REPLY TO ATTN OF: GP

October 15, 1970

TO: USI/Scientific \& Technical Information Division Attention: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures contained in the code GP to Code USI memorandum on this subject, dated June 8, 1970, the attached NASA-owned U.S. patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:
U.S. Patent No. : 3,270,441

Corporate Source : Langley Research Center
Supplementary
Corporate Source :
NASA Patent Case No: XLA-01787
Manchu \qquad
Gayle Parker
Enclosure:
Copy of Patent

NASA-HQ

Sept. 6, 1966
D. E. HEWES ETAL
$3,270,441$
REDUCED GRAVITY SIMULATOR
Filed Aug. 26. 1963
4 Sheets-Sheet 1

FIG. 1
NVEETGRS
DONALD E. HEWES AMOS A. SPADY, JR.

BI

$$
\begin{aligned}
& B M C L \\
& \text { zfactace trebom } \\
& \text { ATTORNEY } 3
\end{aligned}
$$

Sept. 6, 1966
D. E. HEWES ETAL
$3,270,441$
REDUCED GRAVITY SIMULATOR

FIG. 2

FIG. 3

INVENTORS
DONALD E. HEWES AMOS A. SPADY, JR.

Sept. 6, 1966

D. E. HEWES ETAL $3,270,441$ REDUCED GRAYITE STMULATGR

Filed Aug. 26. 1963

Sept. 6, 1966
D. E. HEWES ETAL
$3,270,441$
REDUCED GRAYITY SIMULATOR
Filed Aug. 26, 1963
4 Sheets-Sheat 4

10
FIG. AMOS A. SPADY, JR.
$B Y$

United States Patent Office

1

3,270,441

REDUCED GRAVITY SMULATOR
Donald E. Hewes, Newport News, and Amos A. Spady, Jr., Mampton, Va., assiguors to the Umied States of America as represented by the Adminstrator of the National Aeronantics and Space Administration

Filed Aug. 26, 1963, Ser. No. 304,749
14 Claims. (Cl. 35-29)
The invention described herein may be manufactured and used by or for the Govermment of the United States of America for governmental purposes without the payment of any royalties thereon or therefor.
This invention relates generally to a reduced gravity simulator system, and more particularly to a practical system for simulating reduced and zero-gravitational fields, such as will be encountered in space stations and various celesticl bodies, for determining the effects on the self-locomotive capabilities of man when subjected to a gravitational field less than that of the Earth for a sustained period of time.

One of the primary unknowns of future space exploration is believed to be the effect of sustained zero gravity or weightlessness experienced by the explorers during orbital fight about the Earth and in certain phases of interplanetary travel. In addition, the knowledge that the Moon has a reduced gravitational field equal arproximately one-sixth to that of the Earth, and the knowledg. that reduced gravily, as well as zero gravity or weightless conditions, for sustained perious of time will be experienced by explorers during space exploration, creates a definite need for a suitable reduced gravity simulation technique for studies on Earth of man's ability to perform needed self-locomotive tasks during interplanetary exploration. Lack of a suitable device for simulating the lunar gravity is considered to be a maior cause of the current lack of information on the ability of the proposed lunar explorers to perform various self-locomotive tasks such as walking, tunning, and jumping.
Upon the successful completion of the presently planned initial lunar landing, it is expected that the astronauts will leave their vehicle to make scientific measurements, to explore the lunar features, such as known craters and possible caves, to inspect their vehicle, and to prepare it for the retarn trip to Earth. It is also anticipated that subsequent missions will require astronauts to erect lunar bases with remanent housing facilities for future explorers. Decause the lunar environment is considerably different from that of Earth, the explorers will have to adjust heir accustomed methols of seff-loconotion to that of the hanar gravitational environment in order to accomplish the mission objectives.

