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S UMMAR Y

A passive falling sphere, ROBIN, has been developed by the Air
Force for atmospheric soundings between 100 and 30 kin. The rocket
vehicles and simple sphere have been developed to permit a relatively
low cost per sounding. The radar space-time data are reduced to mete-
orologicaI parameters in a digital computer thereby providing nearly
real time information.

The sphere is a superpressure balloon fabricated from thin plastic
(Mylar) and inflated by vaporization of i'sopentane. Certain problems
in sphere hardware reliability have been solved while others remain.

Collapse of the spherical balloon 5 - i5 km above the desig n altitude of
30 km persists. In order to calculate atmospheric density (temperature

and pressure), a precise knowledge of the drag coefficient of a sphere

over a wide range of flow conditions is required. The wind tunnel

measurements currently being used with this system have areas that
produce atmospher{c data that either do not compare well with other

sensors or have peculiar excursions.

With further attention to these problem areas, the ROBIN has the

capability of providing the most economical synoptic soundings of all

candidate systems except perhaps indirect sensing techniques which are
in their infancy.

INTR ODUC TION

Early concepts on the use of a rocket-launched, ground-tracked,
passive falling sphere (refs. 1, 2, and 3) led to an active development
program by the Air Force Cambridge Research Laboratories starting in

the late 1950's. The VerticalSounding Techniques Branch of the Aero-
space Instrumentation Laboratory has the responsibility of developing
systems to be used for routine synoptic measurements of atmospheric

parameters above-ground levels by the meteorological services of the
Air Force. In addition to the usual requirements of any measuring
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system, the concept of operational use adds the additional requirements
of ease in field operations and data reduction as well as minimized cost

and production adaptability. The small inflatable spherical balloon is
in itself a low-cost item and because of its light weight and collapsibility

can be carried aloft in a minimum cost and easily launched vehicle.

Balanced against the low expendable costs is the need for a high precision
radar and a sizeable digital computer such as the 7090.

For simplicity, the AFCRL passive falling-sphere system (fig. 1)
has been given the name of ROBIN, denoting ROcket Balloon INstrument.
_fhis report is intended to present a broad picture of the history of
ROBIN, describe the various vehicle systems, indicate problem areas,

._nd provide references for further study. It would be impossible to
present in a single report all of the detailed efforts, but other papers to be
presented at this symposium by several of the Air Force ROBIN associates
and contractors will cover, in more depth, various aspects of the total

system.
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CONCEPTS

A falling body may be utilized for atmospheric density measurements

provided there is full knowledge of its aerodynamic characteristics. A

spherical shape has an advantage in that its principal aerodynamic force

is drag (if no rotation occurs) and that it presents, an equal area in all

directions. A very simplified equation for a falling body is:

D = ma = I/2 p V2CD A (i)

In order to obtain the atmospheric density, all other terms must be known

or measured. The acceleration may be obtained directly by means of a
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builtin accelerometer and the velocity integrated as is done with several

systems to be described in other papers. In addition to its high instrum-
ent cost such a system is inherently heavy and therefore has a fast

fall rate.

Another technique is to measure space - time positions of the falling

sphere by means of a precision ground-based radar, differentiate this
space history to obtain velocities, and then differentiate the velocity
history to obtain accelerations. The ROBIN utilizes this technique.
Because of its light weight-area ratio, it is also sensitive to the force

created by the horizontal wind.

APPR OAC.H

The program of developing an operational ROBIN was begun in i958.
Major areas in the effort that were broken out were the vehicle, the
ROBIN sphere and its hardware, the drag coefficient and other aerodynam-
ic considerations, and the data reduction technique.

Various contractors were utilized in these major areas of efforts as

shown in Table 1. In the course of time different vehicles were utilized
and certain problems appeared requiring continuing contractual efforts

during the 1960's.

ELEMENTS OF THE ROBIN SYSTEM

Vehicles

When the ROBIN effort began, the ARCAS'meteorological rocket

development phase was just underway and appeared to be the logical
vehicle for the falling sphere as an operational sounding system. Rocket-
sondes were being developed for the ARCAS but at that time the completion

of a fully acceptable system had not occurred. Thus, the ROBIN was
a parallel and alternate payload development for the ARCAS rocket.

The ARCAS (fig. 2) is an I i. 5-cm-diameter end-burning solid-

propellant rocket motor capable of attaining an altitude of 70 kin. With
the ROBIN payload, it has been standardized as Probe, Meteorological
PWN-7A and can be procured through Ogden Air Materiel Area at
Hill Air Force Base, Utah. The description of this system is given

under the ROBIN section.



In t962, an even older small rocket system, the LOKI-Dart
(fig. 2) was being upgraded in performance and reliability by use of
the JUDI motor. In a limited type of effort, experiments were made
to incorporate the ROBIN in this flight vehicle (ref. 4). After determining
the level of the temperature within the dart, which drag separates from
the motor at a low altitude (1 kin) and a high Mach Number ( 3 - 4 ),
successful flights were performed in 1964. At that time the LOKI-Dart
was not being developed fully as a rocketsonde system, so further work
using this vehicle was dropped in the interest of economy obtained in
a one-vehicle approach. Recent standardization of the LOKI-Dart
(PWN-8B) rocketsonde system and its substitution for the ARCAS,
however, would make this a more economical system at a savings
of at least 50%. Both of the above systems attain an altitude of approxi-
mately 65 km when fired from sea level.

In the mid- 1960's, requirements for density and winds to 100 km
and the standard use and acceptance of rocketsonde winds and tempera-
ture (density) data to 65 km dictated the obvious effort to develop a
method to sound the atmosphere between 65 and 100 kin. A Navy - Air
Force in- house effort brought together the two- stage SIDEWINDER -
ARCAS - ROBIN system which flew reasonably well after some shop
modifications including the drilling of extra bolt holes in the fins of some
live ARCAS motors. Two drawbacks of this system, inability to meet
National Range Safety igniter requirements and too low an altitude
(ll5 kin) for ROBIN density measurements to begin at 100 kin, caused
a change over to the SPARROW - HVARCAS. The Navy, at the Pacific
Missile Range, had developed the system for their various payloads
to attain altitudes of 170 kin. The system was acceptable from a safety
standpoint, and the'HV ARCAS was sufficiently strengthened to be com-
patible with the higher loads imposed as a second stage. Thus, as
indicated in figure 2 much of the ROBIN effort was keyed to the ARCAS
or boosted ARCAS vehicles.

Knowing the advantages (low cost, less wind sensitivity, and less
dispersion) of the LOKI- Dart over the ARCAS in the 65 km regime, in
late 1967 the Air Force proceeded to fund the development of a 140 km

dart vehicle (ref. 5). The VIPER-Dart-ROBIN (figs. 2 and 3) system
evolved over the past two years and appears to be a most attractive

vehicle. The projected production cost of $2500 (plus radar tracking
aid if desired) is approximately 50% of the cost of a SPARROW - HV
ARCAS system. Less dispersion of the dart occurs and less horizontal

range is required because of the short burn time (3 seconds) and resulting
high velocity at low altitudes preventing as much gravity turning as
experienced by slow burning systems.

While the dart part of the system has these favorable ballistic
characteristics, the booster (LOKI or VIPER) tends to "float" in an unstable



manner immediately after burnout and dart separation. Thus, it

becomes difficult to provide assured impact points which are, because

of low-altitude separation, generally around the launch area. While

the 2.7-kg empty LOKI motor might be acceptable at most ranges, the

I9.5-kg empty VIPER was felt to be more hazardous. Accordingly,

a post-burnout stable VIPER motor was developed by means of a drag
cone or nozzle extension beyond the 6.5-in. diameter. The result is

a cleaner dart separation condition and an increase in VIPER motor

apogee from 5 km to 17 kin. The higher apogee does result in more time

in the air for wind drift effects, but for a 95°/0 winter wind condition, all

"of which is assumed to be a head wind, the impact is theoretically further

downrange than in the unstable case.

The high velocity of the dart at low altitudes requires protection of

payload from aerodynamic heating. Unlike the ablative coating used on
current ZOKI-Dart systems, the dart on the VIPER system is designed

to insulate the payload from the dart wall temperature by means of an

air gap. The nearly finalized dart is shown in figure 3.

ROBIN Sphere and Hardware

The early work in the ROBIN efforts for use in the ARCAS rocket

nosecone consisted of theoretical studies, chamber tests, radar reflec-

tivity flights on balloons, and some flight tests. Consideration of sphere
materials, fabrication techniques, minimized mass-area ratios, folding

and packing techniques, reflectivity requirements, optimum inflation
chemicals, techniques of chemical encapsulation and controlled delivery

within the balloon, and methods of ejection from the rocket nosecone

were some of the many aspects investigated. Early chamber tests

indicated that a successful system had been evolved so that in late 1960

some 200 ARCAS ROBIN systems were fabricated for feasibility testing.

The ROBIN sphere (fig. I) which was developed at this time and

which, with a few exceptions, has been the configuration flown in various

vehicles to the present time is one meter in diameter. It is fabricated

from I/Z-mil clear mylar using 20 gores with butt joints and I/2-in.

