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SUMMARY

Proper use of reduced data from falling sphere soundings

requires a detailed knowledge of the many factors affecting their

accuracy. Criteria for judging the reliability of ROBIN sphere

data (wind and density) are reviewed, and the effect of the data

smoothing interval on the suppression of radar tracking error and

the retention of real atmospheric detail is briefly considered.

The height range of valid temperatures is described in relation to

the prevailing pressure scale height and the climatological temper-

ature regime. ROBIN soundings considered valid by stated criteria

are presented which illustrate their fidelity to large-scale atmo-

spheric variations. Also shown are rare examples of soundings

satisfying the above criteria which indicated physically improbable

variations. Special data comparisons include Arcasonde and ROBIN

temperatures from Ascension Island, which indicate fair agreement

near the stratopause; and densities based on thermistor and sphere

data. The latter reveal a systematic difference of about 8%; var-

ious explanations are considered, but none is found to account for

the full difference. The article concludes with a brief review of

past uses of sphere data, together with remarks on persisting pro-

blems relevant to all sphere measurements.

INTRODUCTION

Perhaps no method for sounding the upper atmosphere with roc-

kets has required so much study as the falling sphere technique.

Much of the commentary has concerned the ROBIN sphere (Engler,

ref. i; Luers, ref. 2), but some of the problems of interest apply

to other spheres as well (Jones and Peterson, ref. 3; Salah, ref. 4;

Faucher et al., ref. 5; Peterson, ref. 6; Champion and Faire, ref. 7).

Nearly 700 ROBIN soundings have been obtained, including a research

series of 188 observations in 1960-62 (Lenhard and Kantor, ref. 9)

and shorter research series in 1965 and 1966. More than I00 sound-

ings have been taken with other spheres, and these have a propor-

tionally greater value because of the higher altitudes reached.

Densities from ROBIN soundings have been obtained generally in the

height range 40-70 km, and winds to lower altitudes. Modifications

required in the 1965 data reduction program in order to achieve

ROBIN measurements above 70 km have been described by Engler (ref.8)
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and Luers (ref. 2). Figure 1 indicates in greater detail, accord-

ing to the author's count, the quantity of data obtained.

This discussion of the data is from the standpoint of the user.

In order to ascertain the usability of sphere data in such tasks

as the construction of synoptic maps or the analysis of small scales

of motion, some review of the data accuracies is needed. It is

stressed that odd features encountered in various soundings have

been more a matter for explanation than alarm. A few soundings,

however, have nearly defied explanation. The discussion of accur-

acies will therefore be followed by examples of unusual soundings

which could be shown to be valid and some which remained suspect.

The latter are rare, but they have required special probing by the

user in order to judge their acceptability.

THE VALIDITY OF ROBIN WINDS AND DENSITIES

Our experience with ROBIN data indicates that with rare

exceptions, the winds and densities are broadly representative of

the ambient conditions. The rare exceptions might include condi-

tions of very large vertical motions (neglected in the drag equa-

tion for density), or appreciable error in the drag coefficient,

or unusual balloon behavior perhaps undetected by Engler's Lambda

check (see below) (Jones and Peterson, ref. 3). With regard to

small-scale variations of the wind and density, the fidelity of

representation must depend greatly (as with any observational

method) on the smoothing performed on the original data points.

Criteria for Acceptability

All soundings considered in this article meet the stated

criteria for valid data (Engler, ref. i). These are, as we have

understood them:

(i) Densities are within the stated accuracies, to be cited

below, for that portion of a sounding satisfying the Lambda check.

(Mathematical symbols are listed in the appendix.) Lambda is a

measure of the vertical density gradient (l=p-ldp/dz),and the

check assumes that reliable densities are obtained if Lambda, in

practice approximated from the vertical acceleration data, falls
Within a defined neighborhood of the standard atmosphere value.

Any unusual perturbation in the vertical sphere motion is assumed

to be due probably to collapse or drastic change in shape of the

balloon or perhaps to some unusual aerodynamic behavior. With

non-spherical balloons, the C_ and cross-sectional area would not
be known and the density coul_ not be ascertained.

(2) When the Lambda check indicates collapse below 50 km,
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the densities are considered highly reliable. However, if the

Lambda check fails above 50 km, the density data are considered

unreliable, in accordance with the inference that the balloon was

never fully inflated (Lenhard and Kan£or, ref. 9).

(3) Winds are considered broadly reliable at all times after
the balloon has accelerated to values of _ greater than -3 m sec -z.

For a non-rigid balloon, however, the response to the wind is not

presently ascertainable from theory (ref. 9), and different error
estimates apply (see below).

(4) Temperatures are considered broadly reliable at two

scale-heights or roughly 15 km, below the starting altitude (see
special section on temperature, below).