In addition to the low gravitational ficta of the funar surface, another condition which may present problems in self-loconotion on the lunar surface is the regairement of wearing space suits whenever venturing out of the spacecraft or lumar base due to the lack of an atmosphete and the need for protection from lunar temperaiures and possible micrometcor ant solar radiation stow ers. The presenty avalable types of space suits hat will provide this required protection afe quite bulky and cunbersome and obviously mmose some limitation on the self-fisemotion carabilites of the explorers under Earth gravity. Thus, the need also cxits for a system whereby the seif-locomotive ability of future isterplanetary space suit athired explorers can be observed under sustaned reduced gravitational conditions.

Based on these needs, the present invention of a new type reduced gravitational simulation system and techmique has been developed. As a result of the present invention, it can now be predicted that when man arives
on the Moon, he not only will definitely be able to walk and run on the Moon's surface and be able to jump vertical distances of 12 to 14 feet without sustaining injury in fatls from these distances, be also will have little difficulty in climbing slopes, stairs, ladders and the like, as well as having litle difficulty in performing other manwal tasks whie unencumbered with a space suit. Additional tests can be made to establish his capabilities while wearing various types of space suits.
Previous techniques used to simulate reduced and zerogravitational conditions include water immersion of the test subject where the buoyant forces of the water oppose the gravitational force to produce an approximate condition of weightlessness. This technique has the obvious disadvantages of requing special underwater breathing equipment, being limited to only a very approximate simulation of weightlessness, and of producing extraneous forces on the subject due to the undesirable mass and viscous effects of the water, that restrict the novement of the test subject.
Another simulation of weightlessness has been by the use of an airplane flying a Keplerian ballistic trajectory or a slightly modified one to produce centrifugal forces which directly oppose gravitational force and thereby produce any desired condition of weightessness or near weighlessness. This technique has the disadvantages of producing the desired test condition for enly a short period oe lime, and of providing a very limited space in which the subject can move. In addition, an airplane flying this trajectory is stoject to disturbing forces, due to atmospheric turbulence and during the entry and ter$\min 1$ maneuvers to the trajectory, as well as being relatively expensive, in time and money, to operate.

The most recent studies of weightessness and zerogravitational effects on a test subject in this country have been observed during the orbital fights of the Mercury capsule. Although this expensive study has provided invaluable information as to the effect of zero-gravitational conditions or weightiessness on an astronaut for a reasonable period of time, it nevertheless has been impossible under this program to observe or test the selflocomotive capabilities of the astronaut due to the lim ited passenger compartment size in the Mercury capsule. In addition, tests under fractional gravitation conditions obviously could not be conducted under this program.

An additional system embodying a verical cable suspension wherein the test subject is partially supported by a cable or series of overhead cables which produce vertical forces opposing the gravitational force to produce any desired condition of weightessness or vear weightlessness has also been employed in some test proctlures. This technique has the obvious disadvantages of appiyng the opposing force at only limited points on the body so that some external members of the body cie not suibjected to the simulated gravity contifons, of requiring a somewhat complicnted mechasial setup to accommodate the space requirements for the subject's movements, and of limiting the number of taks that can be performed due to the interference of the overhead cables. The limitations of these prior simulation techniques has led to the development of the present invention which mimizes the disadvantages of the prior ant simulation techniques wbile utiling the advantageous features therein.

Accordingly, it is an object of the present invention to provide a new and improved reduced gravitational simulator for a test subject capable of operation for indefnite periods of time.

Another object of the instant invention is the provision of a new and improved reduced gravity simulator
capable of accurately simulating gravitationa felds less than that of the Earh.

A further object of the present invenitin is the provision of a reduced gravity simulator for testing the sel..maneaverability of a test subject under rednced gravitational conditions.

Still another object of the irstant invention is a novel method of simulating gravitational fields less than that of the Earth for testing the locomotion capabilities of a test subject when wearing space suits or like equipment.

Another object of the present invention is a method of simulating the lunar gravitaticnal field on a test subject on Earth by effectively canceling five-shiths of the Earth's gravitational force acting on the test subject.

An additional object of the present invention is a reduced gravity simulator providing esceritally unlimited duration of the test condition with ajequate space for test subject movement.

