

AEC-NASA Tech Briefs announce new technology derived from the research and development program of the U.S. AEC or from AEC-NASA interagency efforts. They are issued to encourage commercial application. Tech Briefs are available on a subscription basis from the National Technical Information Service, Springfield, Virginia 22151. Requests for individual copies or questions relating to the Tech Brief program may be directed to the Technology Utilization Office, NASA, Code KT, Washington, D.C. 20546.

Thermal Conductivity of Gaseous and Liquid Hydrogen

Measurements have now been made of the thermal conductivity of both normal and parahydrogen at temperatures from 200° to 17°K (-99° to -429°F), at densities up to 2.6 times the critical density ($\rho c = 0.314 \text{ g/cm}^3$), and at pressures to 15 MN/m². The measurements were motivated by the need for comprehensive, accurate data on the properties of gaseous and liquid hydrogen, for nuclear rocket applications and for problems concerning the theory of dense fluid transport. There are large gaps in available knowledge on the thermal conductivity of fluids, especially at low temperatures and high densities; no absolute conductivity measurements were previously made on compressed fluid hydrogen at temperatures below 78°K (-319°F).

Using a newly developed calorimeter, the data were analyzed as a function of density at fixed temperatures, and as a function of temperature at fixed densities. The maximum uncertainty in the measurements is estimated to be less than 2%.

Outside the critical region, the thermal conductivity of both the gas and the liquid increases continuously with temperature and density. In the compressed liquid, the temperature derivative at fixed density is positive and unusually large compared to that for most other simple liquids. In the critical region, the thermal conductivity increases rapidly with both temperature and density as these parameters approach their critical values.

Note:

Requests for further information may be directed to:

Technology Utilization Officer AEC-NASA Space Nuclear Systems Office U.S. Atomic Energy Commission Washington, D.C. 20545 Reference: TSP71-10105

Patent status:

No patent action is contemplated by AEC or NASA.

Source: H. M. Roder and D. E. Diller of National Bureau of Standards under contract to AEC-NASA Space Nuclear Systems Office (NUC-10558)

Category 03,04

brought to you by I CORE

This document was prepared under the sponsorship of the Atomic Energy Commission and/or the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use of the information contained in this document, or warrants that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights.