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SUMMARY

The problem of computing winds and thermodynamic data utilizing the space-time

coordinates of a falling sphere becomes complex when the apogeee of the sphere is over

100 km. This paper describes the methodology used in constructing the computer

program.

ROBIN/ARCAS SYSTEM

The ROBIN/Arcas system consists of a ROBIN balloon, an Arcas rocket motor, and

an AN/FPS-16 tracking radar. The ROBIN sphere is made of ½- mil Mylar inflatable to

a diameter of 1 meter containing an internally supported corner reflector. Packaged in

a collapsed condition within the nose-cone of a meteorological rocket, it is elected at the

apogee of the rocket and inflated to a super pressure of approximately 10 millibars by

vaporization of a liquid such as isopentane. Thus inflated, the ROBIN sphere is tracked

from apogee to approximately 30 km altitude by an AN/FPS-16 high-precision tracking

radar. The Arcas rocket motor is a 4.5-inch-diameter solid-propellant end-burning

rocket capable of carrying the sphere payload to an altitude of 75 km. The FPS-16

tracking radar generates spherical space-time coordinates at digitized increments of

1/10 second. From the space-time coordinates, the meteorological parameters of den-

sity, wind, temperature, and pressure are deduced. A discussion of the ROBIN/Arcas

system, with some of its advantages and shortcomings, is contained in reference 1.

Early results from the ROBIN/Arcas system whetted man's appetite to extend

the passive sphere experiment to altitudes beyond the reach of the Arcas motor. To

achieve this dream the Air Force Cambridge Research Laboratories (AFCRL) has

experimented with a variety of boosted rocket motors. The most successful of these is

the Viper-Dart rocket motor. The Viper-Dart rocket is capable of carrying the ROBIN

payload to an apogee of 125 to 140 km. It was anticipated that the extended balloon apogee

of 125 km would enable density and perhaps wind measurements to be extended to 100 km.

The data-reduction program designed by Engler (ref. 1) to reduce the data from

ROBIN/Arcas flights produced accurate density and wind measurements below an altitude

of 70 km. The high-altitude ROBIN/Viper-Dart system, however, produces balloon
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velocities and accelerations much larger than the ROBIN/Arcas system. For this reason

the smoothing techniques used in the 1965 ROBIN/Arcas program are not optimum for use

with the ROBIN/Viper-Dart system. It has been shown by Engler (ref. 2) that the stand-

ard ROBIN/Arcas data-reduction program is not satisfactory for use with high-altitude

flights. Accepting the recommendations of Mr. Engler, AFCRL has requested the

University of Dayton Research Institute (UDRI) to develop a new ROBIN data-reduction

program which would result in optimum density and wind measurement for high-altitude

rocket launches as well as the standard Arcas rocket. It is the purpose of this paper to

discuss the new data-reduction program, to explain the rationale and methodology used to

design the program, and to discuss the errors in the winds and thermodynamic data that

result from the use of this program.

PROGRAM SPECIFICATIONS

The preliminary specifications for the program consisted of the following items:

(a) the program should be optimum for measuring density and wind in the 70 to 100 km

region of the atmosphere assuming a balloon apogee of 125 km, (b) the program should

also give accurate and reliable density measurements from 30 to 70 km, (c) even though

the data-reduction technique need not be optimum for balloon apogees other than 125 km,

other balloon apogees between 75 and 140 km should not result in a serious degradation

of the meteorological parameters, (d) temperature and pressure accuracies should be

commensurate with density accuracy, and (e) the program should accurately determine

the altitude of balloon collapse so that density calculations can be terminated.

DENSITY AND WIND MEASUREMENTS

To obtain density, the drag force that the atmosphere exerts upon the sphere must be

measured. In the altitude region from 70 to 100 km, the vertical velocities and acceler-

ations are much larger than the horizontal velocities and accelerations. For this reason

the drag acceleration is primarily in" the vertical direction. Accurate density calculations

are thus largely a result of the accuracy to which vertical velocities and accelerations can
be measured.

Horizontal winds influence the sphere's trajectory by inducing horizontal excursions

in its path in three-dimensional space. These horizontal excursions are used to recon-

struct the wind profile. Thus, for measuring wind, the horizontal velocity and accelera-

tion components must be determined accurately.
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Since densities dependprimarily onvertical measurementsandwinds dependpri-
marily on horizontal measurements, it is possible to construct a data-reduction scheme
which will optimize bothwind and density measurements. The data-reduction scheme
used to reduceViper-Dart flights is so designed.

DENSITY

Density is computed by the following equation:

m(g- [- Cz)

p = I_CDAV(_ - Wz) + VBg
2

(i)

The symbols are defined in the appendix. The computed density error is a result of the

errors present in the parameters on the right side of equation (1). A negligible contribu-

tion to the error in density is made by VB, Cz, g, m, and A. The remaining vari-

ables which make a significant contribution to density error are CD, z, _, Wz, and v.

DENSITY ERROR EQUATIONS

For the purpose of deriving an error equation for density, the density equation

(eq. (1)) can be simplified to

m(g - _,)

P= 21_CDA(_ _ Wz) 2

(2)

where v has been set equal to (_, - Wz) and both buoyancy and Coriolis force have been

neglected.

Considering the error in density to be a function of the errors in CD, Wz, _, and

only and assuming further that the errors in the radar coordinates are independent and

normally distributed with mean zero and variance

error in density is given by

? o7tWz_?
_-L Dj +

a, the error equation for the percent

2+F-0"_7 2 [ 2(_{, ]2 IZ2(_+AT,_ g)-*- Av')2(v'-g (3)LZ-m + + e, g)(7' + AZ) '2

The object of the computer program as mentioned earlier is to minimize equation (3)in

the altituderegion from 70 to 100 km. Equation (3)cannot be minimized by minimizing

each of the terms on the right-hand side of the equation because the lastthree terms are
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interrelated. The first two terms, however, are independentandthus allow for individual
minimization.

ERRORIN DRAGCOEFFICIENT

There is nocommonly accepteddrag table in use todaywith knownaccuracy. Of the
drag tables beingused,disagreementsas high as 15%to 20%exist in certain areas (ref. 3).
As seenin figure 1, disagreement exists not only betweenthe values of CD for various
drag tables (refs. 4 to 6) but also in the slope of the curves. The drag tables used in pre-
vious ROBIN programs designedby UDRI rely primarily on the work of Dr. Helmut
Heinrich and others (ref. 5). The accuracy of this table is uncertain especially in areas
where interpolation of the drag coefficient is necessary suchas from Mach0.7 to Mach 1.0.
In an effort to evaluate the most recent drag table to appear in the literature (ref. 4), UDRI
reinvestigated the drag-coefficient values of references 5 and4. The table which appears
as figure 2 is basically the work of reference 5 in the supersonic region andof reference 4
in the subsonicregion. The impressive aspectof this drag table is the similar shapesof
the C D curves given as a function of Mach and Reynolds number even though the drag table

was the result of two independent researchers using two different techniques for calcu-

lating drag. However, even though this drag table shows smooth consistent drag curves,

it is impossible to quote specific accuracies of the drag table because of the conflicting

results obtained by the other experimenters and because of the interpolated section of the

table. The stated accuracies by the experimenters are as follows:

Goin and Lawrence: approximately 2%

Heinrich et al. (supersonic): maximum possible error ranges from +2.3% to

+27.9%; however, actual errors are usually not the possible maximum

Since the accuracy of the drag table cannot be determined precisely, it is impossible

to give an exact RMS error value for the percent error in density when reducing a high-

altitude balloon flight. It is, however, possible to determine the error in density that

results from the other terms of equation (3). Improvements and verifications of drag

results will enable one at some future time to accurately state the true percent error in

density.

sion

VERTICAL WIND ERROR

The density error variance resulting from vertical winds is given by the expres-

F -12_W_z To a falling sphere, a vertical wind looks identical to a change in density.
L -wd -
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As a result, a data-reduction program cannot distinguish density perturbations from

vertical-wind oscillations. In order to compute densities, an assumption must be made

either concerning vertical winds or concerning density perturbations in the atmosphere.