Smoothing Interval

The ROBIN data in the University of Dayton printout are given

for every second above 50 km and for every 2 seconds below 50 km,

but what do _hese represent? Starting from 0.l-sec. radar posi-

tional data, 5 values are averaged to get 0.5-sec. positions. Next,

31 of the 0.5-sec. positions are fitted by one-degree polynomial

least squares to give 15-sec. values for velocity (from the slope

of the curve). The velocities are recomputed at one-second intervals

above 50 and 2-second intervals below 50 km, by dropping and adding
data points at top and bottom; and then accelerations are determined

by least squares fit to 7 of the velocities. This results in ac-

celerations valid for 22-sec. intervals above 50 km and 28-second

intervals below 50 km. For densities, which are proportional to

the accelerations, the same time intervals apply. To make this

review as self-contained as possible, the pertinent equations for

solving for the wind and thermodynamic data have been stated in an
appendix.

Thus the velocities are effectively determined over a time

interval of I/4-minute and the accelerations and densities over

nearly i/2-minute. For typical fall rates of the ROBIN one-meter

balloon, a time interval of i/4-minute corresponds to a descent of

2-4 km above 60 km and less than a kilometer below about 50 km.

Engler (ref. i) indicates that the horizontal distance of the

balloons had oscillations of period exceeding i/4-minute, which he

regarded as real. His analysis of the effect of varying the number

of i/2-second radar positions used for the basic smoothing inter-

val shows that differences up to several m sec -I are possible in

the amplitude of the oscillations, according to the data fit used

(Fig. 2). More recently, Boer and Mahoney (ref. 10) have analyzed

a research series of ROBIN soundings for March 6, 1965 (White Sands),
smoothing over a constant-height interval rather than a constant-

time interval. Various thicknesses were tried, from 100 to 500

meters; these are substantially narrower layers than the effective

smoothing interval at the higher altitudes of Engler's data. For
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these layers, Boer and Mahoney found that if the acceleration term,

_/(_-g), was included in the wind computations, the correlation

between wind profiles based on data from two radars (FPS-16) track-

ing the same balloon was greatly reduced.

The reduction in one sounding (No. 933, 1500 MST) was so dra-

matic that it occurred to us to correlate the wind profiles based

on the Engler data, which also include the acceleration or "response

correction, but involve a smoothing interval of 22 sec. For the

actual fall rates of this sounding, this amounts to a layer thick-

ness ranging from 1.8 km to 3.4 km at 60 km. Figure 3 shows the

wind profiles(u component), which are indeed in very close agree-

ment. _he correlation between them, on removal of the basic trend,
is 0 93 in contrast to an extremely low correlation, 0.09, cal-

culated by Boer and Mahoney.

Thus, insofar as it rises above the radar noise level, Engler's

smoothing appears more realistic. At altitudes of 45-60 km,

Lettau (ref. ii) appears to have made effective use of the White

Sands Engler-reduced data in tracking small-scale structure which

he interprets as evidence of internal gravity waves. At high

altitudes Engler's smoothing interval, however, becomes quite gross

(effectively, 4-5 km above 70 km), and consideration should be

given to a shorter time interval which would exclude tracking error

and yet permit the resolution of small-scale wave structure. Not

only would the time interval be critical, but the choice of poly-

nomial fitted to the high-altitude data, whether cubic or linear,

for example (Luers, ref. 2), would also be important. Indeed, it

appears that various tradeoffs would be necessary to minimize the

error in both wind and density, while suppressing radar error.

Mention should be made of small-scale oscillations in the

ROBIN density profiles. Unfortunately, there were very few valid

thermodynamic data from the White Sands series. Figure 4 is a

plot of the two profiles based on radar tracking of the same

balloon (sounding no. 933). The curves are in excellent agreement.

The indicated oscillations in both curves are of small amplitude,

making a more detailed comparison difficult, but the oscillations

are clearly in phase and with scarcely detectable divergence. Like

the wind profiles, these data indicate that for the smoothing

interval used by Engler, there is no apparent distortion from

radar error.

iCorrelation is meaningful in first decimal digit only, owing

to subjectivity in determining the trend and choice of sampling

frequency in the profiles.
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Accuracy Estimates

Finally, we need to have in mind the overall error estimates

in the ROBIN data, as given by Engler (ref. i). These are, for an

FPS-16 or similar radar and the curve-fit (31-7) commonly used:

TABLE I. ROBIN error estimates a

RMS Error

Above 60 km 50-60 Below 50

WIND

DENSITY

PRESSURE

TEMPERATURE

Rigid balloon

Non-rigid

Rigid balloon

Rigid balloon

Rigid balloon

6 knots 2.5 1

I0 7 5

3.5% 3% 3.5%

3% 3% 2.5.%

10% 3% b 4% b

TEMPERATURES FROM SPHERE SOUNDINGS IN GENERAL

The temperature error requires special discussion. As is

well known, a relationship based on the hydrostatic equation is

used for deriving the temperature when no thermodynamic data other

than a density profile are available (eq. 3, Appendix). An initial

guess of the temperature T , is required at the starting altitude,

i.e. the top altitude with°density data. The error in temperature

is thus a function of two factors, (I) the departure of the initial

temperature from the true temperature, and (2) the error in the

density throughout the layer of integration.

