NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546

REPLY TO ATTN OF: GP

October 15, 1970

TO: USI/Scientific \& Technical Information Division Attention: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U.S. patents in STAR

In accordance with the procedures contained in the Code GP to Code USI memorandum on this subject, dated June 8, 1970, the attached NASA-owned U.S. patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

| U.S. Patent No. | $: \quad 3,283,088$ |
| :--- | :--- | :--- |
| Corporate Source | $: \quad$ Ames Research Center |
| Supplementary | |
| Corporate Source | |
| NASA Patent Case No: \quad XAC -03777 | |

Gayle Parker
Enclosure:
Copy of Patent

NASA. HQ

Nov. 1, 1966 J. SCOW ETAL
MULTIPLE CIRCUIT SWITCH APPARATUS WITH IMPROVED Filed Sept. 1, 1965

Nov. 1, 1966 SULTPLE CIECUIT SCOW ETAL $3,283,088$ MULTIPLE EIECUIT SWITCH APPARATUS WITH IMPROVED

Filed Sept. 1, 1965

PIVOT ACTUATOR STRUCTURE
3 Sheets-Sheet 2

Nov. 1, 1966

3,283,088
MULTMEE CIRCUT SWETCH APPARATUS WTTY HMYOYED FIVOT ACTUATOR STRUCTURE
Jim Scow, Hampton, Va., and James L. Jones, Santa Clata, Calif., nsignors to the tinted Stutes of America as reprevented by the Natomal Acromatics and Space Alminijtration

Fhed Sept. 1, 1965, Ser. No. 484,489
25 Clams. (Cl. 200-6)
The invention described herein may be manufactured and used by or for the Government of the Unifed States of America for governmental purposes without the payment of any royalties thereon or therefor.

This invention relates to electrical switches and more particularly to a switch apparatus for switching a multiplicity of circhits with relatively litle hand or eye movement required on the part of the switch operator.

In the fields of modern technology situations occur where it is necessary for an operator to control a substanial number of circuits in a quick efficient manner which will present a minimum of diversion from other activities and which will require a minimum of motion to accomplish the controlling and a minimum of eye movement to observe the effects of the controlling.

For example, in the field of space travel an astronaut is often called upon to control a large number of circuits for the purpose of actuating various systems or making checks on the condition of such systems. In numerous instances the astronant is exposed to various " G " fields at the time the circuit controling activity must be performed. In addition the astronaut is often restrained by uniforms and hamesses which limit the amount of movement he can perform.

Accordingly it is an object of the present invention to provide a multiple circuit switch apparatus which will enable an operator to control a substantial number of circuits in a quick and efincient manner with a minimum of hand and eye motion.

Another object of the invention is to provide a multiple circuit swirch which is accident proof.

A more specific object of the invention is to provide a multiple circuit switch apparatus having a movable conurol member with visual and or lactile sensing means for informing the operator of the position of said control member.

A further object of the invention is to provide a multiple circuit switch apparatus including an operating member movable to various positions for controlling a variety of circuits wherein an integrated observation panel is provided so that the operator can tell at a glance the position of the control member and the condition of the one or more circuits operable by said control when in said position.

By way of brief descripion a preferred embodment of the invention comprises an operating lever in the form of a joy stich having a hande at one end and a switch acturting abutment adjacent the other end. The operating lever is mounted on a supporting frame for movement of the swith zostment portion in an are in ore plane and for movenent transverse to said plane. A plurality of switches are positioned on each side of the plane and each switch has an operating button positioned along the arc for engagement by said abutment portion. Detent type stop means are provided for assuring positive positioning of the lever to align said abutment porLion with each of seid switcbes as it moves along said arc. The complete apparatus includes an observation panel having a pair of columns of visual indicators such as lights. The nimber of indicators in each column is equal in number to the rumber of sivitches on one side of said plane and are connected thereto. A third col-
umn of visual indicators is provided intermediate the first mentioned columns in order to provide visual indication of the position of said operating member. In order to actuate the center column the detent stop means are also switches so that at each nostion of the operating lever where it is stopped by a detent means the detent means will complete a circait to canse actuation of the appropriate visual indicator. Thus by moving the joy stick handle the abutment portion of the operating lever can be brought into aligament selectively with each of the switches on each side of said plane. The position of the operating lever is communicated to the operator in a tactile manner from the action of the detent stop means and also visually from the center column of indicators. Then by moving the joy stick transversely of said plane the abutment portion will engage the switch on one or the other sides of said planc. And the appropriate outside column of visual indicators on the observation panel will indicate the condition of the circuit which is being thus controlled.