heat-pressure sensitive mylar tape. Internally, a 6-point corner reflector

fabricated from 1/4-rail metallized mylar is suspended from the balloon

skin by means of lightweight springs. Its Government nomenclature is

Balloon, Radar Target, Meteorological, ML-568/AM, and the design is

covered by Specification MIL-B-27373A, the latest updating being

20 January 1965. (This specification covers the ARCAS configuration

which differs from that used in the dart types only in the inflation

capsule and packaging procedures.) A lightweight aluminum capsule
within the balloon (fig. 4, lower) contains liquid isopentane. At ejection

the cover is pushed off the capsule by a small mylar pillow expanding



in the low pressure.
in the capsule body to prevent explosive inflation found in chamber tests
when the inflating chemical was not controlled. The capsule is free
to move within the balloon. Packaging of this payload in the ARCAS

nosecone includes several sheets of plastic. The first piece of plastic

sheet placed forward in the nosecone cavity is rolled up with enough

entrapped air to force the system out when the sealed nose cover is

pulled by a one-meter long cable at apogee ejection. A i - l/2

meter square plastic pillow ejects first and inflates to provide some

protection from a "dirty" pyrotechnic separation charge, prevalent

in early ARCAS, which ejected sparks for a brief interval as the nose-

cone was pushed off and its cover removed.

Isopentane vaporization is controlled by two orifices

The aforementioned ARCAS-ROBINs were flown in 1961 1962

at Eglin Air Force Base, Holloman Air Force Base, and Wallops

Island. It was eventually recognized, but not before standardization

took place and additional quantities had been ordered for operational

use, that the reliability of the ROBIN to inflate into a rigid sphere

deteriorated as the time between fabrication and flight increased. In

addition, collapse of the "good" balloon, which was designed for 30 mb

pressure or approximately an altitude of 30 kin, occurred at an average

altitude of nearly 40 km. Many chamber tests indicated a 30-kin collapse

was possible but not consistently so.

Efforts to eliminate these problems continued in the mid - 60's

(Table i). Due to the need for higher altitude data, the efforts were

directed toward the boosted ARCAS configurations. These latter nose-

cones, incidentally, require different ballasting than for the ARCAS

alone due to aerodynamic stability changes at the higher Mach Numbers

attained. These efforts were characterized by lack of continuity due

to funding variations, vehicle problems, and contractual difficulties

including a contractor who went out of business during a contract thereby

losing a year in the process of officially transferring the contract to a
successor.

It was felt that damage to the balloon by hot sparks in the separation

event noticed in some chamber tests caused at least the early deflation

problems. Therefore, some work was done on improving protection

during the ejection sequence. A longer cable ( 5 to 20 meters), with

and without a canister containing the balloon, was tested in chambers

without significant improvements. In this period, the rocket separation

charge was improved and post- explosive particles were minimized.

In addition to mechanical protection, the aforementioned canister

as well as some reduced packing volume nosecones were tried in the

belief that entrapped air in the balloon had a detrimental effect. Since



mylar is microscopically porous, low density packing and long storage
could allow gradual leakage of air into the balloon resulting in catastrophic
inflation at altitude. In addition, a few empty capsules with no balloon
inflation in some tests indicated that isopentane from a leaking capsule
could enter the balloon and then leak out through the balloon skin.

The capsule for the ,ARC,AS-ROBIN is perhaps its weakest element.
The strip of neoprene under the cap aged to a sticky condition and_coupled
with an easily deformable cap, caused capsule malfunction. ,A few
experiments with other capsule ideas associated with other inflatants
such as a glass vial were not attractive. An externally mounted bottle
for helium injection followed by release after the filling sequence proved
'to be a larger and more sophisticated problem than anticipated or funded.
Certain other inflatants with a few showing mixed improvements were
utilized. `Ammonia and ammonia water improved the superpressure
characteristics over a larger altitude range. However, the complexity
of encapsulating ammonia and its solvent effect on metallized mylar
were negative factors.

Details on ARCAS - ROBIN theoretical studies and experiments on
inflatants, capsules, packing, etc. may be found in final reports on the
contracts indicated in Table i. Some of these reports are in limited
and unofficial supply. The net improvements on the original ,ARC,AS
configuration were small. Because the basic ,ARC,AStechnique does not
provide a simple and positive way of controlling the capsule function and
because a boosted dart vehicle appeared to offer various advantages, a
few ROBIN configurations were designed and tested in 1963 utilizing the
LOKI-Dart. At the end of the short program, several successful flights
were made (ref. 4). In i967, this design was incorporated into the
VIPER - Dart with encouraging results (ref. 5).

The long cylindrical dart requires that the one - meter sphere be

folded differently and more densely packed. Hence, entrapped air

or inwardly leaking air is minimized. The payload is held in long

half-cylinder staves within the dart body (fig. 3). The separation

sequences consist of a pyrotechnic charge in the dart tail exerting

pressure on a piston which pushes the staves and payload forward break-

ing shear pins in the nose ogive. As the staves exit the forward end of
the dart, they are free to fail apart and allow the ROBIN payload to

deploy. The motion of the piston is utilized for capsule activation, an
additional bonus in the use of a dart system.

The dart capsule (fig. 4, Upper), longer and more slender than the

ARC.AS capsule, is positioned at the aft end of the dart with only one
thickness of balloon material between it and the padded piston. .A

slide -fit cap on the end of the completely sealed capsule body contains

a sharp "hypodermic" needle positioned so that first motion of the piston



pushes the cap further on the body and punctures the end of the body.
The cap is held on by friction from a piece of rubber and the isopentane
flows out through the needle. This capsule_being a completely sealed
metal body before activation_is less likely to have leakage or aging
problems.

