REPLY TO ATTM OF: GP

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WAShington, D.C. 20546

TO:	USI/Scientific \& Technical Information Division Attention: Miss Winnie M. Morgan
FROM: \quadGP/Office of Assistant General Counsel for Patent Matters	
SUBJECT:Announcement of NASA-Owned U.S. Patents in STAR	

In accordance with the procedures contained in the Code GP to Code USI memorandum on this subject, dated June 8, 1970, the attached NASA-owned U.S. patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:
U.S. Patent No. : 3,324,370

Corporate Source : Goddard Space Flight Center
Supplementary
Corporate Source :
NASA Patent Case No.

```
XGS-01451
```


Gayle Parker
Enclosure: Copy of Patent

June 6, 1967
P. A. STUDER

3,324,370
electronic beas switching coknutator
Filed Oct. 21. 3964

$\left\{\begin{array}{cc}\frac{0}{2} & \\ \frac{0}{2} & 0 \\ \frac{2}{3} & 9 \\ \frac{5}{2} & 0 \\ 6 & 0 \\ 6 & 4\end{array}\right.$

$B Y$
Philip A. Studer
9 triec.
Lemend Atarci
ATtORNEY

1

3.32 .3 .370

EEENTONUC BEAMSWTTCHEG COMMUTATOR Phitip A. Sturier, Silver Spring, Mid., assignor to the United States of America as represented by the Adminicfrator of the National Aeronautics and Space Adnainistration

Fined Oct. 21, 195\%. Ser. No. 405,629
14 Claims. (C1 318-138)
The invention described herein may be manufactured and used by or for the Goveramemt of the United States of America for governmental purposes without the payment of any royalties thereon.

This invention relates to an improved brushess motor and more particularly to a DC motor which utilizes an electron beam switching tuke as a commutator.

In many satellite applications, the only available energy within the sutellite itself is tuerived either from electrochemical cells or from solar sells. Thus, a direct current motor which will operate from these DC sources is desinable in order to drive various mechanisms within the satellite, such as elemerts of tape recorders. Since satellites operate in a vacuura enviromment, any physical contact between the rotor aud brushes of the stator of such a motor tends to cause arcing in addition to the inherent frictional losses. Therefore, it is desirable that the commutation proesss be afcomplished without physical contact or by what is referred to as electronic commutation.

Prior to the present invention, there have been various attempts to develop an efficieat and simple brushless $D C$ motor, i.e., a motor which dees not depend on physical contact between the rotor and the stator in the commutatron mechanism, in such bnushess DC motors, it has been found that efficient motor operation may be achieved by utilizing a permanently magne:ized rotor in connection with a plurality of stator windings. As a selected stator winding is energized, the rotor is tumed so as to reduce the toroue angle which then exisis between the stator field and the magnetic fielt of the rotor. This turning or rotition of the rotor is maintained by sequentially energizing the stator windings so that a large torque angle exists at all times. In sumb a case, the relative position of the rotor with respect to a stator winding must be sensed so that the eiectronic commutator will activate the desired stator windings at a rate proportional to rotor angular velocity. One attempt at accurate rotor position sensing is through the use of stationary inducive pick-up coils which have voltages induced in them as a result of the rotation of the permanently magnetized rotor. However, one disadivariaze of such a coil arrangement is that the motor is no: self-stazing, and elatorate mechanisms are needed to provide the desirable selfstarting features. For example, see U.S. Patent No. 2,753,501, issued July 3, 1956. Various other methods of sensing rotor pesition are ciscussed in an article by Wison and Trickey entitled, DC Machme with Solid State Commutation," which appears in the November 1962 issue of Electrical Engineering. However, a practical means of sensing rotor position in combination with an accuate and reliable elecronic commatator has not yet been fully developed.

Accordingly, it is an object of this invention to provide an improved self-starting DC brushless motor.

It is a further object to provide an improved electronic commutator which contains a beam switching tube respensive to a puise input.