Assumption A: W z = 0

Assuming no vertical motions in the atmosphere, equation (I) can be solved by

substituting W z = 0 on the right-hand side of equation (1) and evaluating all other terms

by conventional means. Under this assumption, any vertical winds present in the atmo-

sphere will appear as density oscillations. The relationship between vertical winds and

density perturbations is exhibited in figure 3 for an escape altitude of 125 kin. Care must

be used in interpreting figure 3, however, because of the smoothing effect produced in the

program. An example will clarify this point. If a sinusoidal vertical wind varying with

altitude with amplitude of 5 m/sec is present at 60 kin, then this vertical wind would be

damped by the smoothing and appear in the printout as something smaller, approximately

2 m/sec amplitude. Since the program attributed the vertical motion to density pertur-

bations, the result of an actual 5 m/sec vertical wind would, using figure 3, appear as a

2.4% density perturbation. To effectively determine what vertical wind could have caused

a density perturbation in reduced data in addition to figure 3 one must know the reduction

in magnitude of the vertical wind resulting from the smoothing technique applied, i.e.,the

frequency response of the program's smoothing filter to a sinusoidal vertical-wind

oscillation.

Assumption B: p = p0 e_z

If density is assumed to follow some mean path then perturbations from this path

can be attributed to vertical winds. Since density varies exponentially with altitude, a

mean exponential path is appropriate. Using this assumption, vertical winds can be com-

puted by the equation

Wz = gth - _emp (4)

2K_P0e_Z

A description of the variables in this equation and its application is given in reference I.

Since, to the best of our knowledge, meteorologists accept density perturbations at

least as much as they accept vertical winds, assumption A has been and will be used in

this program.
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NOISE AND BIAS ERROR TERMS

The remaining terms in the density error equation are given by

(5)

The first two terms of equation (5) are the result of the noise present in the radar coordi-

nates (noise error). The third term is the error in density resulting when the smoothing

function does not adequately represent the true path of the sphere. In this case, a bias

error will result in density since the smoothing function will not fit the real perturbation

in the path.

NOISE ERROR TERMS

The noise errors in vertical velocity (¢i) and acceleration (¢_) depend upon

The noise present in the radar coordinates (_z)

The type of smoothing technique used

The number of data points (N) used in the smoothing process

The time spacing between consecutive data points (At)

For an FPS-16 radar, az varies between 10 and 15 meters depending upon slant range

and At is generally fixed at 0.1 second.

ESTIMATION OF NOISE ERROR

There are two methods of evaluating the noise error terms:

(a) Consider an actual flight of a passive sphere tracked by two identical FPS-16

radars. For an N and a smoothing function, density can be calculated for each of the two

radar tracks. By calculating the RMS difference between the densities measured by the

two radars, the noise error terms can be determined. Since the same bias error will

appear in the density computations from each of the two radar tracks, differencing the

densities determines only the noise error terms.

(b) The noise error terms can also be calculated by formulas which directly relate

_ and _ to N, At, _z, and the smoothing function. The formulas for polynomial 1

smoothing functions of degrees one and two are given in the following equations:

1p01ynomials were chosen as the proper class of smoothing functions. This deci-
sion was based on previous work showing the polynomial yielding less noise error than
other functions.
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Noise Error Equations

Velocity:

Linear fit

Cubic fit

Quadratic fit

Acceleration:

Linear-linear fit

Cubic-linear fit

Cubic-cubic fit

Linear-cubic fit

Quadratic (second derivative)

12_2 =

Xl N(N 2- I) At 2

? --IN 123 (N_ : 1)
7(3N2-7)2(N_4):I _x

(N+3): j_t2

Same as linear fit o_2 = o_ 1

_.. = 12 Xl

Xll M(M 2- 1)At 2

_.2
_.. 12 x3

x31 M(M 2- 1) At 2

7(3M 2- 7)2(M - 4)_ °_x3

V

2 _-[..(12
13 L1vlM 2 - I) +

(6)

(Linear polynomial smoothing is defined as fitting a linear polynomial over N data points

and assigning the slope of the fit to be the velocity at the midpoint N+____I of the interval.
2

Linear-linear smoothing to obtain acceleration is described as fitting N position points

to a polynomial to obtain velocities and obtain acceleration from velocities in a like man-

ner. A cubic-linear fit is described as fitting N position points to a cubic polynomial

taking the slope at the midpoint as the velocity and fitting M of these velocities by a

linear polynomial to obtain acceleration; similarly, for cubic-cubic and linear-cubic
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smoothingtechniques. Quadratic smoothingis definedas fitting a second-degreepoly-
nominal to position points andevaluatingthe first and secondderivatives of the poly-
nomial, at the midpoint, as the velocity and acceleration, respectively.) Thevalidity
of these formulas hasbeenestablishedby comparisonsto RMSerrors obtainedby

method(a).

BIASERRORTERMS

The bias errors in velocity and acceleration (A_,A_.)dependupon

The type of smoothingtechniqueused
The number of data points (N) used in the smoothingprocess
The time spacingbetweenconsecutivedatapoints (At)
The true position field, which itself is a function of the balloon apogee

ESTIMATIONOF BIASERRORS

For a given apogee,bias errors canbe determined by following the flow chart of
figure 4. Givena drag table andballoon apogee,by assumingthe spherefell in the 1962
StandardAtmosphere,the equationsof motion canbe integrated to obtainthe theoretical
pathof the sphere. Thevertical position z, velocity _, andacceleration _. are deter-

mined by the theoretical trajectory. One now treats the z position as a function of time

as though it were the radar coordinates and applies the smoothing routine using N data

points and the degree polynomial P. The smoothed z, _., and _ coordinates differ

from the theoretical z, _, and _ coordinates only because of the bias error resulting

from the smoothing technique. (No noise has been introduced into the data.) The

smoothed coordinates are then substituted into the equations of motion using the same

drag table, and density is computed. The only difference between this computed density

and the original input density, that is, the 1962 Standard Atmosphere density, is due to the

bias error induced by the smoothing function. The percent bias error in density is then

plotted as the ratio of the computed density to the standard density.

DETERMINATION OF OPTIMUM SMOOTHING TECHNIQUE

The choice of the optimum polynomial and interval for use in the high-altitude pro-

gram was derived by using the above techniques. Initially, an escape altitude of 125 km

was chosen. For each type double smoothing (linear-linear, cubic-linear, linear-cubic,

cubic-cubic) the total error in density, defined as the square root of the sum of the noise

and bias errors squared, was computed for all possible combinations of N and M. The
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noise error was calculated by method (b) (the formulas as given in equations (6)) using

At = 1/2 second and (_z equals 15 meters. The bias error was computed as described

in figure 4. Figures 5, 6, and 7 are plots showing the percent bias error (the deviation

of the density ratio from 1) and the 1(_ confidence bands of the noise error about the

bias. None of the combinations of the degree polynomials and smoothing intervals met

the design requirements of 5% density accuracy at 100 km. A compromise was neces-

sary to either reduce the altitude requirements, say to 95 km, maintaining the 5% design

accuracy requirements or slackening the accuracy requirements to say 9% while main-

taining the 100 km altitude range. The former choice was made. Careful analysis of

total error plots for all combinations of degree polynomial and N and M resulted in

the choice of the 19-21 linear-cubic combination as optimum.

Total error plots were generated in the same fashion using a quadratic polynomial

fit and its first and second derivatives for velocity and acceleration. The best smoothing

interval for using a quadratic was determined to be 31 data points (fig. 7). In comparing

the optimum quadratic and the optimum linear-cubic smoothing techniques, it is easily

seen that the 19-21 linear-cubic produced significantly better results in the altitude

region from 70 to 100 km. The probable explanation for this is as follows. By fitting

two different functions, one to get velocity and the other to get acceleration, it is possible

to partially compensate for, say, a positive bias in density due to a velocity error by

using a different degree polynomial or different interval to generate accelerations which

will produce a negative density bias. This advantage is not present when using a single

function for smoothing.

OPTIMUM FITTING FUNCTIONS TO ACQUIRE DENSITIES

After careful consideration of the results of all the above analysis it was decided

that the 19-21 linear-cubic smoothing was the optimum fitting function to acquire densities.

SUMMARY OF DENSITY ERRORS USING OPTIMUM REDUCTION

The total percent error in density resulting from a computation using the high-

altitude ROBIN program with optimum smoothing cannot be precisely determined because

of the unknown accuracy of the drag table and the occurrence of unknown vertical winds.

However, the other contributing terms to density errors have been accurately determined

using the optimum smoothing interval. They are less than 1% bias error from 30 to 70 km

with a noise error of 3% and a bias error from 3% to 5% from 70 to 95 km with a noise

error less than 3%.
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WINDS

The equationusedfor computingwind with the falling sphere methodis given as

W x --X -
gzVBP

+Cz - gz m

(v)

The variables in equation (7) which may contribute significantly to wind errors are

the horizontal and vertical components of velocity and acceleration.

WIND ERROR EQUATIONS

Having retained only those variables which significantly influence the error in a

computed wind, the wind equation simplifies to

W x = _ _
_-g

The first order of approximation to an error in

the parameters is given by the following equation:

(8)

Wx resulting from the errors in

dW x = d_ z dx J_ d_ + xz dz (9)
- g _ - g (_ _ g)2

If the differential error components are considered as noise error with normal

distribution, then by taking the variance of equation (9) the noise error in a wind calcula-

tion is given as

2 2 I_--_g_2 2 [__g_2_ I( j_" ]22_.-_ j

where _, a_, g_, and _. are the noise errors in velocity and acceleration due to the

noise in the radar data. To determine the bias of a wind measurement resulting from the

bias (oversmoothed) velocity and acceleration measurements, equation (9) is again applied.

Considering the component differentials as bias error, the square of the bias wind error

is given as
2-1

A2Wx= _ _-g _ - g (_ _ g)2 (11)

J
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where the Ax, etc., refers to the bias error in the x velocity component. The total

wind error -.(aWxtotall is defined as the square root of the sum of the noise errror vari-

ance plus the bias square error and is given as

2 = 4x + A2Wx (12)_Wxtota 1

The problem simply stated is to determine the type smoothing (degree) and smoothing

intervals which minimize equation (12). As in the case of the density smoothing the noise

error will decrease as the smoothing interval increases, and the bias error increases as

the smoothing interval increases so that a minimum does exist for equation (12).

MINIMIZATION OF TOTAL WIND ERROR

The calculation of noise error for the wind computation uses equations (6). How-

ever, the calculation of the bias error cannot use figure 4 because, with such a variety

of wind profiles in nature, choosing one profile to be representative would not be realistic.

Besides it was felt that the use of the following bias equations would be more precise:

Bias Error Equations

\
Position assumed 4th degree over N data points, i.e.,

x=A 0 +Alt+A2t2+A3 t3+A4 t4

Velocity assumed cubic over M data points, i.e.,

= B0+ Blt+ B2 t2 +B3 t3

Velocity:

Linear fit _Xl =
A3At2(3N2 - 7)

20

Cubic fit A_ 3 = 0

Acceleration:

Linear -linear

Cubic -linear

Cubic- cubic

A_ll = _33 - _11

A_31= B3At2(3M2 - 7)
20

A_33 = 0

(13)
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To use these equationsrequires a knowledgeof the position field of the balloon. This
was accomplishedby a separateprogram which utilizes experimental data to compute
the coefficients A3 and A5. It is beyondthe scopeof this paper to describe that
program.

DETERMINATIONOF OPTIMUM SMOOTHINGFUNCTIONS

The optimum doublesmoothingtechniqueis that combinationof degreepolynomials
(cubic-cubic, cubic-linear, linear-linear) and smoothing intervals (N and M) which
gives the minimum total wind error. Plots of the total wind error for eachtype double
smoothingandfor N-M values of 51-43, 53-11, and 53-25are presentedin figures 8 to
10. Theseare merely three illustrations of all the possible combinationsfor feasible
values of N and M. After analyzing plots of the types illustrated by figures 8 to 10, it
was determined that the 51-43 cubic-cubic smoothingprovides optimum wind reduction.

SUMMARYOF WIND ERRORSUSINGOPTIMUMREDUCTION

With the type smoothingdescribed above,the total wind error remains less than
10m/sec to altitudes of nearly 100kin. The amountof detail that canbe observedat the
very high altitudes is, however, limited becauseof the large altitude layer used in the
smoothing. The frequency responsecurves presentedas figure 11 indicate the detail
that canbe observed. Plotted in this figure is the ratio of the amplitude of a sinusoidal
wave after passing throughthe smoothing filter to the true amplitude of the original.
Eachcurve gives the ratio as a function of wavelengthat a specific altitude. For example,
at 90 km altitude the amplitude of a 10km vertical wavewould appear to be only 1/5 the
amplitude in the reduceddata. A 20km vertical wavewould retain 65percent of its
amplitude in the reduceddata. As seenfrom figure 11, for 70km, wavelengthsless than
10km are largely destroyed so that only a meanwind profile canbe ascertained. Below
70km, wavelengthsof 5 km andless will appear in the reduceddata.

OPTIMUM PROGRAMDENSITYRESULTS

A series of three Viper-Dart flights were flown at Eglin Air Force Base, Florida,
on February 18, 1968,at 18:00,19:00,and 20:00zulu. Each flight was tracked by two
FPS-16radars. The flights are identified as Viper-Dart 11, 12, and 13and the radars as
radar 23 and27. Figure 12showsthe density ratio (comparedwith the 1962Standard
Atmosphere) for eachtrack of the three flights. For each of the flights, there is excellent
agreementbetweenthe two FPS-16radar tracks. The small differences in densities that
are observedare commensuratewith the noise errors predicted for the 19-21 linear-cubic
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smoothing. There are, however,variations in density as observed from flights 1 hour
apart, particularly in the altitude region from 62 to 54km. The causeof these differ-
encesis not known. Possible causesare

(a) An actual time fluctuation in density
(b) Specialvariation in density betweenthe paths of the three spheres
(c) Inaccuracy in the drag table beingexperiencedat different altitudes for the

three flights
(d) A changein the vertical motions of the atmosphere

Thesediscrepancies in density, 1 hour apart, are not dueto the inability of the
radar to accurately track the spheres. Comparison of densities from the two tracks of

the same balloon clearly rules this out. Nor are the density discrepancies thought to be a

result of balloon collapse or elongation. All balloon collapse checks indicate the balloon

is still spherically inflated to at least a 45 km altitude.

OPTIMUM PROGRAM WIND RESULTS

Figures 13 and 14 are plots of the W x and Wy components for each of the three

flights. Both the W x and Wy components obtained from both tracks of Viper-Dart 11

show nearly identical agreement. Viper-Dart 12 shows good agreement at altitudes below

85 km but only fair agreement above. Viper-Dart 13 gives good agreement only to 84 km.

