a system would provide satisfactory data transmission despite frequency translation, it requires an extravagant and costly use of bandwidih.
In view of the above, it is an object of the present invention to provide equipment suitable for use with existing communication systems for correcting transmission error normally introduced as a result of frequency spectrum shifts.

More broadly, it is an object of the present invention to provide a multiplexed communication system which automatically corrects transmission errors introduced by frequency spectrum shifts.
It is an additional object of the present invention to provide a low cost multiplexed communication system which is suitable for carrying data requiring end-to-end frequency coherence.

It is a further object of the present invention to provide means in a data transmission system for both deriving information indicative of the amount of frequency shift occurring in transmission and for utilizing such information to correctly reposition the data in the frequency spectrum.
Briefly, the invention herein is based on the realization that information representing the amount of frequency shift encountercd in a data transmission channel, can be ascertained if a pair of test signals whose frequencies are discretely related, are transmitted on the same channel along with the data. By shifting the frequency of both the data aud test signals at the receiving end to cause the frequencies of the pair of test signals to assume the same discrete relationship at the receiving end as was assumed at the sending end, the data is correctly repositioned in the frequency spectrum.
More particularly, consider continuous first and second test signals having frequencies respectively represented by F_{0} and $F_{0} / 16$. Assume that F_{0} and $F_{0} / 16$ are chosen to pespectively be above and below the upper and lower himits of the frequency band containing the data. In transmission, all transmitted signals will be translated by the same amount, Δ. Thus, the frequencies of the first and second test signals at the receiving end are respectively equal to $F_{0}+\Delta$ and

$$
\frac{F_{0}}{16}+\Delta
$$

and thercfore do not bear the same discrete relationship at the receiving end as they bore at the sending end, le.

15:1. By translating the signals in an opposite direction at the receiving end until the irequencies of the first and second test signals assume a $16: 1$ relationship, the data will be correctly repositioned in the spectrum.

In a preferred embodiment of the invention, the frequencies of the frst and second test signals are discretely related by dividing the output of an oscilator having a frequency F_{g} in a binary divicer to obtain the signal $F_{0} / 16$. At the receiving end, the data and test signals are applied to a balanced modulator and sideband filter to translate them up to scale to some precise intermediate frequency, e.g. 455 kilocycles. The output of the balanced modulator, after filtering to remove the lower sideband, is applied to a product detector which translates the data and test signals down scale by an amount equal to 455 kilocycles plus Δ. The frequency of the signal injected into the product detector is provided by a voltage controlled oscillator and is determined by the output of a phase detector which compares the instantaneous phase of the signal

$$
\frac{F_{0}+\Delta}{16}
$$

with the signal

$$
\frac{P_{0}}{16}+\Delta
$$

it being recalled that the rate of change of phase between two signals is a measure of their frequency difference. If the frequency

$$
\frac{F_{0}+\Delta}{16}
$$

is greater than

$$
\frac{F_{0}}{16}+\Delta
$$

then the frequency of the signal provided by the voltage controlled oscillator is changed in a first direction and conversely if tbe frequency

$$
\frac{F_{0}}{16}+\Delta
$$

is greater than

$$
\frac{F_{0}+\Delta}{16}
$$

the voltage controlled oscillator output signal frequency is changed in a second direction.
Certain significant features of the preferred embodiment of the invention involve the use of the binary dividers and the arrangement of the phase detector. Using binary dividers is significant because it eliminates any system dependency on the stability of an oscillator. That is, regardless of the stability of the oscillator providing the first test signal, the discrete relationship between the first and second test signals is established by the divider. The phase detector is arranged so as to instantaneously provide a direct current voltage level correspording to phase angle between the signals applied thereto. A phase lock loop is utilized which locks when the two signals applied to the phase detector are exactly 90° out of phase and thereby of course are of the same frequency. When the two signals are exactly 90° out of phase, the phase detector provides an intermediate $D C$ voltage level to the voltage controlled oscillator. When the frequency of the second of the signals applied to the phase detector is greater than the frequency of the first-applied signal, then an increased DC voltage level is provided and conversely when the frequency of the first applied signal is greater than the second applied signal, a reduced direct current level is provided. The phase detector employs a logical compare circuit and a bootstrap integrator, As soon as both signals applied to the phase detector define the same logical level, the bootstrap integrator is triggered to gencrate a ramp voltage which is terminated when the signals no longer define the same logical level. A sampling gate couples the
terminating value of the ramp voltage to a hold circuit which controls the voltage controlled osciliator.
The novel features that are considered characteristic of this invention are set forth with particularity in the appended claims. The invention itselt both as to its organization and method of operation, as well as additional objects and advantages thereof, will best be understood from the following description when read in connection with the accompanying drawings, in which:
FIGURE 1 is a block diagram illustrating a substantially conventional common carrier communication system employing multiplex equipment;
FIGURES $2(a)$ and (b) are block diagrams respectively illustrating sending end and receiving end apparatus in accordance with the invention which can be advantageously employed with each of the data channels in an exemplary conventional communication system as shown in FIGURE 1;
FIGURE $3(a)$ is a block diagran of a phase detector which can be suitably employed in the receiving end apparatus of FIGURE 2; and

FIGURE $3(b)$ is a chart illestrating diagrams of various waveforms appearing at different points in the phase detector apparatus of FIGURE 3 (a).
Attention is now called to FIGURE 1 which iliustrates a substantially conventional common carrier multiplexed communication system. In such a system, it is generally desired to be able to simultaneously transmit data derived from a plurality of data sources 30 over a transmission link 31. In most practital applications, the data provided by each of the sources 30 is contained within substantially the same bandwidth. In order to be able to simultaneously transmit the data from the various sources, it is common practice to employ a frequency multiplexing technique which effectively moves the bandwidth derived from each data source to a unique position in the frequency spectrum so that the date from the various sources can be simultaneously transmitted and yet still be distinguished at the receiving end of the transmission link.
The data sources 30 are usually separated into a plurality of groups, each group consisting of n spources. In the typical system shown in FIGURE 1, two groups of data sources are illustrated. As will be seen hereinafter, each of the data sources is connected to a different data channel, each different channel occupying a different position in the frequency spectrum. Thus, the data sources 1-1, 1-2, and 1-n in group I each have their output terminals connected to the input of a diferent balanced modulator circuit 32; i.e. data source $1-1$ is connected to balanced modulator 1-1, data source 1-2 is connected to balanced modulator 1-2, and data source $1-n$ is connected to balanced modulator i-n. Similarly, each of the data sources in group II is connected to the input of a different group II balaneed modnlator circuit.

A balanced modulator circnit is well known in the art and performs the function of responding to data and carrier signals applied thereto for amplitude modulating the carrier signal with the data signal and providing a carrier suppressed output signal consisting of only a pair of sidebands, each sideband containing the data. In FIGURE 1, the carrier signals applied to each of the balanced modulator circuits 32 are derived from a frequency syathesizer network 34 to which is applied a signal having. a frequency F_{1} by oscillator 36. Frequency synthesizer network 34 develops a plurality of different signals, each having a different frequency. Thus, a sigual having a frequency F_{1} is applied as the carrier signal to balanced modulator circuits $1-1$ and $2-1$, a signal having a frequency $2 \mathrm{~F}_{2}$ is applied to balanced modulator circuits 1-2 and 2-2 and, a signal having a frequency $n F_{1}$ is applied to balanced modulator circuits $1-n$ and 2-n.

The output of each of the balanced modulator circuits 32 is connected to the input of a different single sideband filter 38. Thus, e.g. the output of bulanced modulator $1-1$ is connected to the input of single sideband filter $1-1$.