It. is sill another object of this invention to provide an electron beam switching tube commutator driven by a pulse input, the inpui pulse rate being responsive boin to rotor perition and to rotor angular velocity.

It is yet another object of this invention so provide a
rotor position sencizg device for a brushless motor which utilizes a single phovodiode in conncction with the plurality of stator windings.

The above objects are achievad in the motor of the instant invention by tie use of an electronic beam swithing device having a plurality of outputs. The electron beam is sequertially switched to succeeding outputs by means of a pulse inpan switching means controlled by a variable frequency escillator. The oscillator is in turn responsive to control signals from both a transducer device and from a rotor position sensing device. The brushless motor tinus uthizes an electronic commutator consisting of a minimum of components, which provides a commutation process responsive to both rotor angular velocity and rotor position.

Other objects as well as the advantages and features of the present invention will, of course, become apparent and immediately sucgest themselves to those skilled in the art to which the invention is cirected from the reading of the following detailed description in conncction with the accompanying drawings in which:

FIGURE 1 is a parial block diagram of the subject matter of the invention;

FIGURE 2 is a scternatic diagram of the synchronizing circuit and variable frequency oscillation circuit shown in FIGURE 1; aid

FIGURE 3 is z schenatic diagram of a preferred embodiment of the armature switches shown in FIGURE 1.

Referring now to the drawings, in FIGURE 1 stator windings 11 are sequentially energized from a suitable DC potential source 13 by means of armature switches 12. In order to effect eficient motor operation, the armature switches must be astivated in such an order that a large torque angie exists at all times between the magnetic field of a permanently magnetized rotor 10 and the magnetic field of any one energized stator winding. To achieve this end, armature switches 12 are activated sequentially by outpeiz pulses present at outputs 30_{0} to 30_{3} of an eltectron beam switching tube 14. The tube 14 comprises a plurality of arrays and a cathode 32. Each array consists of an cetput 30 , a spade 31 , a shield grid 29, and either an ote 27 or even 28 switch grid; and it is noted that the number of arrays utilized in a particular application is determined by the number of stator windings 11 which ze to be sequentially activated. Output pulses present at outputs 30_{0} to 30_{9} are coupled through pulse transtormers 25_{0} to 25_{9} (one such transformer for each ourput) to armature swithes 12. The ammature switches (owe such switen for each stator winding in a particular embodiment) are utilized so that, when activated by oxipits rom pulse transformer 25_{0} to 25 , energizing poiential from a source 13 may be gated to a particular stator winding 11. Thus, tube 14 acts as a distributor to provide output pulses in the proper sequence to the armature switches 12.

The armature swicter 12 in the preferred embodiment consist of a series of shicon controlled rectifiers responsive to pulses from pulse transformers 25 . In such an embodiment the numijer of silicon controlled rectifiers would be dependent E_{p} on the number of stator poles in a particular motor. However, switching diodes or switching transistors may be wsed as the armature switches in the instant invention, as well as any cther desirable combination of relays or gates which are resporisive to the outpui of pulse transformers 25.

The electron beam in tube 14, which is formed between cathode 32 and any one of outputs 300 to 30 is transfersed to a succeding ontput upon the receipt by switch grids 27 and 25 of input switching pulses. As show in FIGURE l_{2} a monostable multivibrator 18 is
connected to switch grids 27 and 28 . The monostable mulivibrator 18 typically provides a pulse of approximately 50 microsecond duration and is comnected such that when triggered, the lead portion of the pulse actiates the odd grid 28 and the reset portion of the pulse activates even grid 27. A typical monostable multivibrator which may be utilized is based upon a design by Fung and Nambiar as illustrated on page 44 in Electronic Design (Nov. 22, 1962).