For an error-free density profile, it is evident that nearly

ambient temperatures are not achieved until the ratio po/p be-
comes negligibly small. This happens typically at an altitude

roughly two scale heights, or about 16 km, below the starting

altitude. The reduction of the ratio p_o_ p with increasing
height separation is shown in Table II. example, for a height

separation of 2 scale heights p_/p = 0.135, and the temperature

error ranges from 0.5 to 3% depending on the error in the temper-

ature guess at the starting altitude. The temperature error itself

a

Based on Table I (ref. i).

b

See discussion of temperature error in following section.

231



o

0

tO

+I

/

• 0 _ 0

v v v

0 0 0 0

0'3 _ ,'-t

232

H

H

,-4

-,'4 0
N

0-_
1.4-,-I
1,4._
¢) ,.-I

0
4a

¢) .,-I

,el _4

.--. 4.J
['q In

¢)
1.4 0

4.J

1,4 I,.4

-,-I Ill

0

r..)
o

o

0

+l

o

0

CXl

+1

o

0

,--t
+1

N

II
O_

0

Q.

N

d_O _ o_o o_o

UD 0 _ 0

0 0 0 0

j _ O0 L_

0 0 0

0 0 0 0

.t:1

o_ o_o o_o o_

0 0 0 0

kO CO _ L_
0 kO O,1
_D (_ ('_ ,'-I

0 0 0 0

._ O0 ,--I _D

•,-I o

I::n o

0 u_l
-_I 0
.p

-,--t _
,.--t _

•,--I Ill

m

-,-t .Q

_ 0
•,--t 1.4

g-I

0 _

1,4 -I_

•,--t L)
4.-I
_ m

m _

1.4

,.Q



P0)AT, where A T is identi-was obtained by evaluating the term, -_-

fied with the potential error in T (eq. 3) for a given climatolog-
ical regime, o

If a certain level of temperature accuracy is desired, say
2.5%, it is thus not generally possible to estimate the first

altitude of "good" data without some preconceived idea of the tem-

perature variability at the station of interest. In low latitudes,

we know from rocket grenade observations, for example, that if the

temperature in the U.S. Standard Atmosphere Supplements, 1966

(ref. 12), is used for T , the true temperature will not likely
differ by more than 20 o.o Thus, from Table III it can be seen that

nearly ambient temperature would be achieved at a height separation

of about i0 km. In high latitudes in winter, however, the tempera-

ture variability is typically much greater, and it is doubtful that

ambient temperatures will be sensed at separations less than 2 scale

heights. The summer mesopause is known to have very cold tempera-

tures associated with it, with the scale height possibly as low as

4-5 km, so that near 80 km real temperatures might be sensed in
relatively shbrt order.

The other error source for temperature is error in the densi-

ties themselves and it should be noted that it is the error over

the layer of integration that matters, not just the error at al-

titude (eq. 3, Appendix). According to Engler (ref. I) various

density error profiles are possible. However, it may not always

be possible to describe the height configuration of the density
error in individual profiles, so that in some cases the total

error in temperature may not be ascertainable. At the very least,

Table III clearly illustrates that the temperatures provided in the

first few kilometers below the first level of density data should

not be construed as real temperatures. At times the reported

temperatures may fortuitously come close to the real values, but

we know of no way to readily distinguish these cases. The practice

of publishing complete temperature profiles in the data books of

the Meteorological Rocket Network thus seems questionable, at

least without some qualification as to the validity of the data

at the topmost levels. Jones and Peterson (ref. 3), however,

consider publication justifiable on the groundsthat although the

absolute values of the temperature may be in error, "valid trends
can often be seen."

For the height range in which reasonably accurate temperatures

may be expected, comparison with data obtained by other techniques

is desirable. Since this topic was to be considered in depth by
other speakers, only a few remarks will be made here.

Jones and Peterson (ref. 3) have discussed the extent of

agreement of data obtained with the aid of the University of

Michigan 66-cm sphere, with grenade (layer-average) temperatures
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and with HASP rocketsonde data in August 1965, at Wallops Island.

Initially, the sphere and grenade measurements differed appreciably,

the sphere temperatures being warmer. Improvements in the micro-

phone array for the grenade measurements and in the sphere drag
coefficients resulted in better agreement. In a combined sounding

in which grenade and sphere measurements were separated at most by

i0 minutes, the temperatures were found to agree generally within

a few degrees. Oscillations in the sphere temperature curve were

not present in either the grenade data nor in the HASP rocketsonde

data at lower altitudes. Certain oscillations should, of course,

not be expected in the grenade temperatures, in view of the layer-

averaging; their absence in the HASP data, however, suggests that

the oscillatory part of the sphere data may be erroneous. Jones

and Peterson gave several possible explanations, namely, a poor

radar track, a deflated sphere, peculiar aerodynamics of the sphere,

or the effect of large vertical motions in the atmosphere. The

first twoiwere not judged to be the cause in this case; there were

arguments against aerodynamic behavior as a cause; and the verti-

cal motion effect2could not be evaluated owing to a lack of suit-
able information.