The various features and objects of the invention will become more apparent from the following detaled description wherein reference is made to the accompanying drawings in which:

FIGURE 1 is a perspective view showing the switch apparatus integrated with the observation panel;

FIGURE 2 is a perspective view of the switoh apparatus on enlarged scale and with the outer casing of the apparatus broken away;
FIGURE 3 is a cross sectional view of the apparatus on a line subsiantially through the operating lever;

FIGURE 4 is a cross sectional view of a portion of the apparatus taken on the line, $4-4$ of FIGURE 3 ;

FIGURE 5 is a cross sectional view on enlarged scaie showing detalls of the detent stop means;

FIGURE 6 is a cross sectional vew on enlarged scale taken on the line 6-6 of FIGURE 3 ; and

FIGURE 7 is a partial view similar to FIGURE 3 but showing the operating lever in a position in which it is moved to actuate one of the switches.

Referring in more detail to the drawings, FIOURE I shows a prefered embodiment of the matiple circum switch apparatus including a joy stick type operating member 1 and an observation panel 2 . The observation panel can be conveniently mounted on a conventional control panel 3 as is found in space whicles. The observation panel contains a first columa of ton visual indicators 4, a parallel column of ten visual indicators 5 and an intermediate colum of ten additonal visual indicators 6 . The visual indicators are operated by move. ment of the joy stick operating member 1 and can be of any conventional type such as light bubs. In order to allow the operator to orient himself more quickly when viewing the observation panel it is somtimes preferable to separate the visual indicators into vertical groups. For example as shown in FIGURE 1 the visual indicators are separated slightly into an uprer gromp of five and a lower group of five. The joy stick operating member is mounted on a support pedestal 7 in the space craft, or other environment, by means of screws 8 . The operator's amm can be strapped on support pedestal 7 in a position so that his hand can grip the joy stick operating member 1. A transition strip 9 is preferably added to prom vide a comfortable support for the wist region of the operator's arm.
As shown in cetail in FIGURES 2-7 the joy stick pperating member 1 is in the form of a lever and is moanted in a support frame or casing having site walls 12 and 13. The side walls 12 and 13 are attached by screws 14 to a generally U-shaped frame portion 15 which also provides feripheral walls 16,17 and 18 . The upper end of the casing is closed by a cap 19. Cap 19 has at-
tached thereto at its front and rear ends a connecting bracket 20 so that the cap 19 is attached to the U-shaped frame member 15 by means of screws 21 which pass through the peripheral walls 16 and 18 and holes 22 in the consecting bracket 20 . The peripheral wall 17 of the U-shaped member is apertured to receive a conventional multi-prong connector member 25 held in place by screws 26.

The cap member 19 is apertured to receive a pair of mounting webs 27 and 28 . The mounting webs are attached to the cap member 19 by means of angle brackets 29 and 30 held in place by screws 31. The structure is preferably closed by cover plates 32 and 33 along the edges of the mounting webs.

The mounting webs 27 and 28 support a hollow bearing block 34 hed in place by bolts 35 . The bearing block surports the joy stick operating lever 1 which comprises a handle portion 36 at one end and a switith actuating abutment portion 37 adjacent the opposite end. The joy stick operating lever is supponted by a pivot member 38 which is pivotally conncted to the bearing block 34 . The pivotal connection can for example comprise a stub bolt 39 on the pivot member surronded by a bearing sleeve 40, all held in place by a nut 41. As viewed from above the pivot member has a U-shaped construction, and the operating nember 1 which is in the form of a lever is pivotally supported within the legs of the U by means of a pivot forming bolt 42 in a bearing sleeve 43 . Thus it will be seen that the operating lever I can be moved in an arc about the pivot bolt 42 and can also be moved transverse to the plane of the arc about the axis formed by pivot bolt 39. The movement of the operating lever about the two pivots 39 and 42 make it possible to move the circuit actuaing abuiment 37 along one path of travel until it is adjacent a selected switching means and then move the abutment transversely to the frst path of travel to operate the selected switching means.