A corner reflector was used early in the general ROBIN development

due to its high radar reflectivity (_v25 m2), thought necessary should

a lesser tracking radar (e.g., SCR 584, Mod 2) be utilized. Subsequent

analysis of ROBIN data obtained by these radars indicated unacceptable

meteorological data accuracies. Since FPS-16 or more precise radars

are available at most missile ranges and since it was found that

metallized one-meter spheres can be tracked by these radars, the use

of a corner reflector is not obligatory. It was retained in most of the

AFCRL development flights (and Air Weather Service operational flights)

however, for several reasons. The radar AGC display or recording

shows a W- form of perturbation indicating a corner passage as the ROBIN

slowly rotates. At collapse of the balloon and internal reflector, this

signal characteristic drastically changes thus providing a simple

method of determining the end point of atmospheric thermodynamic

data. This method of locating the collapse altitude has correlated well
with other methods that are mentioned under "Data Reduction"

An additional advantage of providing a stronger target for any tracking

radar is to approach the optimum signal-to-noise ratio in order to attain

the minimum target position errors.

Aerodynamic Drag

As indicated by equation (I) the drag coefficient of a falling sphere

must be known in order to evaluate atmospheric density (or for some

applications vice versa). The descending ROBIN, weighing Ii0 to

120 grams, falls from 130 - 140 km to 30 km over a wide range of

flow conditions, including transitional, slip flow, and continuum flow

(fig. 5). Because of error considerations, computations during part

of the acceleration portion of the flight are not attempted. Hence,

most of the useful part of the high-altitude flight is from a Mach

Number of 3.0 downward and a Reynolds Number of 102 upward.

During the early development of the ARCAS - ROBIN, however,

where the balloon fell from 65 kin, only subsonic flow, principally

in the continuum flow regime, is experienced. At that time, little in-

formation was available on subsonic compressibility effects on drag

coefficients of a sphere at Reynolds Number of 5 X 102 to 104 . Neither

was it possible to find many test facilities capable of performing tests

at these conditions. A small wind tunnel at the University of Minnesota,



under the direction of Dr. Helmut G. Heinrich, was located and tests
made (Table I) as a subcontract under one of the G. T. Schjeldahl
hardware contracts. Instrumentation difficulties led to some repeated
tests as well as extension of the range of tests into supersonic conditions
when the higher altitude systems were begun. These again were made
as a subcontractor under the Litton hardware contract(tel. 6) and reported
in reference 7. The drag coefficients reported therein have been used
in the "March 1965 ROBIN Computer Program" from that date through
the present.

Figure 6 illustrates the range of vertical acceleration experienced
by the falling sphere released at an altitude of 139 km. Indicated along
the curve are the Mach and Reynolds Numbers experienced during
flight. Other release altitudes will result in different acceleration

levels at these Mach and Reynolds Numbers. Thus it is felt that drag

coefficients obtained in static wind tunnel tests, particularly for the high

Mach Number - low Reynolds Number conditions, do not represent the

accelerated flow condition. Ballistic range data would be more repre-

sentative if a range of acceleration conditions could be matched to the

aerodynamic parameters.

There have been some recent tests made in a ballistic range at sub-

sonic velocities at the Air Force Arnold Engineering Development

Center for Sandia Corporation. These newer drag coefficients in the

incompressible case (M_: 0.3) agree better with classical experiments

although even this statement seems to be somewhat in disagreement

depending on exactly which reproduction of classic data is utilized.

Figure 7, upper section, shows the drag coefficients as measured by
Heinrich and used in the "March 1965 Program". These drag coefficients

were derived from plots and cross plots of the experimental wind tunnel

data which consisted of many duplicated test points. However, interpola-

tion through a Mach 1.0 between test points at M = 0. 9 and M = i. 2

required some subjective reasoning. Hence, this area is subject to

greater uncertainties than other sections of the table. Figure 7, lower

section, is a composite made up of the aforementioned subsonic ballistic

range data and the Heinrich supersonic wind tunnel data. This experi-

mental combination of drag coefficients has been used recently and

shows in some cases improved agreement between ROBIN and rocketsonde

densities at the 50-km level (see Meteorological Data).

Because proper sphere drag is a prime necessity in the system, it

is felt that this parameter should be isolated and made the subject of a

basic and major aerodynamic program. The Air Force Arnold Engineer-

ing Development Center recently indicated not only their capability of

duplicating these aerodynamic flow conditions but their scientific interest

in the problem and the availability of their personnel and facilities for

these purposes.
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An Air Force plan to fund AEDC in a substantial amount for a two
year program beginning in FY70 was not approved. Several techniques
and facilities would have been used with the hope of analyzing the whole
problem and duplicating the correct flow conditions by different techniques.

Data Reduction

The tasks outlined at the beginning of the ROBIN effort in this
category were simply stated as: given the radar space-time coordinate
history of a falling sphere, determine (i} the technique of obtaining
atmospheric wind, density, temperature, and pressure utilizing modern
digital computers, (2) the errors associated with these parameters,
and (3) the potential of using a graphical or desk type of reduction. The
third task was quickly resolved as a solution capable of producing only
gross numbers much to the disappointment of meteorological personnel.

The other two tasks, not independent of each other, have and are
still requiring considerable time and effort. One aspect of the philosophy
adopted in the data reduction area was to establish a computer program
using equations, smoothing techniques, drag coefficients, formats, etc.,
which would represent the best knowledge and information at a given
time and to leave it untouched. In this fashion, all ROBIN flights would
be reduced in the same manner and subject to the same errors or un-
certainties. When several reasons accumulated such as new smoothing
intervals or drag coefficients_then a new program was introduced into
the field.

Thus references 8 and 9 define the first field programs used until
reference 10 introduced the "March 1965 ROBIN Computer Program".
This program is in use today at most of the U.S. missile test ranges
although a few minor details have been changed or added.

In general the development of the ROBIN computer program has
required considerable effort in the classic task of eliminating "noise"
from the raw data without removing real detail and conversely not
introducing "noise" by inadvertent mathematical operations.

Without any discussion of the background and decisions leading up to
the adoption of the current program, an abbreviated description of its
operation will describe its highlights {ref. i I). The simple equation
presented earlier in this paper is considerably amplified since {l) the
sphere is moving in three -dimensional space with winds present, (2)
buoyancy, apparent mass and a moving reference point on earth must
be considered, and (3) there are "noise" and bias errors in the radar
coordinates. In general, the raw radar data are smoothed in order to
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obtain sphere velocities and accelerations followed by the use of
equations of motion, hydrostatic and gas law relationships to obtain
the atmospheric parameters in the one- pass digital computer program.

Following sphere deployment, usually at apogee, the horizontal and
vertical velocities are obtained first by the least squares fitting of straight
lines to 31 one- half-second space points and assigning the slope as the
velocity at the midpoint. The horizontal and vertical accelerations
are determined by the least squares fitting of straight lines to 7 one-
second velocity points and assigning the slope as the acceleration at the
midpoint. Sufficient points are dropped and added to obtain velocities
and accelerations every one second immediately preceeding the balance
of computations described below. In addition the values of density and
WZ from the previously computed (higher altitude) point are brought
in as first approximations.

Figure 8 is a simplified flow chart showing the meteorological
parameter computations. WX and Wy are computed, then WZ is
computed_and a convergence check of WZ is made. If a i% convergence
value is not obtained, the small loop indicated is traversed using the
computed WZ. When convergence is indicated, the value of V {the
balloon velocity with respect to the air) is computed; then using
the drag coefficient from the previous higher point as an approximation,
the first calculation of density is made. The hydrostatic equation is then
used to calculate pressure and the gas law to calculate temperature.
Because Mach and Reynolds Numbers serve to define the aerodynamic
flow conditions of the sphere and, hence, its drag coefficient, these
numbers are calculated using the velocity, density, and temperature.
A drag coefficient table is entered and a drag coefficient obtained. A
check of density probably indicates no convergence with the previous
higher altitude density and a loop back to the start of the chart is
indicated. Calculated values, rather than previous point values, are
used in progressing down the chart again and at the density step, the
drag coefficient previously obtained from the table is used. When density
convergence with the previous computed density is indicated, the final
values of density, pressure, temperature, and wind parameters are
printed out for this particular altitude. It should be noted that the balloon
horizontal displacement per unit time, X or Y, is not taken to be the wind
velocity as with most wind sensors in current use. Instead, the equations
indicated are used wherein the terms after the minus signs represent
the lag of the balloon in responding to wind changes.

Figure 9 is a flow chart similar to figure 8, but depicting the opera-
tions required at the first or highest altitude point where the main

thermodynamic program commences. It can be seen that a temperature

estimate is required which is carried through and printed in the output
format for only this point. In addition, the pressure here is calculated
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by the use of the gas law. For missile launch sites such as Patrick
Air Force Base, Eglin Air Force Base, and Point Mugu, the initial
temperature guess is based on a 30°N latitude average summer -

winter atmosphere {ref. !2). The program at present does not begin
until acceleration reaches - g/3 in order that the magnitude of various
terms is sufficient to prevent excessive errors. Hence, the ROBIN
sphere must be ejected at an altitude well above the altitude at which
measurements are desired. In the case of the VIPER-Dart-ROBIN,

for example, a flight having a 128°kin ejection altitude provided data
from 91 km downward.