In the case of temperatures from ROBIN soundings, S. Teweles

(private communication to N. Engler, Jan. 7, 1964) pointed to an

apparent discrepancy between ROBIN and grenade temperatures but

subsequently Engler determined that the ROBIN data used for compari-

son did not meet the criteria for acceptability (balloon collapse

above 50 km). Indeed, even now, there is no extensive set of

ROBIN and grenade data available, to our knowledge, obtained under

similar observing conditions, which would permit definitive com-

parison. The situation with respect to rocketsonde thermistor
data does not seem much better, since in the altitude region where

ROBIN temperatures should be most reliable, about 45-60 km (assum-

ing the thermodynamic data commence at _70 km), the thermistor

temperatures are subject to increasing error with height. The

results of comparisons of ROBIN and Arcasonde temperatures at

altitudes near 50 km will be presented in the next section.

2

The subject of vertical motions was to be considered by

another speaker; it is generally agreed that vertical motions are

important only if they are of the order of m sec -_. Although per-

haps rare, motions of this magnitude may be possible, above 30 km.
In the stratosphere vertical motions of cm or mm sec -I have been

generally found (Miller, ref. 13), but during a stratospheric
warming in 1966, upward motions as high as one-half meter sec -I

were estimated (Quiroz, ref. 14). Above the mesopause motions near

i0 m sec -I have been reported. Thus the effect of vertical motions

may be a difficult problem to evaluate until better statistical

knowledge of the motions is obtained.
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ILLUSTRATIVE DATA

Cape Kennedy, Dec. 7, 1964

A ROBIN sounding for Dec. 7, 1964 has been selected to illus-

trate the broad agreement of the ROBIN data with atmospheric measure-

ments by other methods (Fig. 5). On this date the zonal wind

indicated by the sphere increases at an extraordinary rate between

30 and 55 km; the local vertical shear near an altitude of 33 km

is about 20 m sec -I km -I, a value which may be considered statisti-

call[ rare. At 55 km the westerly wind component exceeds I00 m
sec-_ and is three times as great as the tropospheric wind maximum

at the same station. So unusual a sounding might be questioned,

especially in view of the westerly firing angle (to the east) at

Cape Kennedy.

Later the same day, however, a wind profile based on the

tracking of a parachute indicated close agreement with the ROBIN

profile (the observed differences are probably due to real atmo-

spheric variation). Figure 6 shows the synoptic situation on

Dec. 9 (maps Were not analyzed for Dec. 7); a very strong jet is

found at the 0.4 mb level (about 55 km over Florida), with strong

winds observed as far west as Hawaii. At the 5-mb level (about

35 km), the winds are light over Florida and to the south, in

agreement with the data for Dec. 7.

The temperature and density profiles for this date are also

of some interest. In view of our earlier discussion, realistic

sphere temperatures would be expected at Kennedy some i0 km below

the starting altitude and indeed, good agreement with rocketsonde

thermistor temperatures can be seen just above 50 km. Near 55 km,

comparison is precluded by the likelihood of increasing error

with height in the thermistor measurements (Quiroz, ref. 15). The

reality of the temperature difference at 42-44 km would be difficult

to ascertain. It seems reasonable to conclude that reliable

temperatures are indicated by both methods of observation at least

in the height range 44 to 52 km. A statistical comparison of

sphere and thermistor temperatures will be described below.

The ROBIN densities are 7-10% lower than the Arcasonde

densities, for which the observation time is in mid day. Part of

this difference may be due to diurnal variability. The possibility

of a systematic bias will be explored below.

Ascension Island Temperature Comparison, March-June 1964-65

The period March-June 1964-65 was chosen for the comparison

of temperatures from Arcasonde thermistors (1965) and from ROBIN

sphere soundings (mainly 1964). The comparison was limited to

three altitudes, 46, 50, and 54 km, where data from both sources

should be considered reasonably reliable. The thermistor data have
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not been corrected for possible aerodynamic, radiational, and con-

duction heating errors, which have been estimated at about 2 de-

grees (total) at 46 km, increasing to about 5 degrees at 54 km

(Drews, ref. 16). The number of ROBIN soundings (18) is small, but

nevertheless represents one of the densest clusters of such sound-

ings available, save for the experimental series at Eglin AFB in

1960-62.

The observed temperatures are plotted in Figure 7 and relevant

statistics are given in Table III. Inspection of this table shows

that:

(i) Average temperatures from the two sources agree within

about three degrees if the thermistor data are un-

corrected.

(2) Sphere temperatures are warmer by a few degrees if

compared with corrected thermistor data.

(3) The dispersion of the sphere temperatures, as given by

the values of standard deviation, is greater than for

the thermistor temperatures. (No attempt was made to

smooth the oscillations present in the sphere data;

smoothing would have brought the standard deviations

into closer agreement.)

While the sample is probably too small to give stable statis-

tics, these data indicate that over a definable height range the

sphere average temperatures are at least realistic. Further com-

parison in a regime of greater variability (middle or high latitudes

in winter) is desirable. Moreover, the influence of oscillations

of large amplitude needs to be examined further.

An interesting feature in Figure 7 is the indication of a

diurnal temperature increase from 04-05 GMT to 16-18 GMT in three

pairs of observations. At 46 km, the two thermistor pairs on

May 23 and 26 indicate a diurnal range of about 10°C; this range

is also indicated by the pair of sphere observations on April 8,

which are not subject to any direct radiational error. At 50 km

a similar behavior is observed; part of the large temperature in-

crease in the sphere pair, however, may be due to non-diurnal effects

Enigma in Ascension Island Density, August 1964.

Figure 8 depicts the observed densities at Ascension Island

in 1964 at two altitudes, 46 and 60 km, based on ROBIN sphere

soundings, together with comparative data obtained by other methods.
The lower altitude was chosen because at this height the sample of

thermodynamic data from descending spheres was still appreciable

and would permit comparison with values derived from thermistor

measurements; as previously indicated, the error in the latter

has been considered small in the upper stratosphere.
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Figure 8 shows a number of interesting features, of which

the most striking is the unusual and highly improbable behavior in

mid-August. A density increase by 35% at 46 km and by 43% at 60 km

is indicated by the sphere data in a period of 31 hours. These

values greatly exceed the maximum density change in 24 or 48 hours

previously indicated from rocketsonde data, namely a change of 19%

occurring at a high-latitude station (Quiroz, Lambert, and Dutton,

ref. 17). Yet by the criteria for acceptability stated earlier,

the soundings in August must be considered reliable soundings.

It is noteworthy that the extraordinarily high density on August 17

was again observed two days later, and the low value of August 16

was similar to the value observed earlier on August 12. Corre-

spondence with the Air Force office responsible for the observation-

al program at Ascension Island did not reveal any irregularity in

data reduction. Subsequently, Engler (ref. i) applied his time-

of-fall test for suspect balloons and judged the soundings to be

valid. Thus, while the values observed on August 17 and 19 were

too extreme to inspire credibility, there seemed to be no way of

showing that the data were incorrect. In preparing this review,
it occurred to us to examine, insofar as possible, the internal

consistency of the thermodynamic data with the observed winds.

The temperature change from August 16 to ]7 amounted to only a few

degrees at 46 km. Thus a large pressure increase was associated

with the increase in density. Fortunately, pressure data were

also available for another rocket station, Antigua (17°N), on

August 17. A geostrophic computation, assuming a linear pressure

change between the two stations 3, indicates that if the pressures

and densities at Ascension are valid, the zonal wind at Ascension

should exceed 400 m sec -I. The wind obtained from radar tracking

of the ROBIN sphere was at most 25 m sec -I in the vicinity of 46 k_.

We therefore conclude, on the basis of purely physical reasoning,

that the soundings of August 17 and 19 are invalid. Rocket grenade

observations were also taken on August 16 and 17, though the

results were not available until much later (Smith et al., ref.18).

These data, entered on Figure 8, are completely at variance with

the sphere results.

This case is but one, although possibly the most dramatic,

of several extraordinary sphere soundings encountered by the author,

and it emphasizes the need for careful scrutiny of all data by the

user. Indeed, all rocket soundings by whatever method require

careful review, since the many aspects of data reduction and

transcription may increase the possibility for error.

3

A non-linear pressure distribution would require an even

greater wind than that computed, at some point between the two sta-

tions.
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Densities from Sphere Soundings Compared with Other

Measurements

Another feature of interest in Figure 8 is an apparent dis-

crepancy in densities based on sphere soundings and on thermis-

tor measurements. Ascension Island offers a useful opportunity for

comparison because at the end of September 1964 the observational

program reverted from an exclusively sphere schedule to a predomi-

nantly Arcasonde schedule. Also available for comparison in 1964

are a few grenade and Pitot-static tube measurements at Ascension

and several University of Michigan sphere soundings at Kwajalein

(9°N, 168°W). From other years, tropical grenade soundings at

Natal, Brazil (6°S, 35°W) (1966-67) and Guam (14°N, 145°E) (Nov-

ember 1958) are also entered.

Two points are readily apparent:

(i) The sphere densities are, with rare exceptions, lower than

the mean based on thermistor densities; e.g. in September-December,

1964, the mean sphere density is nearly 10% less than the mean

based on thermistor measurements.

(2) A greater dispersion is indicated by the sphere measure-

ments.

At the upper altitude, the difference between sphere and ther-

mistor measurements is partly due to the error in the latter, which

increases strongly above 55 km, and no attempt has been made to

enter individual thermistor values for 60 km.

It is therefore meaningful to concentrate on the data for 46 km,
where the error in either set of data should be minimal. Various

possible explanations of the observed difference merit considerations,

such as unsuspected temperature error in the rocketsonde measure-

ments, error in the drag coefficient used for the sphere reduction,
etc.

The effect of a thermistor temperature error may be evaluated

with the aid of the integrated hydrostatic equation in the form _

0=0o( o) i
4

In practice, pressures and densities based on rocketsonde

temperature are obtained through use of the approximation

- PoeXp(-gAz/R _), but as has been shown by Ballard (ref. 19),
he departures from results based on the more exact Eq. (i) are

negligibly small.
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Introducing an error, AT, in temperature, held constant over the

layer of integration, the density at the upper altitude becomes

and the ratio of (2) to (i) is

(2)

R

(3)

For a temperature structure approximating the conditions at

Ascension Island 5 and for a hypothetical temperature bias, AT, in

the thermistor soundings, sustained over the 20-km layer from 26

to 46 km, the solution of Equation (3) yields a density error of

approximately +3% if AT = +3 ° , increasing to +8% if AT = +8°C.

(Over a 10-km layer from 36 to 46 km, a temperature error of 16 °

would be required to explain a discrepancy of 8% in the density at

46 km.) The rocketsonde temperatures are generally believed to be

quite accurate below about 50 km, although some disagreement with

radiosonde temperatures near 30 km has yet to be explained (Quiroz,

1969). Since an unreasonably large temperature error is required

to explain the density difference in Figure 8, it appears that we
must look to some other error source, or more likely, a combination

of sources.

According to Engler (ref. i) uncertainty in the drag coefficienl

for ROBIN spheres is less than about 2% below 50 km, but improved

knowledge of this factor is needed. Luers(ref. 2) and Peterson

_ef. 6) have pointed to inconsistencies in the available drag tables

and have re-emphasized the need for improved data. An interesting

series of measurements with hypersonic rigid spheres (Kwajalein,

1965-1968) has been obtained under conditions for which a high

degree of confidence can be placed in the drag data used, according

to Salah (ref. 4, 21). Comparative ROBIN and hypersonic sphere

measurements, if feasible, might shed light on the drag data used

for the inflatable, subsonic spheres.

It is interesting to note in Figure 8 that measurements by the

grenade method tend to lie between the sphere and thermistor values.

Almost without exception, the grenade densities are lower than the

thermistor values. It is therefore our belief that the discrepancy

between the sphere and Arcasonde data must be due to error in both

methods of measurement.

5Supplemental Atmosphere data for 15°N were used.
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Diurnal series, Eglin AFB, May 9-10, 1961

Another example of unusual sphere data is found in the diurnal

series for May 9-10, 1961 (Figure 9). The 2000 GMT observation

indicates a density increase of nearly 30% from 1600 GMT. This

sounding and two soundings at 1015 and 1115 were not used by Cole

and Kantor (ref. 20) in their harmonic analysis for data at 60 km.

Summing the first two harmonics, Cole deduced a daily range of 12%

in the density. The inclusion of the three unused soundings, in

particular the data for 2000 GMT, would probably have had a strong
influence on the results. To the author's knowledge, these data

have not yet been shown to be invalid. Lenhard's (ref. 22) analysis

of the wind data for this observational series indicated a weakening

of the easterly flow in parallel with the afternoon rise in density,

suggesting a diurnal advective effect, but careful study would be
required to show a relationship.

USES OF SPHERE DATA AND FINAL REMARKS

Data from falling spheres have already proved useful in a

variety of ways, but their full potential has not been exploited.
They have already been used in:

(i) the construction of high-level synoptic maps.

(2) preliminary determinations of diurnal variability of

density and wind: in the lower mesosphere from ROBIN data, in the

stratosphere and mesosphere from Australian spheres (Rofe et al.

ref. 23), and in the quasi-isopycnic layer at about 90 km fr---om--

Michigan spheres (Jones and Peterson, ref. 3).

(3) exploratory studies of small-scale variability (Newell,

Mahoney, and Lenhard, ref. 24, Lettau, ref. ii; Mahoney and Boer,
ref. 25; Cole and Kantor ref. 26 and others).

(4) models of the density structure in the important region
90-120 km (U.S. Standard Atmosphere Supplements, 1966, ref. 12).

(5) climatological data processing (e.g., Brockman, ref. 27
Salmela and Sissenwine, ref. 28).

With regard to (I), the synoptic analysis program of the

Upper Air Branch, National Meteorological Center, has resulted in

a continuing series of weekly constant-pressure charts at levels

centered at about 36, 42, and 55 km (5, 2, and 0.4 mb), beginning

in 1964. (Constant-level density charts have also been produced
though less frequently.) Because of the preponderance of rocket-

sonde data (Quiroz, ref. 15), the utilization ratio of sphere

data is small. The analysis technique requires wind and temperature

for input, and not surprisingly the temperatures from ROBIN spheres
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could be used only infrequently. This was due to (i) the typically

small height range of valid temperatures and (2) untenable depart-

ures from the otherwise smooth temperature fields depicted in the

analyses. These departures were at times associated with oscilla-

tory features in the sphere profiles and would have been minimized

if smooth profiles had been used. Nevertheless, the sphere data

have at times provided missing links in a rocket network of sparse

coverage, and they have a strong potential utility in future work,

particularly if the height range of valid data is extended.

One of the most promising uses of the data is for better

defining the complex density structure from 90 to 120 km. Only a

handful of soundings have been used as a basis for deriving

structural models of the thermosphere, yet as Figure 1 shows there

has been a large increase in the number of soundings obtained in

recent years. In addition to providing a better grasp of boundary

conditions for thermospheric models (Thomas, ref. 29), improved

knowledge will permit more definitive investigation of the influ-

ence of variable solar activity at these altitudes (Lindblad,

ref. 30; Ellyett, ref. 31).

We have sought to indicate, through a few examples, that the

sphere density and wind data are, with rare exceptions, reliable
over definable ranges of altitude. Temperatures should be reliable

at two scale heights below the first altitude of density data, but

the oscillations in temperature, which either are of greater ampli-

tude than those encountered in rocketsonde profiles or are some-

times not present in the latter, need further study. It is rec-

ommended that this problem be given special attention, since the

full utility of the temperature data cannot be achieved until the

reality of the oscillations is ascertained. Other problems for

investigation are the apparent systematic difference in densities

based on sphere versus thermistor soundings, the accuracy of the

available drag data, and the possibility of large vertical motions

which might at times affect the sphere results. With regard to

high-altitude data from spheres with fast descent rates, consider-
ation should be given to determining an optimum smoothing interval

which at the same time suppresses radar error and preserves small-

scale atmospheric structure. Finally, it is recommended that

comparative experiments in the future be conducted preferably in

winter in high latitudes, under conditions which favor the unam-

biguous separation of observational error from true variability.

242



REFERENCES

l .

.

.

,

,

.

,

,

,

i0.

ii.

Engler, Nicholas A., 1965: Development of methods to determine

winds, density, pressure, and temperature from the ROBIN falling

balloon. Univ. of Dayton Res. Inst., Contract AF19(604)-7450,

Final Report.

12.

Luers, J.K., 1968: Estimation of errors in density and tem-

perature measured by the high altitude ROBIN sphere. Proc.

Third Nat. Conf. on Aerospace Meteorology, New Orleans,

472-477.

Jones, L.M. and Peterson, J.W., 1968: Falling sphere measure-

ments, 30 to 120 km. Meteor. Mon., vol. 9, no. 31, 176-189.

Salah, Joseph E., 1967:

using hypersonic spheres.
5389-5393.

Atmospheric measurements at Kwajalein

J. Geophys. Res., vol. 72, no. 21,

Faucher, G.A.; Morrissey, J.F.; and Stark, C.N., 1967: Falling

sphere density measurements. J. Geophys. Res., vol. 72, no. i,

1967, 299-305.

Peterson, John W., 1967: Falling sphere method for upper-air

density, temperature, and wind. COSPAR Technique Manual

Series, Paris, Appendix 7.

Champion, Kenneth S.W. and Faire, A.C., 1964: Falling sphere

measurements of atmospheric density, temperature, and pressure,

up to 115 km. AFCRL, Env. Res. Paper no. 34.

Engler, Nicholas A., 1967: Report on high altitude ROBIN

flights October 1966. Univ. of Dayton Res. Inst., Contract

AF19(628)-4796, Sci. Report no. i.

Lenhard, Robert W. and Arthur J. Kantor, 1965: A catalogue of

ARCAS-ROBIN soundings. AFCRL Env. Res. Paper no. 113.

Boer, George J. and James R. Mahoney, 1968: Further results

on the velocity structure in the 30-60 km region deduced from

paired ROBIN soundings. M.I.T. Contract AF19(628)-5075,

Final Sci. Report, 1968.

Lettau, Bernhard, 1966: Persistence of small-scale features

in the mesospheric wind field. AFCRL, Env. Res. Paper no. 198.

U.S. Standard Atmosphere Supplements, 1966.

Printing Office.

Government

243



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Miller, Alvin J., 1967: Note on vertical motion in the lower

stratosphere. Beitr. Physik Atmos., vol. 40, no. 1-2, 29-48.

Quiroz, Roderick S., 1969: The warming of the upper strat-

osphere in February 1966 and the associated structure of the
mesosphere. Mon. Wea. Rev., vol. 97, no. 8, 541-552.

Quiroz, Roderick S., 1969: Meteorological rocket research

since 1959 and current requirements for observations and

analysis above 60 kilometers. NASA CR-1293.

Drews, William A., 1966: Final report on research and develop-

ment to improve temperature measurements at high altitudes.

Atlantic Res. Corp., Contract NASI-1611, TR-PL-8876.

Quiroz, Roderick S.; J.K. Lambert; and J.A. Dutton, 1965:

Density and temperature variability in the upper stratosphere
and the mesosphere. AIAA Second Aerospace Sciences Meeting,

New York, Jan. 25-27, 1965, AIAA Paper no. 65-12.

Smith, Wendell E.; et al., 1966: Temperature, pressure, density,

and wind measurements in the upper stratosphere and mesosphere,

1964. NASA TR R-245_

Ballard, Harold N., 1968: A parachute-borne beta ray densi-
tometer. Proc. Third Nat. Conf. on Aerospace Meteorology,

New orleans, May 6-9, 1968, 86-93.

Cole, Allen E. and Arthur J. Kantor, 1964: Horizontal and

vertical distributions of atmospheric density, up to 90 km.

AFCRL, AF Surveys in Geophys., no. 157.

Salah, Joseph E., 1969: Tropical air density below 80 km

from hypersonic sphere measurements. J. Appl. Meteor., vol.

8, no. 4.

Lenhard, Robert W., 1963: Variation of hourly winds at 35 to

65 kilometers during one day at Eglin Air Force Base, Florida.

J. Geophys. Res., vol. 68, no. i, 227-234.

Rofe, B; W.G. Elford; and E.M. Doyle, 1966: Diurnal variations

in density, temperature, pressure, and wind, between 40 and 90

km, in the sub-tropical latitudes of the Southern Hemisphere.

Australia Weapons Res. Est., TN PAD-II6.

Newell, Reginald E.; J.R. Mahoney; and R.W. Lenhard, 1966:

A pilot study of small scale wind variations in the strato-

sphere and mesosphere. Quart. J. Roy. Meteorol. Soc., vol. 92,

no. _91, 41-54.

244



25.

26.

27.

28.

29.

30.

31.

32.

Mahoney, James R.; and George J. Boer, 1968: Horizontal and

vertical scales of winds in the 30 to 60 kilometer region.

Proc. Third Nat. Conf. on Aerospace Meteorology, New Orleans,
May 6-9, 1968, 457-464.

Cole, Allen E.,and Arthur J. Kantor, 1968: Spatial variations

in stratospheric and mesospheric wind fields. Proc. Third

Nat. Conf. on Aerospace Meteorology, New Orleans, May 6-9, 1968,
465-471.

Brockman, William E., 1964: Summaries of meteorological data

from ROBIN flights of 1960-1962. Univ. of Dayton Res. Inst.,

Contract AF 19(604)-7450, Report no. i.

Salmela, Henry A., and Norman Sissenwine, 1969: Distribution

of ROBIN sensed wind shears at 30 to 70 kilometers. AFCRL,

Env. Res. Paper no. 298.

Thomas, Gary E., 1968: The influence of lower boundary condi-

tions on thermospheric models. Meteor. MQn., vol. 9, no. 31,
213-214.

Lindblad, B.A., 1968: A long-term variation in mesosphere

and lower thermosphere density and its relation to the solar

cycle. In: Space Research VIII; North-Holland Publ. Co.

(Amsterdam), 835-844.

Ellyett, C.D., 1968: Influence of atmospheric density vari-

ations of solar origin on meteor rates. ESSA TR ERL 71-ITS-61.

Staff, Upper Air Branch, National Meteorological Center, 1967.
Weekly Analyses, 5-, 2-, and 0.4-mb surfaces for 1964. ESSA
TRWB-2.

245



APPENDIX

PHYSICAL EQUATIONSFOR REDUCTIONOF SPHEREDATA

Atmospheric
Variable

WIND u = x -

Complete
Equation

(_ - w)(_ + C x - Bx)

"z + C - B
Z Z

(la)

Simplified

Equation

N •

U = X

- g
(ib)

u, horizontal west-east component

w, vertical motion (atmospheric)

g, acceleration of gravity

C,B Coriolis, buoyancy forces

Equation for v, the horizontal south-north component,
is similar. The total wind, V = (u2 + v2)i/2. For

generality, the Coriolis and buoyancy forces in (la)
are retained in the ROBIN program. C is judged

significant above 90 km (ref. i). The buoyancy force

B = (v)$pg, may be large below about 30 km. In the
simplified equation (ib), vertical motion and
horizontal Coriolis and buoyancy forces are neglected.

This eq. is used after collapse of ROBIN balloon.

Under certain conditions, the acceleration or

"response" term, _ x/(z - g), might be neglected if

u q x, but Engler shows that error due to neglect of

this term may be very large at high altitudes and

does not recommend the use of the approximation.

DENSITY In general, FD = 1/2pV_CDA = maD

i.e.,

2ma D
p = _--

V %A

For ROBIN p

z - - C)
p

CDAV(f_ - w) + (v)Bg z

(2a) (2b)
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TEMPERATURE

APPENDIX (Continued)

In (2b), Coriolis and buoyancy forces and vertical

motion are neglected. This is form of eq. commonly
used.

In general, _p/_z = - pg; p = pRT.

Integrated hydrostatic equation,

 izoT = _ pg dz + T o T_ i Z Po_-_ ;g _ +- ToP

(3a)

z is starting altitude.
o

Mathematical symbols not defined above:

dx/dt, d2x/dt 2, etc.

A

a
D

C
D

¥

H

m

P

R

P

ST

T,T

V B

Eq. (3b) is used.

sphere cross-sectional area

drag acceleration

drag coefficient

temperature lapse rate, dT/dz

pressure scale height (H = RT/g)

sphere mass

pressure

gas constant for dry air

air density

standard deviation of temperature

temperature, mean temperature

sphere velocity

sphere volume

(3b)
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Figure 2.-Variation in amplitude of indicated wind oscillations

due to choice of data fit. (Adapted from Figure 9, Engler,
ref. i, which shows additional curves for other fits.)

249



64

63

62

61

60

59

58

57

56

._ 55
54

53
52

50

49

48

47

White Sands Mar. 6,/965 . o

- 1500MST
m

_Sounding 933
- Radar I (FPS-16)

- o Radar 2 (FPS-16) "°

_ x Trendm

%

r,_-o93
1

4

,0

Ot

O.

i I I I I l I I

0 I0 20 30 40 50 60 70
ZONAL WIND M/SEC

64

63

62

61

60

59

58

57

56

55
54
53
52

51

-50

- 49

- 48

- 4?"
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Figure 6.-Constant-pressure maps for the 0.4- and 5-mb levels,

Dec. 9, 1964 (Staff, Upper Air Branch, NMC, ref. 32).
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