In a preferred embodiment of the invention the switching means are conventional micro switches 46 . The micro switches are arranged on opposite sides of the plane in which the switch actuating abutment member 37 swings in an are about the pivot bolt 42. Further, on each sile of the plane the micro switches are arranged in two groups. One group being closer to the pivot bolt 42 and the other group being further awty. Also the micro switches in each of the four groups are arranged in an are along the arcuate path of travel of the abutment member 37.
The micro swithes 46 are mounted on support plates47 and 48. Support plate 47 is connected to the support web 27 hy means of screws 49 , and plate 48 is connected to web 28 by serews 50 . Plates 47 and 43 are reinforced and held properly spaced by bolts 51 and spacing sleeves 52. The micro switches arc mounted on the support plates 47 and 48 by means of the conventional threaced mounting tubes 53 , threaded inner fings 54 , and outer nuts 56. An operating button 55 is located in conventional manner in each of the threaded mounting tuoes 53 and faces toward the joy stick operating lever on the inside of support plates 47 and 48 . In accordance with conventional micro swith construction the operating buttons 55 are spring pressed toward the direction of the joy stick operating lever 1. The switches are actuated in opposite sense either by depressing the switch button or releasing it In order to eliminate the possibilty of inadvenently actuating two of the switch operating buttons with the abutment 37, the ionerfaces of support plates 47 and 48 are provided with spaced limear recesses 58 arranged along radial lines eminating from the axis of pivot bolt 42. The switch operating buttons on each of the support plates 47 and 48 are then arranged so that the switch operating buttons in one arcuate group are in allernate linear recesses 58 from the switch operating buttons in the adjacent arcuate group.
It should now be obvious that the joy stick operating be seen from FIGURE 5 that an electrical circuit is completed through the detent member 64 on one of the mounting plates 60 and 62 , to the adjacent pluager, through the spring 79 and guide slecve 75 io the opposite phonger: and thence through the detent member 64 engaged by the opposite plunger. The manner in which the dectrical connection just mentioned is used to provide visual sensing mears will be herematier described in more detall. However, it should be obvious at this point that tactile sensing means are provided by the physical force of the detent and plunger arrangement. When the joy stiok operating lever 1 is moved from one position to another, the plungers 77 and 78 will move ont of the detent members 64 and will slide along the inner faces of the dielectric 75 mounting plates 60 and 62. Not only does the center-
ing arm 69 carry the plunger arrangement for providins positive stops for the movement of the joy stick operating lever about the axis of pivot bolt 42, but the centering arm also serves to urge the operating lever toward a centered hands-off position abcut the axis of pivot bolt 39 . In more detail the operating lever is provided with a mounting post 81 brazed or otherwise secured therein. A pair of centering springs 82 and 83 are mounted on the post 81 on opposite. sides of the operating lever and are held in position by means of washers 84 and muts 85 . Larger washers 86 contact the inner ends of the springs 82 and 83 , and abut the fingers 79 and 71 of the centering arm 69. Thus, as shown best in FIGURE 7, when the operating lever is moved about the axis of pivot bolt 39 to depress one of the switch buttons 55 , the lever 1 and anm 69 will pivot relative to each other about pivot bolt 72 to compress one or the other of springs 82 and 83, which will retum the operating lever 1 to a centered position when the hand force is removed from the operating lever:
In order to provide an integrated unit, the various switches which are operated by lever 1 are connected to the observation panel 2 as indicated by the dash line 90 in FIGURE 1. Any suitable conventional circuit connections can be employed for connecting the micro switches 46 in their various circuits. For example, conventional lead lines 91 are shown in FIGURES 1 and 3 connecting the various terminals on the micro switches to the various prongs in the connector 25 . Similarly, lead lines 92 connect the detent members 64 to prongs in the connector 25. A preferred arrangement for providing the desired visual integtation is to connect the detent members so that one of the intermediate lights 6 on the observation panel is illuminated whenever the joy stick operating lever 1 is positioned so that the plungers 77 and 78 enzage one of the detent member positions. Further, it is desirable to start with one end of the travel of lever 1 and coordinate it with one end of the columns of lights 4, 5 and 6. For example, as viewed in FIGURE 1 it is desirable to connect the detent members to the lights 6 so that when the lever 1 is all the way in its rearward position the top light 6 would be illuminated; when the lever is moved forward to the next detent position the next lower light 6 is Muminated, and so on until when the lever 1 is in its most forward postion the bottom light 6 would be juminated. Similarly, the micro switches would be connected in their circuits through the lights 4 and 5 on the observation panel. Thus the micro switches on the left side as viewed in FIGURE 1 would be connected to the lights 4 and the micro switches on the right side would be comected to the lights 5 . Further, the preferred circuit connection is such that when the operating lever 1 is positioned so that the uppermost light 6 is activated, the uppermost light 4 would be activated if the lever were dopressed to the left in FIGURE 1, and the uppermost light 5 would be activated if the lever were moved to the right in FIGURE I; and so on down the colums of lights until when the lever is positioned so that the lowermost light 6 is activated the lowermost light 4 would be activated by movenent of lever 1 to the left and the lowermost light 5 is activated when the operating lever is moved to the right. Thus the operator can tell at a glance where the operating lever is positioned merely by observing the position of the loghted bulb in the column 6 , and he can tell at a glance the condition of the circuit he is controlling by observing the condition of the light 4 or 5 when he deflects the handle left or right. A variety of circuit arrangements are of course possible. For example, the lights 4 and 5 can be arranged so that they will go on if the citcuit is correctly operating at the time the operating lever 1 is moved to atuate swith bution 53 in the circuit for the particuiar light under consideration.