The cause of this decrease in agreement which is beyond what one should anticipate from

the total error plots for 51-43 cubic-cubic smoothing (fig. 8) has been investigated and

the following results obtained.

The tracks of radar 23 from both Viper-Dart 12 and Viper-Dart 13 flights show

large oscillations which did not appear in the tracks of radar 27 from the same flights.

Previous experience with FPS-16 tracking data indicates that the oscillations are prob-

ably due to a low servo-bandwidth setting. The fact that radar 27 produces a smooth

nonoscillating track indicates the oscillations are not real. Further investigation of the

effect of the servo on tracking of passive spheres is in order.

SUMMARY OF RESULTS

Essentially there are three ways of determining the accuracy of the density and wind

data: equations (6) and (13) and the model simulation outlined in figure 4. The assump-

tions made in applying equations (6) and (13) and the model given in figure 4 are not pre-

cisely met by the data but are exact enough for their purpose, which was to obtain the

optimum smoothing technique. The use of double track flights to obtain errors only gives

the noise error of the system. The dual tracking wind data shows that the radars need to
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be well tuned in order to acquire winds, and that the tracking problem is more critical to

winds than to density. Flights close together in time and space should yield system error

information provided the time and space separation is small enough to rule out actual

changes. One hour apart for density should be small enough to pick up the system errors.

Comparison of the curves in figure 12 indicates that there are system errors in density.

These system errors can conceivably come from the tracking radar, but they are larger

than the equations predict. The system errors are believed to come probably from other

elements of the system, sphere shape, or drag table. To strengthen this conclusion, the

wind plots (figs. 13 and 14) have to be examined. The accuracy of the wind data does not

depend upon the drag table or sphere shape (the last is almost true) but depends rather

heavily upon the tracking radar. Figures 13 and 14 show that the wind repeatability is

good, which proves that the tracking is good. Therefore, the conclusion is made that the

discrepancy in density is not due to radar tracking but to other elements in the system.

The dual tracked data agrees well with the noise errors predicted by equation (5) for den-

sity and by equation (10) for winds. There is no other proof given here that the predicted

bias errors are correct. This proof could come from simultaneous flights of different

type sensors.

TEMPERATURE AND PRESSURE

Since the ROBIN is a density and wind sensor, the program optimized these vari-

ables. Temperature and pressure errors fall where they may. The results of these

parameters for the Viper-Dart flights 11, 12, and 13 are given in figures 15 and 16 without

comment.
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APPENDIX

SYMBOLS

Units are not given in the symbol listbut any consistent set of units may be used in

the equations.

A cross-sectional area of sphere

AMP amplitude

An,Bn

C D

Cx, Cz

gx'gz

K

M

coefficients in bias error equations, n = 0,1,2,... (see eqs. (13))

drag coefficient

Coriolis acceleration in x- and z-direction, respectively

gravitationalacceleration

gravitationalacceleration in x- and z-direction,respectively

balloon constant

number of data pointsused in acceleration smoothing process

m mass of sphere

N number of data points used in velocity smoothing process

t time

At

At1

V B

V

time spacing between consecutive position data points

time spacing between consecutive volume data points

volume of balloon

relative velocity of balloon, + (_r - Wy) 2 + Wz)2 1/2
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APPENDIX

Wx,Wy

W z

x,y,z

wind velocity in x- and y-direction, respectively

vertical wind

position coordinates of radar

balloon velocity in x-direction

balloon acceleration in x-direction

balloon velocity in y-direction

vertical velocity

vertical acceleration

Zth, Z'emp

C_

theoretical and empirical vertical acceleration, respectively

density gradient constant

_q bias error of parameter q

P

PO

aq

density

initial density

variance of parameter q
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Figure 8.- Total wind error plots for 51-43 cubic-cubic, cubic-linear, and

linear-linear smoothing.
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143