According to the present inventiou, the foregoing and other objects are attained by providing a system for supporting the individual external body members or groups of members of a test subject with apparatus which permits movement of each body member in only one plane, that is, the plane parallel to the body's plane of symmetry, and then inclining the test subject with respect to the vertical gravity vector so that the component of the gravity vector in the plane of movement is equal to the desired magnitude of the simulated reduced gravily. The basis for this technique is the observation that most of man's self-locomotive tests are performed with the body members moving in essentally parallel planes and the physical principle that the motion of a body moving along a plane inclined to the local gravity is affected by only the component of the gravily almed with the plane.

Thus, in the present invention a cable suspension system in which the test subject is supported by a series of body connections located at the head, upper torse, the buttocks, the alf of each leg and, when desired, each forearm just below the elbow, is employed to support the test subject at a desited inclination. The body supports, in turn, are suspended from an overhead trolley unit by a series of cables and a lightweight crossbar. The function of the crossc.: ${ }^{\text {to }}$ support the several cables so that the subject can move the individual body members freely with respect to each other. The frolley unit is conveniently mounted on a stationary overhead monorail track which runs parallel to an inclined walkway used to simulate the surface of the body exbibiting a reduced gravitational field, such for example, the surface of the Moon or the floor of a rotating space station. The trolley unit is thus movable along the monorail by any conventional means in such manner that the cable system remains directly over the test subject as he moves along the walkway so as to eliminate the drag of the irolley mit on the subject.

Inclination of the test subject and consequently the magnitude of the reduced gravitational force simulated, is determined by the displacement of the walkway from directy beneath the trolley unit. The condition of zero sravity would be simulated if the subjed is horizontal to Earth and the walkway is verical and exactiy beneath the troltey whit. This pero gravity condition would be due to absolute support of the test subject by the cable systera. To protuce the cquivalent of the lumar gravity or one-sixth G_{3} and angle of about 80.5 degres from the verical is required for the inclned rest subject, as will be further explained hereinafter.

A more complete appreciation of the invention and many of the attendant advantages thereof will be readily apparent as the same becomes better understood by reference to the following detatied description when considered in connection with the accompanying drawings wherein:

FIG. 1 is a schematic representation of the reduced gravity simulator according to the present invention em-
ploying a cable suppont system and inclined walkway for the test subject.

FiG. 2 is a perspective view of a test subject illustrating the slings and individual supports for individual body components when suspended in the cable suspension reduced gravity simulator as shown in FIG. 1 .

FlG. 3 is another view of test subject illustrating. specialized supports for individual body components.

FIG. 4 is a schematic representation of the geometric relationships for the cable suspension system of the reduced gravity simulator according to the present invention.

FIG. 5 is a graphic representation of cable angle and walkway displacement required for different gravity ratios and varying cable lengths.

FiG. 6 is a graphic representation of the affect an increasing cable length has on the gravity gradient for various gravity ratios.

Refering now more particularly to the drawings, wherein like reference numerals designate identical parts thronghout the several views, and more particularly to FIG. 1 , there is shown a reduced gravity simulator $\mathbf{1 0}$ employing a cable suspension system generally designated by the reference numeral 11. Cable suspension system 11 is in connection at one end to a movable trolley unit 25 with the other end of the cable suspension system leading to a plarality of body harness support members, generally designated by reference numeral 35 , for supporting a test subject 13. A walkway structure 45 is provided along a plane parailel with and angularly displaced with respect to a vertical plane passing through the plane of movement of trolley unit 25 . Walkway structure 45 is provided with an inclined walkway surface 46 for test subject 13 to traverse, as will be further explained hereinafter.

Trolley 25 is disposed on a monorail rack 27 and is adapted to move along track 25 by any conventional means, such for example under the influence of a separate operator 31 , or throngh the use of conventional servo-mechanism, as test subject 13 executes movement in a plane along inclined walkway surface 46 . Track 27 is fixedly attached in conventional manner to fixed accessible overhead structure 28 in such manner as to permit unimpeded movement of trolley 25 thereou.

Cable suspension system 11 includes primary support cable 12 connected at opposite ends thereof to opposite ends of trolley 25 and connected intermediate the ends thereof to an eye 15 secured to a yoke 17. The opposite ends of yoke 17 are attached in conventional manner to a hintweight crossbar 19. A plurality of secondary suspension cables, generally designated by reference numeral 21 , extend from crossbar 19 and are connected in a conventional manner to harness-lype individual body supports 35.

Referring now to FIG. 2 and FIG. 3, among the individual body supports to which secondary suspension cables 21 lead, is a protective helmet 36 strapped beneath the chin of test subject 13 for protection and support of the head. It is apparent that helmet 36 will bear against one side of the head of lest subject $\mathbf{k} 3$ in such manner as to require the use of adequate conventional shock absorb ing material, such for example, a heavy foam rubber liner.

Torso suppont of cest subject 13 is provided by a chest sling 37 positioned beneath the ampit of the test subject. and a hop sling 38 pasting essentially around the hip and buttocks of subject $\frac{13}{} 3$. The ends of shing 37 are secured in a conventional manner to a pair of hightweight rods, one of which is shown in FIG. 2 and designated by reference numeral 39 , and the ofher of which is designated by refcrence numeral 41 and illustrated in FlG. 3. Rods 39 and 41 serve to aflach sling 37 to secondary suspension cables 21. Hip sling 38 is also provided with a pair of rods 42 and 43 as shown in FIGS. 2 and 3 , respectively, to connect lip sling 38 to the secondary suspension cables

As is mparent from FIGS. 2 and 3 , the invention as described is designed for test subject 13 to be positioned in the reduced gravity simutator whith the left side of the body thereof adjacent the Earth's surface, alhough it is apparent that the system could obviously be designed in such a manner that the positions of the cxticmities of the test subject could be reversed:

Still referring to FIG. 2, the lowermost or left arm of test subject 13 is supported by arm sling 47 which is connected to secondary suspension cables 21 in a conventional manner. Also secured to secondary suspension cables 21 is a hand grasp rod 59 positioned in such manner as 10 be readily grasped by the uppermost or right hand of test subject 13 to provide selective support for this arm when desired during the test phase of the reduced gravity simulator system. As shown in FIG. 1, arm sling 60 may be employed for the right arm of test subject 13 in lieu of rod 59 when so desired.

The uppermost or right leg of test subject 13 is supported by secondary suspension cables 21 in a like manner by leg sling 49. Referring now more particularly to FIG. 3, the support for the left or lowermos: leg of test subject 13 is provided by rod 55 and its attached strap 53. Strap 53 is tighlly laced ar otherwise conventionally secured about the calf of test subject 13 . Rod 55 is angularly bent to pass behind iest subject 13 to avoid obstructing test subject movement while also bent to permif attachment to secondary suspension cables 21 at a point directly above stran 33 .

The individual sings and straps making up harness structure 35 may be formed of any conventional high tensile strength material, such for example canvas, or the like, and the individual cables may be of any conventional small diamzter high tensile strengta material.

As is apparent from the above description, test subject 13 when suspended as described is free to walk, run, jump, crawl as well as catch or iift loads of various size, shape or bulk that may be positioned in hie path of movement along walkway surface 46 . In baudling these loads, for example, the loads could be suspended from the same trolley unit 25 or an additional unit by another cable system so as to be subjecied to the same gravity condition as test subject 13 . Walkway surface 46 also may be equipped with hadders, slopes or any other simulated lunar or other surface or space station features, not shown, in addition to or ja lieu of stairs 61, for individual specialized tesis for test subject 13, when so desired. As is also apparent from the above description, harness structure 32 is not required to be of specific dimensions for different size test subjects and due to the simplicity of construction thereof the system is readily adaptable for use by various size individuals alone, as well as when equipped with space suits, rocket jump packs or other pieces of equipment to evaluate their performance for effectiveness, within the teachings of the present invention.