In order to avoid any possibility of inadvertent actuation of the switeh apparatus, a conventional on-off swith 75

93 is mounted in the handle 36 with its operating buttom 94 projeving from the end of the handie. Swith 93 can be connetted by leads 96 into the overall circuity in such mannet that no micro-swith 45 will be operated even if its switeh betten 55 is depressed unless the switch button 94 is simultaneously depressed.

Athough specific details of the present invertion are shown and described herin, it is to be understood that modifieations may be made therein wibout departing from the spirit and seope of the invention as ses forth in the appended claims.

What is claimed is:

1. A multipie circuit switch apparatus comprising a support frarie, an operating lever having a bande and circuit actuating means, said operating lever being pivotaily supported on said frame for movement of said circuit actuating means along an arc in a given plane, a plurality of circuit switching means on said support frame and spaced apart along said arc, means for moving said operating lever and circuit actuating means transwerse to said plane to cause operative engagement between said circuit actuating means and said switching means, and said switching means being spaced transversely from said plane and being out of operative engagement by said aetuating means when said actuating means is in sad plane.
2. A mutiple circuit switch apparatus as clarraed in claim l in combination with an observation panel having a plurality of closely adjacent visual indicators each connected to one of said switching means.
3. A multiple circuit switch apparatus as claimed in claim 1 in which said circuit switching means are positioned on both sides of said plane.
4. A multiple circuit switch apparatus as clamed in claim 3 in which the circuit switching means on one side of the plane are directly opposite the circuit switching means on the other side of the plane.
5. A muhiple circuit swith apparatus as clamed in clsim $4^{\text {in }}$ in which said circuit switching means on one side of the plane are arranged in plural rows spaced along said operating lever.
6. A multiple circuit switch apparatus as clained in claim 5 in which the switch means in one of said spaced rows are angularly offset from the switching means in the adiacent row measured about the pivot axis of said operating lever.
7. A multiple circuit switch apparatus as clamed in clain 6 further comprising stop means for accurately aligning said circuit actuating means with each of said circuit switching means.
8. A multiple circuit switch apparatus as clamed in clain 7 in which said stop means are also circuit switch. ing means.
9. A multiple circuit switch apparatus as clamed in clain 8 further comprisiag an on-of switch in said handle and hawing an operating button protruding from the end of the handle.
10. A multiple circuit switch apparatus conorising a sapport frame, a pivot member pivotaly mounted on said frame for movement about a first axis, an operating lever having a handle at one end and a switch actuating abutment portion spaced from the handle, said lever being pivotally mounted on said pivot member for movement about a second axis normal to said first axis, said lever being movable in a substantially long arc about one of said ares, a plurality of switches each having an operating button positioned along said are, a spacing arm pivotally connected to said operating lever for movement about a third axis normal to the axis of said arc, detent stop mears having cobjerating parts on said frame and on said spacing arm spaced from said third pivot axis, spring means for maintaining said operating lever and spacing. arm in a fixed relation about said third pivot axis, said stop means and said switch buttons being so arranged that when said operating lever is positioned by said stop
means said switch atuating abutment is aligned with one of said switch operating butions, and said operating lever and spacing atm being so arranged that when they are held in said fixed relation by said spring means said switch actuating abutment portion is spaced from any of said switch buttons with which it may be aligned.
11. A muitiple circuit switch apparatus as ciaimed in clam 10 in combination with an ovservation panel having a plurality of closely adjacent visual indicators each connected to one of said switching means.
12. A multiple circuit switch apparatus as claimed in claim 10 in which said switches are positioned on both sides of said arc.
13. A multiple circuit switch apparatus as claimed in claim 10 in which said switches are positioned on both sides of said are, and the switch butons on one side are directly opposite the switch butons on the other side.
14. A muntiple circuit switch apparatus as claimed in claim 10 in which said switches are arranged in plural rows spaced along said operating iever on the same side of the lever:
15. A multiple circuit switch apparatus as clamed in claim 10 in which said switches are amanged in plural rows spaced along said operating lever on the same side of the Jever, and the operating butions of the switches in one of said rows are angularly offset from the operating buttons of the switches in the adjacent row measured about the axis of said arc.
16. A multiple circuit switch apparatus as claimed in claim 10 forther comprising an on-off switch in said handle and having an operating bution protruding from the end of the handle.
17. A multiple circuit switch apparatus as claimed in clam 10 further comprising stop means for accurately aligning said switch actuating abutment portion with each of said switch operating butions.
18. A multiple circuit switch apparatos as claimed in claim 17 in which said stop means are also circuit switching means.
19. A multiple circuit switch apparatus comprising a support frame, an operating lever having a handle at one end and a switch actuating abutment portion spaced from the hande, means supporting said lever on said frame for movement of said abument portion in an arc in one plane and for movement transverse to seid plane, a plurality of switches on said support frame on opposite sides of said plane and each of said switches having an operating button positioned along the arc, and said switches being so positioned that when said abutment portion is in said plane the abutment portion is out of operating engagement with scid swich butons and when said abuiment portion is moved transversely of said plane said abutment portion is operatively engaseable with said switch buttons.
20. A multiple circuit switch apparatus as clamed in claim 19 further having stop means comprising metalic depression members spaced in an arc along each side of said operating lever and insulated from each other, a metallic abutment member carried by said oprating lever on opposite sides thereof, a metalle spring betwe?n said abutment members and pressing them toward engagement with said depression members.
21. A multiple circuit switch apparatus as claimed in claim 20 whetein said abutment members are carried by a centering arm pivotally consected to said operating lever os
on an axis transverse to said one plane, a post through said lever normal to said axis, a spring on said post on each side of said lever and engaging an abument on its respective outer end of the post, a washor aroand said . pest on each side of said lever, the inner end of each spring being in abutment with its respective washer, and said wasbers being in abutment with both said fever and said centering arm: when said lever is cenfered betwem said switch butons on opposite sidies of the lever.
22. A muhiple circuit switch apparatus comprising a support frame, an operating member having a hande and circuit actuating means, means connecting said operating nember to said support frame for moving said actuating means along a path, a group of circuit switching means positioned on said support frame along said path, and mpans for moving said operating member transverse to said path to cause said actuating means to actuate said switching means.
23. A multiple circuit switch apparatus as clamed in claim 22 further comprising circuit connecting means which are individually and automaticaly actuated by posinioning said operating member so that the circuit actuating means is adjacent one of said switching means.
24. A multiple circuit switch apparatus as clamed in claim 23 further comprising an observation panel having a fist column of visurt indicators equat in number to said switching means and connected thercto, and a second column of visual indicators parallel to and adjacent said. first column, the visual indicators in said second column being equal in number to said circuit connecting means and connected thereto so that it will be visually apparent that said actuating means is adjacerit a specific one of said switching means.
25. A muliple circuit switch apparatus as clamed in claim 24 in which the switching means in said group are all on the same side of said path, a second groun of circuit switching means on the other side of said path with the switchins means of each mroup arranged directly opposite each other so that when said actakting means is adjacent one of the switching means in one group it will also be adjacent one of the switching means in the other group, and a third column of visual indicators on said panel paralle to and adjacent the other two columns, the indicators in said third column being equal in number to the switching means in said second group and connected thereto.

References Cited by the Examiner
UNITED STATES PATENTS

1,072,426	9/1913	Clafin -----------1200-11
2,774,926	12/1956	Gilman et al. -...-.-.- 200-18
2,851,545	9/1958	Mekelburg -.-.-.-.- - 200-50
2,924,680	2/1960	Swenson --...-.-.- 200-12

Refarences Cited by tbe Applicant
UNITED STATES PATENTS
2,661,402 12/1953 Balch.
3,022,878 2/1962 Seibel et al.
3,142,227 7/1964 Stringer.
ROBERT K SCHAEFER, Primary Examiner.
KATHLEEN H. CLAFFY, Examiner.
J. R. SCOTT, Assistant Examiner.