Each of the single sideband filters functions to pass only one of the pair of sidebands provided by the associated balanced modulator circuit. The outputs of the filters 38 associated with the group I data sources are applied to the in purs of a summing amplifier 40 while the outputs of the fiters associated with the data sources of group II are applied to the inputs of summing ampinifer 42 . The outputs of summing amplifiers 40 and 42 are respectively connected to the data signal input terminals of balanced modulator circuits 44.

The output of an oscillator 4 providing a signal having a frequency F_{2} is applied to the input of a frequency synthesizer network 48 which in turn provides a signal having a frequency F_{2} to the carrier signal input terminals of the group I and II balanced modulator circuits 44. The outputs of the group I and 11 balanced modulator circuits 44 are respectively applied to the inputs of upper and lower sideband filters 45, 47, both of whose outputs are connected to the input of summing amplifier 50.

It shonld be apparent that the apparatus in FIGURE ? discussed thus far functions to position the daia provided by each of the data sources 30 at a different unique position in the frequency spectrum. The output of the summing amplifier 50 thus contains all of the data provided by the sources 30 spread out over a portion of the frequency spectrum at least somewhat greater than the product of the number of data sources 30 provided and the bandwidth of each of the data sources. The output of the summing amplinier 50 is comnected to the input of a wideband data transmission channel 31 such as a wire line, radio link or microwave link. The output of the wideband channel 31 is connected to the input of a pair of filters 60 and 61 which are respectively tuned to pass the sideband signals having frequencies above and below F_{2}. The outputs of the fitiers 60 and 61 are respectively connected to the data signal input terminals of group 1 and group II balanced modulator circuits 6. A frequency synthesizer network 64, connected to the output of oscillator 66 applying a signal having a frequency F_{2}, provides a signal having a frequency F_{2} to both the group I and group II balanced modulator circuits 62. The output of the group I balanced modulator circuit 62 is connected to the input of each of group I filters 68, each respectively tuned to pass signals having frequercies substantially equal to $\mathrm{F}_{1}, 2 \mathrm{~F}_{1}$, and $n \mathrm{~F}_{1}$. The output of group II balanced modulator 62 is similarly connected to the input of group II filter 68. Each of the filters 68 is in turn connected to the data signal input terminal of a balanced modulator circuit 70.

Oscillator 72, providing a signal having a frequency F_{1}, is connected to the input of a frequency synthesizer network 74 which in turn provides signals having frequencies $F_{1}, 2 F_{1}, n F_{1}$. The signal F_{1} is applied to the carrier signal input terminal of the channels 1-1 and 2-1 balanced modulator 70. Similarly, the signal $2 \mathrm{~F}_{1}$ is applied to channel 1-2 and channel 2-2 balanced modulator circuit 78 and the signal $n F_{1}$ is applied to the cliannel $1-n$ and channel $2-n$ balanced modulator circuit 76. The output derived from each of the balanced modulator circuite 70, under optimum conditions, should exactly correspond to the output provided by a different one of the data sources 30. In practice however, because the frequencies of the signals injected into the balanced modulator circuits at the receiving end of the transmission link 31 are often not exactly equal to the frequencies of the signal provided to the balanced modulator circuits at the sending end of the transmission link, the data provided by the balanced modulator circuits 70 is not identical to that provided by the data sources 30 . That is, the frequency of the signals provided by the balanced modulator circuit 70 is often translated by a small amount. For example, if it is assumed that the data bandwidth extends from 275 cycles to 3500 cycles, it is not unusual to find that the output of the balanced modulator circuits is shifted in frequency elther up scale or down scaice by as much as five or ten
cycles. Where the communication system of FIGURE 1 is utilized to transmit standard voice communications, such a frequency transiation introduces insigniffant distortion. However, where the system of FIGURE I is ntilized to transmit cata winch requires end-to-end freouency conerence, such fragaency transiation cannot be tolerated.
In accoronance with the invention, in order to compensate any data channel for frequency translation effects encounteref in the utifization of a system of the yype illustrated in FGGURE 1, apperatus 86 as shown in FIGURE $2(a)$, can be connected between the data source 30 and the corresponding balanced modulator circuit 32 of that channel at the system sending end. At the systex receiving end, apparatus 82 is coupled to the output of the corresponding balanced modnlator circuit 70. Briefly, the apparatus 80 incorporated at the system sending end is utilized to generate a pair of test signals having frequencies which are discretely related. Thus, an oscillator 84 is provided which supplies a signal having a frequency F_{0} which is both applied to the input of a summing amplifier 86 and to the input of a squaring amplifier 88 . The squaring amplifer 88 operates on the simusoidal oscillating signal provided by oscillator 84 to provide a square wave signal having the same frequency F_{0}. The square wave output signal supplied by the amplifier 88 is applied to the input of a binary divider network 90 which in tum provides a square wave output signal having frequency F_{0} / K where $K=2 m$ and m is any integer. The valves of the parameters F_{0} and K should preferably be chosen such that the signals having frequencies F_{0} and F_{0} / K are respectively immediately above and below the limits of the data bandwith to be transmitted. Thus, if the exemplary data bandwidth extends from 275 cycles of 3500 cycles, then the frequency F_{0} can be chosen equal to 4000 cycles and K can be chosen equal to sixteen so that the signal having a frequency F_{0} / K will be equal to 225 cycles. The output of the divider network 90 is applied to the input of a band pass filter 92 which is tuned to the frequency F_{0} / K and prevents the application of any harmonics thereof to the input of the summing amplifier 86. The output of the data source 30 is connected to the input of the summing amplifier 86 along with the output of the oscillator 84 and the output of the band pass filter 92 . The output of the amplifier 86 is connected to the input of the balanced modulator 32, at the sending end of the multiplex equipment.