Referring now back to FIG. 1, the practical limits for the horizontal distance to be covered by walkway structure 45 and track 27 are indicated only by the pracical condtions such as the size of the avallable room or fachity for carying out the test. It is apparent, however, that the vertical distance a person is capable of Feacting in a jumb on the Moon may be assumed to be equal to the ratio of the Earh gravity to lunar gravity, times the distance the subjct is able to reach on the Earth graviy, Tests have shown that a person s capable of jumping an average of abont 20 to 22 inches from his standing position on Earth, consequently provisions must be made in the simulation equipment for at least sin times this vertical distance, or at least ten to iwelve feet. Adducmally, walling or ruming being the primary test to be underaken in this simulator, hoizontal dis tances of seveml bundred feet for walkway structure 45 and track 27 are desirable to permit adequate time for the test subject to accelerate to a nunaing pace and to decelerate to a standstill. Based on the assumed maxi-
mun running speed of fwenty teet-per-second, the minimum distance to undergo an adequate runing lest would be aboit one hundred and fifty feet for walkway structure 45 and track 27.
The lengths of the various cables 12, 17, and 21 are adjusted so that test subject 13 can stand with a normal, crect posture on inclined walkway surface 46 . The use of the multiple cables 21 permit body members to move freely in essentially paraliel planes as mentioned hereinbefore. Cables 12 and 21 are made as long as if is possible to design the system to minimize the slight out-ofplane movement that is generated as the cables pivot about the fixed attachment points thereof at cross-bar 19. The trolley 25 on track 27 permits the whole suspension system to be moved by test operator 31 , or other mechanism, so that the cables remain essentially directly overbead as the test subject moves back and forth along wallway surface 46 to thereby eliminate any fore and aft drag on the subject.

Inclination of test subject 13, as mentioned hereinbefore, is facilitated by displacing walkway structure 45 angularly with respect to a vertical plane passing through the parallel track 27. The required distance for this displacement may be calibrated as a function of the magnitude of the simulated gravity in terms of the gravity ratio; ie., the ratio of simulated gravity " g " to Earth gravity " G " for different suspension cable lengths. In addition, as illustrated in FIG. 6 , the gravity gradient in tems of change of gravity ratio per foot elevation varies with the length of the suspension cable system 11. This gradient, which is experienced by the test subject 13 as he leaps from walkway surface 46 or changes his apparent elevation by climbing steps 61 or the like, is produced by the changing angle of the suspension cable system 11 whose attachment point is fixed in the one direction by trolley 25. Thus, by using cable lengths of fifty feet or greater, the gradient can be effectively minimized.

The variables to be considered when determining walkway displacement and gravity gradients for a paricular System are illustrated in FIG. 4, wherein it is evident that the inclination angle θ between the suspension cable and the vertical required to produce a given simulated gravity acting on the test subject standing on walkway 45 is given by the following equation:

$$
g=\mathrm{G} \sin \theta
$$

or

$$
\begin{equation*}
\theta=\sin ^{-1}\left(\frac{g}{G}\right)=\sin ^{-1} N \tag{1}
\end{equation*}
$$

when N is the ratio of the desired simulated gravity " g " to the Earth gravity "G." From this expression, it is readily apparent that a one-sixth Earth gravity, or lunar gravity, would be obtained when θ is 9.5 degrees to thereby position test subject 80.5 degrees to the vertical of the Earth gravity vector. The displacement " h_{0} " of the walkway, measured parallel to the floor required to produce the necessary cable angle, is given by the following equation:

$$
\begin{equation*}
h_{0}=L \sin \theta-h \cos \theta \tag{2}
\end{equation*}
$$

where ${ }^{2}$ is the suspension cable length taken from the upper cabie attachment point to the test subject's center of gravity and "hoy is the distance between the subjects center of gravity and soles of his feet. For purposes of illustration, the value of "in" may be taken to be cqual to 3.5 feet. Combining Equations 1 and 2, the equation for ${ }^{32} h^{3 z}$ 迹 tems of N is:

$$
\begin{equation*}
h_{0}=L N-h \cos \left(\sin ^{-1} N\right) \tag{3}
\end{equation*}
$$

Curves showing the variations of θ and ${ }^{4} h_{0}$ with the gravity ratio N as expressed by these equations are illustrated in Fig. 5.