With the collapse of the balloon from a rigid spherical shape to
a nondescript shape, the thermodynamic parameters may no longer
be deduced, although the winds may be calculated by using somewhat
simplified equations. The determination of ROBIN balloon collapse
is made within the computer program by a "lambda check" in which
parameters of balloon motion, which in turn may be associated with
density lapse rate, are calculated internally throughout the fall. When
the limits of the lambda terms are exceeded, the following type of
line is printed:

Lambda = <0.00005 or>0.0002 Balloon has collapsed.

The program then optionally continues its complete computations

or shifts to a calculation of wind terms only.

Another method of determining balloon collapse, most applicable
for quick field use, is tO time the sphere through fixed altitude layers.
Table II, based on many successful flights, shows the time corridor
for a rigid, 115 - i20-gram, l-meter-diameter ROBIN to fall through
3-kin-altitude layers after ejection well above 73 km altitude. A collapsed
sphere requires a longer time to fall than indicated in Table I I.

A third method of determining sphere quality involves the observation
of the strength of radar signal return, the character of the return in which
the corner-reflector pattern in a rigid sphere may be seen, and the level

of the range and angle error signals.

Error analyses of the current ROBIN system were made during the
development of the "March 65" data reduction program. However,
these were done while only ARCAS - ROBIN data were available and hence
the errors shown apply only to data from 70 km downward. Table III

indicates the RMS errors for the various parameters when a precision
radar {AN/FPS-16} is utilized for tracking a rigid sphere at 0. 1 second

to 0.5 second sampling rate. In addition, at the start of the computations,
where the initial temperature estimate might be in error by 10%, a
corresponding 2.5% density error would occur which would decrease very
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rapidly with decreases in altitude. If a radar of lesser accuracy, such

as the AN/MPS-19 radar, is used (standard angle errors of approximately

1.5 mils instead of 0. i mils), errors occur of the magnitudes shown in

Table IV.

Reference i3 presents a technique for error estimation which was

used to approximate the errors associated with using the "March 65"

computer program at higher than program design altitudes. Table V

indicates the degradation experienced in applying this program above 70 kin.

Obviously the use of the "March 65" computer program with ROBIN

flights in the 100-km to 70-kin region is undesirable. During the past

year" efforts have been directed to improving and optimizing the program

for reduction of data for a complete sounding from I00 km to 30 km.

Another paper at this symposium will describe the types of changes that

will be made to minimize the errors and describe the program which

will be introduced into the field within the next few months. It is planned

to modify some of the drag coefficients, in the new program, as previously

discussed knowing that future changes may again be needed if a significant

aerodynamic program were initiated. The new program will be distrib-

uted to those NASA, Army, Navy, and Air Force agencies currently in

possession of the "March 65" computer program.

METEOROLOGICAL DATA

More complete coverage of the ROBIN and examples of measured

data may be found in references 5, 8, I0, 14, 15, and 16. Reduced

data from approximately 300 research and development flights as well

as several hundred operational flights by the Air Force 6th Weather

Wing have been forwarded to the Air Force Climatic Center and the U.S.

Meteorological Rocket Network for storage and dissemination. Research

and development flights with the VIPER - Dart- ROBIN system have

supported most of the recent SATURN - APOLLO launches.

Figures i0 through 15 present examples of meteorological data

obtained during the VIPER - Dart development. Figure 16 shows the

complete density profile from the surface to 90 km provided by rawinsonde,

rocketsonde, and ROBIN for the APOLLO 11 flight. Figure 17 indicates

the effect of using the previously mentioned experimental drag coefficient

table. The resulting density profile agrees more closely with the rocket-

sonde density in the 40 - 60 km levels. However, the temperature profile

departs further from the rocketsonde temperature over this altitude range.
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CONCLUSIONS AND RECOMMENDATIONS

The intent in this section is to summarize the AFCRL view of the

ROBIN falling - sphere system as well as point out problem areas and

suggest the direction of further study, development, or test. The

comments are given also as recommendations should the general program

suggested in the NASA study under Contract NASI- 7911 be implemented

in the coming years. Not all of the following remarks have been fully

discussed in the body of this report due to varying degrees of complexity

beyond the scope of this summary paper. By perusal of the various
references listed as well as by means of a round table discussion with

others present here, these points can be more fully analyzed.

i. The feasibility of measuring atmospheric winds, density,

temperature, and pressure from I00 km to 30 km by means of a passive

radar - tracked falling sphere has been established. Subjective analysis

indicates reasonable values of the measured parameters.

2. Error analyses made to date for data gathered between

65 and 30 km indicate errors of 3 to 0.5 m/sec in wind magnitude,

3% in density, I0 to 4% in temperature and 6 to 3%0 in pressure.

3. In spite of these quoted figures, comparison with rocket-
sondes flown within one hour sometimes indicated differences in the order

of 20% in density while at times better agreement is found.