The output of the balanced modulator 70 at the receiving end of the multiplex equipment is connected to the input of apparatus 82 and more pariculariy is connected to the data signal input terminal of a balanced modulator circuit 96. An accurate oscillator 98 , preferaWly of the crystal controlled type, is connected to the carrier signal input temmal of the balaneed modulator circuit 96. The oscillator \$8 supplies an internediate frequency signal having a frequency E. The output of the balanced modulator circuit 96 is conmected to the input of a signal sideband filter 100 which functions to pass one of the pair of sidebands supplied by the balanced modulator circuit 96. The outpat of the filter $\mathbf{1 0 0}$ is connected to the input of a product detector 102 . The detector 162 performs a function substantially opposite to that performed by the balanced modulator circuit. That is, whereas the balanced modulator circuit caused a datainput signal to modulate a carrier signal and then suppressed the carrier signal, which had the effect of merely shifting the data signal up scale in the frequency spectrum, the product defector responds to a data signal, supplied by the filter 100 , and a carrier signal, supplied by a voltage controlled oscillatar 104, to shift the data signal down scale. Thus, if the frequency of the signal provided by the voltage controlled oscillator 104 is identical to the frequency of the signal provided by the oscillator 98, the data signal derived from the outpuf of the product detector 102 will be identical to the cata signal applied to the input of the balanced modulator circuit 96 . The center
frequenty of the voltage controlled oscillator 10 is adjusted to be exactiy the same as the freguency of the output sigmal provided by the osellaior 98 . The frequency of the voitage controlled oscifitior output signal however can he either increase or decreased, depending upon the voitage level applied thereto by the phase detector 106. The oscillator 104 sbouid preferably be very stable and characterized by a smail deviation constant; ie. relatively large input voltage transinons should be required in order to cause small changes in the outpat signal frequency.
The output of the product detector 102 is applied to the inpuit of a pair of band pass filters 103 and 110. Filter 108 is tuned to pass signals whose frequencies are substantially equal to F_{0} / K and filter 110 is turned to pass signals whose frequencies are substantially equal to F_{0}. The outputs of the filters 108 and 110 are respectively applied to the inputs of squaring amplifers 112 and 114. The output of the squaring amplifier 112 is connected directly to one input of the phase detector 106. The output of squaring amplifier 114 is connected to the input of a binary dividing network 116 which functions to divide the frequency of tibe signal provided by amplifer 114 by a factor K. The output of the dividing network 116 is connected to the other input of phase detector 106.
If the frequencies of the output signals derived from the amplifier 112 and the dividing network 116 are identical, then the loop including the product detector 102, the filters 108 and 110 , the amplifiers 112 and 114 , the dividing network 116, the phase detector 106, and the voltage controlled oscillator 104, will lock. On the other band, if the frequencies of the signals derivde from the amplifier 112 and dividing network 116 , are not identical, e.g. if the frequency of the signal provided by network 116 is greater than the frequency of the signal provided by amplifier 112, then the phase detector 106 will provide a voltage signal to the oscillator 104 to cause it to provide an output signal hawing a frequancy above its center frequency. Conversely, the frequency of the oscillator output signal is reduced below the center frequency in the event that the freguency of the ampifier 112 signal is-less than the frequency of the signal provided by the network 116 . It should be apparent that the same discrete frequency relationsio imparted to the test signals respectively provided by the oscillator 84 and network 96 at the system sending end as shown in FIGUME 2(a) will exist at tie system receiving end when either the transmission frequency translation, Δ, is equal to 0 or when an opposite frequency transiation ($-\Delta$) is developed at the receiving end. If the test signals out of the product detecior do not bear the discrete reiationship imparted to them at the system sendiag end, then the frequency of the output signal provided by amplifer 112 will be diferent from the frequency of the output signal provided by networik $1 \leq 6$. The direction of this durference controls the output voltage level ceveloped by the phase detector 106 which in tum controls the frecuency of the output signal provided by the oscillator 104. The frequancy of the output signal derived from the oscllator 104 of course determines whether the output signal provided by the balanced modulator circuit 70 is to be shilted up or sown scale to compensate for any frequency transiation introduced in transmission. When $\Delta=0$, the frequency of the output signal provided by oscillator 104 is exactly equal to the frequency of the output signal provided by osciliator 98 and the frequency of the output signal provided by the product detector 102 is identical to that provided by the balanced modulator circuit 70.