Refering now back to FIG. 4, the gravity component "g" acting on the test subject is seen to increase by an
amont Δg as the subject is displaced from the walkway by an amount Δ during a jump or while climbing steps 61 , or the like, due to the change $\Delta \theta$ in the cabie angle, according to the following relationship:

$$
\begin{equation*}
(g+\Delta g)=G \sin (\theta+\Delta \theta) \tag{4}
\end{equation*}
$$

where the value of $\Delta \theta$ is found as follows:

$$
\Delta \theta=\sin ^{-1}\left(\frac{\Delta h}{L}\right)
$$

or

$$
\begin{equation*}
\sin \Delta \theta=\frac{\Delta h}{L} \tag{5}
\end{equation*}
$$

The value of Δg is obtained by subtracting Equation i from Equation 5:

$$
\Delta g=\mathrm{G}[\sin (\theta+\Delta \theta-\sin \theta]
$$

or
$\Delta \theta=\mathrm{G}[\sin \theta \cos \Delta \theta+\sin \Delta \theta \cos \theta-\sin \theta]$ (6)
If it is assumed that $\Delta \theta$ is small, then $\sin \Delta \theta \approx \theta$ and cos $\Delta \theta \approx 1$ and Equations 5 and 6 can be combined and simplified to yield the following:

$$
\Delta g=\mathrm{G} \frac{\Delta h}{L} \cos \theta
$$

or

$$
\begin{equation*}
\frac{\Delta N}{\Delta h}=\frac{\cos \theta}{L} \tag{7}
\end{equation*}
$$

where

$$
\Delta N=\frac{\Delta g}{G}
$$

Curves showing the variation of the gravity of the gradient factor with cable length for different values of the eravity ratio N are shown in FIG. 6. As is apparent from FIG. 6 , the gravity gradient factor is minimized when the cable length is at a maximum with lenglis of at least fifty feet being desirable.

Corrections for jumping heights

Inasmuch as a cable suspension system of the present invention produces an increase in the simulated gravity as the height of the test subject above walkway 45 is increased, it is necessary to apply corrections to the measured jumping heights obtaned by the test subject in order to determine the accual heights that would be obtained under conditions of constant acceleration. Fquations for applying these corrections are readily avalable, as is apparent to those skilled in the art.

Average maximum heights of 8 to 9 feet were attained by different test subjects when jumping from walkway 45 in the presently described reduced gravity simulator. Application of height corrections to account for the gravity gradient produced by the lest apparatus showed that heights of 12 to 14 feet could thus be achieved under conditions of constant lunar gravity. These maximum heights would be expected to vary when the test subject is attired in a bulky space suit. In addition, the individual test subjects observed in the reduced gravity simulator described the sensation of walking and rumning along walkway surface 46 as comparable to that of trying to man or walk on a highly polished foor or ice. This observation indicates that the wse of high fretion producing sole ma* terial for the footwear of lunar explorers would probably be essential since the low foot traction would be recognized as a safely hazard making it diffeutt for the explorer to shift his position rapidly to avoid being struck by moving or falling objects or to gain sute footing or hand holds while in a precanous roction

Another interesing observation noted by each test subject when attempting to walk up steps 61 (FIG. 1) to landing 62 revealed that, although there was no serious problem in climbing the stairs under the condition of lunar
gravily, it was far simpler and regnired less concentration, merely to jump from the walkway surface 46 io landing 62, a vertical distance of about four feet. This test sugeests the possibility that the nomally accepted riser and tread dimensions for stairways should be athered for use in the design of lunar base housing.

It is thus seen that the present invention atilaing various and inexpensive cable suspension equipment for the inclined plane technique of reduced gravity smulation is a practical and useful epparatus for familhazing lunar mibsion pertonnel with iefr capablities and sensations white woder the thfluence of lumar gravity. Since this systen can provide essentially wiminited duration of the tesing period and is adequate for performing nost of the modes of self-locomotion, the evaluation of the various forms of man's self-locomotion including the range in duration limits of man's walking and running on the lunar surface, as well as his ability to carry various amounts of equipment or loads car adequately be predicted and observed pior to undertaking of the actual lunar mission. Also, it is obvious that this system may be employed as. an aid in design and development of practical space suits for lunar exploration as well as in the design and development of lunar base housing and space station features.
Obviously, many modifications and variations of the above invention are possible in the "ght of the above teachings. For example, the test sabject could be supported by an articulated support fiame which is provided with air bearing feet so that the frame could slide freely over the floot of a special room. This special room could then be tiled so that the foor is inclined to the desired angle with one wall thereof being painted to represent the walking surface. The floor of this room could be covered with a mirrored surface so as to give an illusion of standing in the midde of the walking surface, the subject's refected image not being seen by the subject because of his restricted fald of vision. Thus, by tilting this specially equipped room at an angle of 9.5 degrees, the test subject could be positioned 80.5 degrees to the vertical and simulation of the lunar stavity would be achieved for the individual test subject. An additional embodiment or modification of the present invention would be the use of a cable suspension system but without the trolley and track system described herein. In this modification the cable system would be attached to a fixed overhed suspension point through a suitable unit so that the cable could rotate at the attachment point and a circular inclined walkway being employed in lieu of walkway structure 45 . The radius of the circular walkway for a given cable length in this modification would obviously determine the magnitude of the simulated gravity, wh maximum cable length minimizing the problems caused by the curvature of the walkway. Also another apparent modification in each of the above described arrangements would be the substitution, or addition of, a rreadmill device for the fixed walkway in each arrangement.

In addition to the uses described herein for the present invention, it will be readily apparent to those skilled in the art that this invention could find obvious umity in design and study of landing gears and locomotive devices For hnar vehicles and other spacecraft, and could possibly find commercial utity as an amusement device for recreafion and in amusement parts.

In view of these wat oher obvious modithoations and variations apparent to those skmed in the art, it is to be understood that within the scope of the appended claims the invention described herein may le practiced otherwise than as specifically claimed herein.

What is chamed as new and desired to be secured by Letters Patent of the United States is:

1. An apratatus for simulating a reduced gravity condition for a test subject, comprising: an inclined walkway of predetermined length, a track parallel to and positioned angularly a distance above said wallway, a

9

trolley movable along stid trick, a coble nystem extending from sad trolley, said cate systen inctudiag.
a primaty cable extending from said trolley,
a lightweight crossbar connected to said primary cable,
a plurality of secondary cables connected to and extending from said crossbar, suptort means for the test subject connected to said cable system,
said support means inciuding a plarality of individual body chgaging supports for various portions of the test subject's body with each individual member thereof being secured to individual members of said secondary cables, and said sumport means being so constructed and arranged as to permit planar selflocomotive movement of the test subject along said inclined walkway to thereby test his actions and reactions to reduced gravity conditions.
2. Apparatus for simulating a reduced gravity condition for a test subject comprising:
a horizontal track positioned on a fixed overhead struc- 20 ture,
a trolley movable along said track,
a primary cable extending from beneath said trolley,
a hatheight crossbar connected to the end of said primary cable,
a plurality of secondary cables connected to and extending from said crossbar,
support means for a test subject connected to each of said secondary cables,
a horizontal walkway traversible by the teat subject 30 and inclined with respect to the vertical gravity vecter of Earth so that the component of the gravity rector in the plane of subject movement along said walkway is equal to the desired magnitude of the simulated reduced gravity,
said support means being so construcled and arranged as to permit planar locomotion of the test subject along sad walkway when supported thereby.
3. A system for simulating one-sixth gravity condidien for a test subject, comprising:
an inclined walkway of predetermined length,
a track parallel to and angularly positioned a distance above said walkway,
a trolley movable along said track,
a primary cable extending from said trolley,
a lightweight crossbar connected to the end of said primary cable,
a plurality of secondary cables connected to and extending from said crossbar,
a plurality of supports for the test subject connected individually to said secondary cables,
said supports and cables being so constructed and arranged as to effectively suppont five-sixths of the weight of said test subject and permit movement of the test subject along said walkway under a simulated one-sixth gravitational effect.
4. A reduced gravity simulator for a test subject, comprising:
an inclined plane walkway for the test subject,
a fixed track being parallel to and disposed angulaty a vertical distance from said inclined walkway,
a movable trolley diposed upon said fixed track,
suspension means for partially supporting the weight of said test subject,
said auspension means including a plurality of elements to enstage the extremities, torso, and head of said test subject,
each of said elements being connected to indivirual cables;
said indwidual cable being attached to a crossbar a distance from said test subject,
a yoke connected to and extending from said crossbar,
a primary cable leading from said yoke and secured to opposite ends of said movable trolley,
whereby said fest subject while in partially supported condition may perform locomotive tasis along the 75