4. A data reduction computer program developed satisfactorily

for the 65 - 30 km range of altitudes after further analysis, which will

be presented at this Symposium, seems to show that the degree and

thickness of the smoothing interval is critical as the altitude, and hence,

fall velocity, becomes sufficiently large. To some degree, the character

of the wind profile needs to be known in order to minimize the error in
the wind.

5. It is possible that an optimum density program may not

provide an optimum temperature output and vice versa.

6. Consideration of errors and the computation procedure

indicates that a constant percent error in the drag coefficient or density

is required if one wishes to minimize temperature error.

7. The above two statements indicate the need to more rigidly

define the exact parameters to be measured in a synoptic meteorological

network. Density is probably the principle parameter desired by the aero-

space community although some meteorologists may prefer temperatures

for their analyses of the atmosphere.
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8. Vertical winds are assigned as a zero - value in the

computations. Various experimenters indicate this is not the case and have

published values which are significant only at the lowest altitudes

where the sphere velocity is small.

9. Some analyses with a few 65-km ROBIN flights were made

by assuming that the small perturbations in density were caused by vertical
winds. The maximum vertical winds detected by this method were + 5
m/sec (but more typically, + 3 m/sec ) with wavelengths in the order to
2 km. A 3-m/sec error in vertical sphere velocity represents a 6- 1/2%
error in vertical velocity or 13% density error at 40 kin. This reduces

to less than a Z% density error at 75 km.

10. To some extent the above two statements might lead to
consideration of the tradeoffs in using either (a) a single system for winds
and density from 100 km down to nearly 30 km or (b) two systems or
a compound system for separation of measurements into optimum altitude
levels. A rocketsonde might be ejected at 60 km or two spheres of
differing mass area ratios might be utilized from a two-stage dart.

1 i. In a similar vein, it was found that the measurement of

winds above 70 km with the ROBIN, as will be reported in another paper
here, requires special attention. It is possible that chaff or a slower
falling target than the ROBIN will be required to sense horizontal winds
to the accuracy desired.

iZ. The requirements for horizontal winds needs to be more

precisely defined before further effort be expended in developing a final
system. Not only does the accuracy in wind magnitude need defining,
but the wavelengths of wind perturbations that must be sensed should be

indicated as an aid in establishing design goals in hardware and computer
techniques.

13. The input from the tracking radar scientific community
has been tedious and only by a gradual item by item approach have certain,

but possibly not all, of the radar characteristics been investigated. On
one program it was found that the servo bandwidths were better set at

a different position for minimal target position error than recommended

to the technicians by their official training instructions. Other as yet

unknown peculiarities should be isolated and an expert assigned to any
overall new development.

14. Analysis of error recordings indicated that FPS-16 radars
at Eglin, at least when tracking the standard 65-kin ROBIN, has Rh4S errors

of less than __+0.2 rail in elevation and azimuth angles, not unlike their
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handbook values. From Other programs it is known that individual

FPS-16 radars vary appreciably in their noise characteristics and the

quotation of a single error figure for one type of radar is misleading.

A decrease in signal-to-noise ratio whether caused by a weaker target,
greater slant range, more background noise, or an "untuned" radar

can increase the tracking error.

15. Enhancement of radar return without use of a corner

reflector is desirable for simplification in fabrication and packaging.

16. If a new radar concept is pursued as suggested in the

recent aforementioned NASA conceptual study report for a I980 rocket

system, its design approach should include not only the minimization of

tracking error but also the shaping of its "noise" character to optimize
data reduction techniques.

17. Drag coefficient values used in ROBIN soundings are

uncertain as judged at least by (a) rocketsonde data in the lower altitude

portions and (b) by data peculiarities in the transonic region around 75 kin.

18. Drag coefficients for the most part obtained by static

wind tunnel tests are used in the ROBIN and other falling sphere systems.

Vertical accelerations during the measurement phase descending from

100 km pass from negative values through zero to as much as + 3 g's at

80 km and then decrease to insignificant values at 30 kin. Similarly,
lateral accelerations are present. Static drag coefficients do not, to

varying degrees, represent proper values under accelerated flow condi-
tions. Hence, some attempt should be made in the future work to utilize

ballistic ranges where Mach and Reynolds Numbers and acceleration
levels may be simulated.

19. Consideration of apparent mass indicates this term

is negligible above 20 km and it is felt does not adequately attack the
accelerated flow condition.

20. The state of knowledge of the aerodynamic parameters

accuracies is perhaps the weakest point in the ROBIN system. If a

world meteorological rocket network of a scale initimated in the afore-

mentioned study were pursued and implemented, a world standard

atmosphere would most assuredly follow from the large amount of data

gathered. To have this standard based on questionable sphere drag

coefficients would be folly indeed. Hence, it is strongly recommended

by this author that a significant program be established and managed by

a Government aeronautical agency for this very basic research problem

for application to either current or future falling - sphere systems.
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21. The feasibility of using the ROBIN in several types
of rockets, subject to accelerations of over 100 g's, has been demonstrated.
The vehicle would seem to be the least of all problems in the system.
Some further reduction in cost over the already reasonably priced VIPER -
Dart might be attained by further efforts along the line of the Super LOKI
motor in a new dart configuration or possibly other vehicles under
development (Canada - Army, Astrobee, etc.). Gun probe personnel have

indicated a nearly hopeless hardware task with this approach and it is
assumed that this is a final conclusion.