The multivibrator $\mathbf{1 8}$ is triggered, so as to produce its signals for activation of grids 27 and 28 , by a variable frequency oseillator 17 , which is shown and described in the discussion of FIGURE 2; however, it is noted that the the output frequency of the voltage controlled oscillator 17 is vatiable depending upon the amplitude of the variable DC voltage derived from a rectifier circuit 16. (The frequency range of oscillator 17 should be such that both maximum r.p.m. for a partioular application and re-start from stall condition may be achieved.) In a particular embodiment, a voltage controlled oscillator with a range of 50 to 660 pulses per second trigefring a monostable mulivibrator with a pulse duration of 50 mizroseconds was capable of producing a speed of 8000 r.p.m. for a 10 stator poie motor. The variable control voitage for the oscillator 17 is provided by a stationary transducer 15, situated on the periphery of the suator. The transducer 15 preferably is an inductive pick-up coil which has a voltage induced in it as a result of the rotation of the magnetized rotor 10 , the magnitude of the induced voltage therein being proportional to the rotor angular velocity. As a result, the output from the rectifier circuit 16 is 3 variable DC voltage whose level is indicative of rotor angular velocity. Therefore, the output frequency oscitlator 17 is automatically controlled by rotor angular velocity. This results in accurate commutation and in a smooth increase in rotor angular velocity during the selfstart from stall condition.

As previously mentioned, an accurate method of sensing rotor position is desirable so that the correct stator winding will be energized in proper sequence by the action of the armature switches 12 . In the instant invention an indication of the position of the rotor with respect to the stator windings is achieved as a result of the illumination of a photodiode 20 by a beam of light 24. The photodiode 20 is activated only when a rotatable shotter 22 allows the light beam from lamp 21 to impinge on it. At other portions of the shutter rotation the beam 24 is blocked by the shutter, which rotates in response to rotor motion; and the non-illumination of the photodiode 20 results in an open circuit between output 30_{0} and supply voltage $B+$. Thus, at ibose portions of the rotor cycle in which the light beam. cannot activate photodiode 20 , the potential between 30_{0} and ground is at a minimum due to the open circuit between 30_{0} and $\mathrm{B}+$. The effect which this small potential drop at 30_{0} has on the operation of beam tube 14 will be disctussed in more detail in relation to FIGURE 2.

In connection with the cperation of the position sensor, it is noted that, if the potential between output 30 and ground is below a predetermined value, substantially all of the beam current will be diverted to shield grid 29 . This results in an output by way of electrical sonneztion 26 to the input of synchronizing circuit 19 which will be explained more fully in connection with FIGURE 2. As may be seen in FIGURE 1, the output of synchronizing circuit 19 is coupled to the input of oscillator 17. Upon teceipt of an input, syachronizing circuit 19 biases oscillator 17 to cot of and this cut-off or standby condition is maintained as long as there is an input to synchronizing circuit 19. In this manner the triggeriny of the monostable multivibraior 18 by oscilator $\mathbf{1 7}$ is dependent upon rotor position, which position is indicated by the presence or absence of an input to synchronizing circuit 19. Therefore, accurate synchronism of the commutation process is provided.