10
plane of said walkway under simulated reduced gravitational corditions.
5. A reduced gravity simulator, comprising:
a frollcy adapted to move along an overhead track,
a hand grasp rod seoure at opposite ends thereo to said cable means and so constructed and arransed as to be selectively trasped by the test subject to provide support for sad other arn.
10. A reduced gravity simulator as in claim 7 wherein
said supports for the arms are arm slings positionable about each forcarm of the test subject:
11. A system for use in combination with a test subject on Earth to simulate a gravity condition for said test subject less than one G, comprising:
fixed track means for supporting a movable trolley, a trolley movable atong sad track means,
body engaging support means for a test subject, cable means securcd at one end thereof to said bedy engaging support means,
the other end of said cable means being secura to said trolley;
said trolley being vertically spaced from said body engaging means at a predetermined angle thereto,
a walking structure for said test subject đisposed adjacent said body support means,
said walkway structure being parallel with and displaced sngularly with respect to a vertical plane passing hrough the plane of movement of said trolley,
an inclined surface on said walkway structure as to permit movement thereon by said test subject when said test subject is supported by said support means,
said trolley being simultaneously movable along said track means when said test subject moves along said inclined walkway.
12. A reduced gravity simulator comprising:
means for supporing a test subject in a nearly horizontal attitude, said means being connected at one end to an overhead trolley and track system,
an inclined walkway positioned parallel with said track system adapted to be traversed by said test subject,
said means for supporting the test subject permitting the individual appendages of the test subject to be moved freely in essentially parallel planes to thereby permit substantially normal self-locomotive movement along said inclined walkway,
said inclined walkway being displaced a predetermined distance from direcily beneath said track system in such manner that only a portion of said test subject's weight is directed onto said inclined walkway with the remaining portion thereof being supported by said support means.
13. A reduced gravity simulator as in claim 12 where-
in said inclined walkway is at such an ande with respect to the vertical gravity vector so that the component of the gravily vectot of a fest subject in the plate of movement therealong is substantially equal to one-sizith Eath gravity to thereby simulate the gravitational condition anticipated on the lunar surface.
14. A reduced gravity simulator for testing the selflocomotive capabilities of a test subject when subjected
to a gravitational condition less than that of the Earth, comprising:
a support system including individual and separate means for supporting the individual extremities, bead and torso of a test subject,
means for inclining the test subject in a predetermined inclination plane with respect to the vertical gravity .vector,
means permiting self-locomotion of the test subject and including the individual extremities thereof in essentially parallel planes normal to the inclination plane of the test subject when inclined, and
means permitting simultaneous movement of said support system along a plane parallel to sad test subject as said lest subject moves along said irclined plane, whereby the component of the gravity vector in the plane of subject movement is equal the desired magnitude of a simulated reduced gravity.

References Cited by the Examiner UNITED STATES PATENTS			
$1,409,702$	$3 / 1922$	Gill	
$1,427,453$	$8 / 1922$	Fleming	
$2,195,299$	$3 / 1940$	Frankel	
$2,930,145$	$3 / 1960$	Green	
$3,099,331$	$7 / 1963$	Rose	
$3,161,968$	$12 / 1964$	De Boy et al.	

FOREIGN PATENTS

379,387 8/1923 Germany.
451,396 10/1927 Germany.
EUGENE R. CAPOZIO, Primary Examiner.
JEROME SCHNALL, Examiner.
HARLAND S. SKOGQUIST, Assistan Examiner.