In many applications, the test signals which form part of the output of the product detector 102 will have no effect on the usability of the tranimitted data inasmuch as they fall outside of the data bandwidth and in these applications there is no need to remove the test signals prior to using the transmitted data. If, however, the system application requires the removal of these signals, they can of course be removed by merely connecting low and bigh

Whete C represents the logic circwit output signal. The logic circmit 120 inchudes a pair of And gates, 122 and 124. 00 The signals A and B are applied directly to the input of And gate 220 and through inverters 126 to the inputs of gate 124. The output of gates 122 and 124 are connected to the inputs of an Or gate 328 . The waveform of the output signal derived from Or gate $\mathbf{1 2 8}$ is illustrated in line 653 of FIGURE 3 (b).

If the frequencies of the signals A and B in lines 1 and 2 are identical and if the signals are exactly 90° out of phase, then the positive and negative states of the waveform in line 3 of EIGURE $3(b)$ will be of the same duraif on the ohm hand the frequency of signal B in creased while the frequency of signal A remained constant, then signal I would tend to slide to the left in FIGURE (B) and the durations of the positive states of the waveform in line 3 of FIGURE 3 (b) would become 5 Ionger, On the other hand, if the frequency of signal B
decreased, then the duration of the positive states of signal C would become shorter. Thus, the duration of the positive suates of signal C are indicative of the phase relationship between signals A and B applied to the logic circuit $\mathbf{3 2 0}$. Tn order to develop a voltage level proportional to the time Guration of the positive states of signal C, the output of the logic circuit 1 to is connected to the input of both a bootstrap integrating circuit 130 and a differentiator circuit 132. The differentiator circuit 132 will provide an output signal zonsisting of very short positive and negative going pulses at the beginning and end, respectively of the positive states of the signal applied thereto. The output of the difierentiator circuit 132 is illustrated in line 4 of FIGURE $3(b)$.