The beam switching tube 14 used as the electronic commutator in this invention is best seen in FIGURE 1. In ₹ particular embodiment of the invention a "BEAM-X" model 2,000 ten-position electron switching tube supplied by the Burroughs Corporation was used; however, any comparable tube which is capable of beam swithing in respense to input pulses in addition to providing a secondary output is within the scope of this invention. For a further reference to the particularities of the "BEAM-X" tabe attention is directed to the "BEAM-X" Technical Brochare No. BX 5358 available from the Burroughs Corporation.
As stated above, each target position of tube 14 consists of an identical array of four elements. Each array consists of a spade 31, biased by a spade supply voltage B_{5}, the spades being needed in order to form and lock the beam on the outputs 30_{0} to $\mathbf{3 0}_{90}$. The section entitled, "Seam Forming and Locking" on page 5 on the above cited brochure further discusses the characteristics of such spades or beam locking devices. Also each array contains an oniput 30_{0} to 30_{9} which correspond to the output electrodes in conventional beam switching tubes. In addition, each array incluses a secondary output or shield grid 29 to 29 which will conduct output current should the potential drop at its associated output 30 fall below spade buss voltage. A further discussion of the advantages and uses of the shield grids 29_{0} to 29_{9} is contained in the section entitled, "Ouput" on page 5 of the above cited brochure with special reference to the discussion of FlGURE 8. However, it is noted that the details of the tube itself form no part of the invention. Tberefore, it is sufficient for purposes of this invention to state that a predetermined poiential decrease at the output 30_{0} results in the conduction of output current by shield grid 290 .
Each array further contains either an odd or even switch grid 27 or 28 which serve, when activated by pulses from multivibrator 18 , to transfe: the beam to a succeeding output $30_{c}-30_{9}$. For example, if initially the electron beam from cathode 32 is locked on output 30_{1} by spade 311: and if a pulse then is received on switch grid 28 from multivibrator 18 , the beam will be advanced to target 30_{2}. Should the system be in synchronism, the above sequential switching operation will continue as long as pulses are applied to grids 27 and 28. If synchronism is lost during the time the beam is switched from output 30 g to output 30_{g}, the potential drop at output 30_{0}, due to the absence of photodiode action, will fall below spade buss voltage. This causes shield grid 29 to conduct output current. An output will appear on electrical connection 26 which output, via synchronizing circuit 15 , will cause cut of of the oscillator 17 as will be more fully explained below. Thus, the electron beam from cathode 32 will not be advanced since grids 27 and 28 will receive no input switching pulses. As soon as the photodiode 20 is illuminated, the beam current will be diverted from 29_{0} back to 30_{0}; the input to circuit 19 will be removed from electrical connection 26 , and the sequential pulsing of switch grids 27 and 28 will resume.

Referring now to FIGURE 2, which illustrates the varicus components contained in synchronizing circuit 19, oscillator 17 and rectifier circuit 16 , should an output appear on electrical connection 26 as a result of beam current diversion to shield grid 29_{0} transistors 50 and 51 will conduct. These transistors together with their appropriate biasing arrangements comprise synchronizing circuit 19. When the transistors 50 and 51 conduct, a pulse is fed via resistor 53 to the emitter of a unijunction transistor 54 causing cut-off of the transistor 54 . Transistor 54, which is connected in an oscillator circuit, comprises variable frequency oscillator 17. (The unijunction transistor used in the particular embodiment was a General Electric Silicon Unijunction transistor (2N491A) connecied in an oscillator circuit based on General Electric Transistor Manual (5th edition) recommendations. Ifowever, any suitable voltage controlied
oscillhtor consistent with design may be used.) A capacitor 56 is provided in the discharge path of transistor 51 so as to prevent the triggering of multivibrator 18 by transisto 54 from stopping completely in the case of a stalled rotor. Thus, in the ease in which synchronism is lost due to rotor stailing, the transistor 54 will initially be cut off ty the omput from 29_{3}. However, due to the discharge path provided by capacitor 56, the oscillator 17 will kegin to oscillate, after a predetermined interval, at the lower value of the oscillator frequency range.

The emitier of transistor 54 is additionally coupled to the outgut of rectifier circuit 16 via resistor 52 . The rectifier circuit 16 contains a plurality of diodes $70-73$ imerconrected by a capacitor 74 as shown in FIGURE 2. It is noted that the necessiry ground connection is provided between diodes 70 and 71 . The variable DC level present at the juriction of diodes 72 and 73 (which as has been stated is proportional to rotor angular velocity) is a control voltage which varies the output frequency of the voltane controlled oseilator circuit containing transistor 54. Thes, an increase in the magnitude of the voltage generated in transdicer 15 yesults in an increase in frequency of the cutput wave. The cutput from the transistor 54 is coupled to the imput of the multivibrator 18 as previously discussed.

In operation, the electron beam is initially formed by suitably applying power to the tube 14. The use of the term self-statting in connection with the bruchless DC motor indicates that the motor will automatically re-start and will self-start from stall condition. It does not mean that the motor will start without initially energizing the tube so as to form an electron beam. Input pulses to the monostable multivibrator 18 from oscillator 17 (for example, at 50 puises per second) trigger the multivibrator 13, causing input switching pulses to aprear at switch grids 27 and 28. The electron beam thus is transferred to succe ding outpuis $30_{0}-30_{9}$ with resulting rotor motion due to the presence of a torgce angle. This operation continues until the keam is advenced to output 30_{0}. Then should the polential drop to ground at cutput 30_{0} (which drop is dependent on the value of resistance of 23_{0} and that of photodiode 20) be below a slesired value (due to the non-ilumination of diode 20), the synchronizing circuit 19 causes cut off of oscillator 17. The cut off condition continues until the shater 22 allows a light beam 26 to impinge on the photodiode 20 . The resulting photodiode activation increases the rotential drop between output 30_{0} and ground and ontput 30_{0} conducts beam current. Then, synchronizing ciscuit 19 is no longer capable of cut off of oscillator 17, and the sequemial switching of armature windings 12 is again possible. Rotor angular velocity increase is marked by an increase in the magnitude of the voltage induced in transducer 15 which results in a greater output frequency from oscillator 17.

A preferred embodiment, which utilizes silicon controlled rectifiers as the armature switches, is shown in FIGURE 3. In such a case, silicon controlled rectificr 61 will be turned on in response to an cutput from pulse transomer 25_{0} and will gate energizing potential to the corresponding stater winding even atter the pulse from transformer 25_{0} is removed. In otder to turn off sticon controlied rectifer 61, a coupling capacitor 63, conrected between the cathode of silicon controlled rectifiers 61 and 62 , is provided. Thus, upon riceipl of a pulse by silicon controlled rectifier 62, a corresponding stator winding is energized, and a pulse is coupled back to the cathode of silicon controlled rect:fier 61. This pulse raises the cathode poiential of silicon controlled rectifier 61 to bias potential ($\mathrm{B}+$) and the bolding current necessary to mainain silicon controlled rectifier 61 conducting is destroyed Thetefore, sificon controlled rectifier 61 will be turned off amd will remain non-conducting until triggered again by a pulse from the pulse transformer 25 ;

The advantages of this invention are numerous, and the rotor is especiaty adapted for use in the vacuom
conditions such as exist in a satellite. Since the motor is self-starting and operate5 from a direct current source, the machine may be in unmanned spacecraft which operate from solar energy and battery sources or in other applications wherein arcing may be detrimental in the particular environment of the motor. The use of the "BEAM-X" tube in connection with silicon controlled rectifier armature switches provides a lightwight and accurate electronic commutation system using a min:mum of components.
It is to be understood that the foregoing disciosur: relates to a preferred embodiment of the invention. and numerous modifications can be made without departing from the spirit and siope of the invention as defned in the appended claims.

What is claimed is:

1. A brushless DC motor including a permanently magnetized roter and a plurality of stator windings; a plurality of switches, said switches coupling said windings to a source of energizing potential; an electronic beam switching device having a plurality of switch grids, and a pluratity of outputs, said outputs being coupled to said swtiches; a pulse input switching means having an output; rotor position sensing means having an oupput coupled to said pulse inpitt switch means, the output of said puise input swithing means triug coupled to said plaiality of switch gricis of said beam switching device, whtereby the piurality of switches may be activated by said beam switheng device in sequenial crier in response to said pulse input switching means.
2. A motor as described in claim 1 wherein said switching device comprises a beam switching tube, said tute including a cathode for producing an electron stream, and a plurality of idertical arrays; cach array comprising at least one of said plurality of ouputs, and one of said plurality of switch srids, whereby said electron stream from said cathode to one of said plurality of outputs can be transferred to a succeeding output in response to said input switching means.
3. The motor as described in claim 1 further including a transducer means for measuring the angular velocity of said rotor, and a variable frequency oscillation means coupled between said transducer means and said pulse input switching means for controlling the activation of said pulse input switching mears whereby variations in said transducer means due to changes in rotor angular velocity control the cutput frequency of said oscillation means.
4. The motor as described in ctaim 3 wherein said transducer means comprises a stationary inductive pickup means positioned such that variations in the angular velocity of said perrianently magnetized rotor change the magnitude of a voltage induced ir said pich-up means.
5. The motor deseribed in claim. 3 further including synchronizing means coupled between said rotor position sensing means and said oscillation means whereby said synchronizing means controls the cut-off of said oscillation means in accordance with rotor position.
6. The motor described in claim Σ wherein said rotor position sensing means includes a photodiode means and a rotatable shutter means connected to said permanently magnetized rotor suct that said photodiode means is activated only at a particular rotor position, whereby the sequential activation of said plurality of switches is synchronized with a particular rotor position:
7. In a DC brushless motor having a permanently magnetizel rotor and a plurality of stator windines; a plurality of switches, said switches upon activation couphing said windings to a scurce of polential; an electron commutating me ras includtig in combination: an electron beam switching device having a plurality of switch grids, and a pluraity of outpots, each output being coupled to a selected one of said swinches; pulse input switching means having an output; rotor position sencing means baving an cutput coupled to said pulse input switching
means, the output of said pulse input switching means being coupled to said switch grids. whereby said pulse input switching means causes sequential activation of said plarality of ouputs of said electron beam switching device so as to energize said stator windings through control of said switches in a selected order:
8. The combination as described in ctaim 7 wherein said electron bean switching devies comprises a bean swithing tube, said tube incluting a cathode and a plurality of identical arrays; each array comprising at least one of said plurality of outputs, and one of said plurality of switch grids whereby said electronic stream from said cathode to one of said plurality of rutputs can be transferred to a succeeding output in response to said input swiching means.
9. The combination as described in claim 7 further including a variable frequency oscillation means; and a transducer means for measuring the an_{z} alar velocity of said rotor; said oscillation means being coupled between said transducer means and said pulse input switching means for controlling the activation of said pulse input switching means whereby a change in rotor angular velocity varies the output frequency of said variable frequency oscillation means.
10. The combination as described in claim 9 wherein said transducer means comprises a stationary inductive pick-up means positioned such that the magnitude of a voltage induced in said pick-up means is proportional to rotor angular velocity.
11. The combination described in claim 9. further including a synchronizing means coupled between said fotor position sensing means and said variable frequency oscillation means whereby the cut off of said oscillation means is controlled by rotor position.
12. The combination as described in claim 11 wherein said rotor position sensing means comprises a stationary photodiode means connected in one selected output of said plurality of outputs of said beam switching device,
and a rotatable shutter means mechanically comnested to said rotor and positioned such that said photodiode ineans is activated by a light bean at only one seter position, whereby the sequestial activation of said plurality of outputs of suid electron beam switching device is synchronized with a particular rotor position.
13. The combination as described in claim 12 whereia said beam switching device comprises a beam switching lube, said tube including a cathode and a plurahty of identical arrays, each artay comprising a beam locking device, one of said plurahity of outputs, a shield grid, and one of said plurality of switch grids; and wherein said synchronizing means includes a switching transistor having an input coupled to a selected one of said sbictd grids; whereby a voltage drop in the selected output which contains the photodiode means, due to non-illumination of said photodiode means, causes the beam current of the electron beam formed between said cathode and the selected output to be diverted to the selected shield grid associated with said selected output theroby cansing said transistor to conduct so as to cause cut-aff of said oscillation means.
14. The combination as described in claim 13 wherein said pulse input switching means comprises a monostable multivibrater and said transducer means comprises a stationary inductive pick-up means positioned so that the magnitude of a veltage induced in said pick-up means is prosortional to rotor angular velocity.

References Cited
UNITED STATES PATENTS

2,866,931	12/1958	
3,096,467	7/1963	Angus et al. ---.-.-. 318-138
3,189,808	$6 / 1965$	Henry-Baudot -...-- 318
3,214,663	10/1965	Kreutzer --...------ 318

ORIS L. RADER, Primary Examiner.
G. SIMMONS, Assistant Examiner.