The bootstrap integrator 130 functions to provide a linear ramp voltage output signal wbich is initiated and terminated by the beginning and end, respectively of the positive states of the input applied thereto. The waveform of the output of the bootstrap integrator circuit 130 is illustrated in line 5 of FIGURE 3(b). A transistor switch 134 that closes only during negative polses, is connected to the output of the differentiator circuit 132. The switch 134 controls a sampling gate 136 whose input is derived from the output of the bootstrap integrating circuit 130. The output of the sampling gate 136 is connected to the input of a voltage holding circuit 138 which in its simplest embodiment comprises a capacitor connected in a long time constant circuit. Negative spikes provided by the differentiator circuit 132 control the switch 134 to in turn enable the sampling gate 136 for coupling the terminal ramp voltage sigaal level developed by the bootstrap integrating circuit 130 to the holding circuit 138. In order to prevent coupling the ramp yoltage signal to the holding circuit exactly when the ramp portion is terminating, i.e. when it is dropping to zero, a slight delay is preferably incorporated in the integrator eircuit 136 .

Thus, so long as the signals A and B maintain the same phase relationship, and thus the same frequency relationship, the ramp terminal voltage level coupled througb the sampling gate 136 to the hold circuit 138 will remain constant Line 6 of FIGURE 3(b) illustrates a constant voltage available at the output of the hold circuit 138. A typical voltage which was utilizen as the center voitage in a device constructed in accordance with the block diagram of FIGURE 3(a) was -9 volts and the dynamic range was from 0 to -18 volts.

Frequency translation in the transmission system of FIGURE 1 causing an increase in the relative trequency of signal B will cause an increase in the time duration of the positive staies of signal C. Thus, the ramp voltages generated by the integrating circuit 130 will be terminated later and the voltage on the holding circuit 138 will move from -9 volts toward -18 . In response to this change of direct current voliage level provided by the phase detector 166; the frequency of the ontput signal provided by the oscillator 104 is increased to in turn translate the data down scale to compensate for the relative frequency increase of sigual B with respect to sigzal A: If on the other hand the frequency of signal \mathbf{B} decreased with respect to the frequency of signal A, than the duration of the positive states of signal C would be shorter and the voitage level on the holding circuit 138 would move from -9 volts toward 0 volts. This change would reduce the frequency of the output signal provided by oscillator 104 to translate the data up scale to compensate for the frequency transiation encountered in transmission.
From the foregoing, it should be apreciated that a methed and apparatus hiss been disclosed berein for compensating for frequency translation effects encountered in any data communciation system. It should of course be realized that the term data is used heiein to encompass virtually all types of transmission. Thus, although frequency translation compensation in accordance with the invention finds its most significant utility in sitaations where end-io-end frequency coherence is required, it should be apparent that to a limited extent; improved cuit output terminal for enabling said sampling gate for coupling the terminated level of said ramp voltage signal to said holding circuit.
4. The apparatus of claim 1 wherein said meass apply75 ing said first continuous signal to said sending end fro-

11
quency divider means includes a squaring ampifier; and wherein said means appiying said second continuous signal to said data transmission channel sending end includes a band pass filter tuned to a frequency F_{0} / K.
5. The apparatus of claim 4 wherein each of said sending end frequency aivider means and said receiving end frequency divider means comprises a binary divider network.

References Cited
UNITED STATES PATENTS
3,202,765 8/1965 Byrne 179-15

12

		5/1965	
	3,176,226	3/1965	Berger ------------179-15
	3,088,070	$4 / 1963$	Robel --.---.------3 325-50
	2,724,742	11/1955	Chesnut -..---.-.- $325-49$
5	2,530,614	11/1950	Hugenholtz _-_-_-.- 325-49
	3,068,416	12/1962	

ROBERT L. GRIFFIN, Primary Examiner.
10 JOHN W. CALDWELL, Examiner.