22. The ROBIN hardware development has demonstrated

that thin plastic spheres can be ejected at high altitudes and inflated by

means of vaporization of various liquids. In-depth studies and tests some

years ago indicated for example that sublining solids were too slow in

action for this application. There may be today newer chemicals, solids,

or liquids, that might offer promise leading to simplification of encapsula-
tion and release of the chemical and reduce further the mass-area ratio

of the sphere.

23. Evaluations of the internal sphere gas temperature for

hardware considerations as well as the skin temperature for aerodynamic

considerations have been attempted but without assurance by the theorists

that their methods are rigorous.

24. A significant reduction in the sphere's mass - area ratio

would of course reduce the range of aerodynamic flow conditions and

possibly improve sensing ability through simplification of the required

measured parameters. Reference 1 indicates thatin a wind shear of .02/

sec , a 5 m/sec wind error would result if the fall velocity were

45 m/sec and the horizontal acceleration terms were completely ignored.

While such a velocity is unattainable at high altitudes, it indicates a limit

in simplification.

25. Consideration of better ejection and deployment techniques

is suggested wherein lower dynamic loads would be imposed thereby allow-

ing light gauge {and weight) materials. Attempts to use i/4 and i/3 rail

with ARCAS - ROBIN indicated a decrease in reliability.

26. Similarly, newer materials should be considered with

improved strength and weight characteristics. While perhaps heavier

than desirable, a scrim-plastic combination might permit simple and

relatively uncontrolled pressurization techniques. In addition, a larger

superpressure than the 30-rob design in the ROBIN would assure spherical
conditions down to less than 30 km.

27. While there is disagreement with other experimenters

concerning this matter, the usual collapse altitude of the ROBIN at 40 km
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rather than 30 km is felt to be another as yet unresolved problem.
Temperature balance is felt to be a part of the problem. The University
of Michigan uses metallized spheres and publishes density data to 30 kin.
However, Air Force experiments with metallized spheres has shown
little correlation with collapse altitudes. Quantity of inflatant and
temperature - pressure characteristics need refinement particularly
if new chemicals are considered.

28. It was hoped that a report could be made here on the
successful deployment of a ram -air inflated sphere from a rocket.
Two were attempted; one was not tracked and the other track indicated
the descent of a heavy object. The idea, originally conceived and
demonstrated at sea level by the AFCRL Starute contractor, Goodyear
Aerospace Corporation, is worthy of further pursuit. The elimination
of chemicals, capsules, etc. should simplify the total hardware picture.

29. Consideration of body shapes other than a sphere, possibly
using the ram- air inflation principle, might be attractive due to potentially
larger and less varying drag coefficients during their fall. The remain-
ing aerodynamic characteristics ( C , CL ) would possibly lead to other
design problems which would have t_ be solved for all flow conditions.

30. Before the final framework of aerodynamic test require-
ments are established for a sphere (or other body), all hardware improve-
ments should at least be checked and verified.

31. If a flexible development program is possible, there are
payoffs in intermixing flights of spheres of various sizes and weights with
laboratory or wind tunnel tests. For example, a peculiar hook in the
current drag coefficient table was found after the reduction of flight data
using early wind tunnel data indicated a hook existed in the density profile.
More detailed wind tunnel tests uncovered a peculiar drag coefficient
variation thereby smoothing the calculated density profile.

32. Comparative flight tests between spheres of various
masses and sizes and with other sensors during day and night can be pro-
ductive in evaluation of errors and consistency. Only a small amount
of this comparison testing has been accomplished. Comparisons of ROBIN
densities with rocketsonde densities have in general shown inconsistent
disagreements.

33. In summation, it is believed that FPS-16 radars, available
at missile ranges in this country, contribute less to the total density
error in falling-sphere data than the uncertainties in the drag coefficients
now utilized. Additional efforts with sphere hardware are also required
to improve reliability and low-altitude performance.
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TABLE I I

ROBIN DESCENT TIMES

Altitude Layer

From, To,

km km

73. 2 70. i

70. i 67. i

67. I 64.0

64.0 61.0

61.0 57.9

57. 9 54. 9

54.9 51.8

51.8 48.8

48. 8 45. 7
45.7 42. 7

42.7 39.6

39.6 36. 6
36.6 33. 5

33. 5 30. 5

Time

Seconds

12- 15

Altitude Layer

From, To,
Feet Feet

240,000 230,000
13 - 16

14 - 17

16 - 19

19 - 24

23 - 28

29 - 32

35 - 40

43 - 49
53 - 60

65 - 75

Approx.

Approx.

Approx.

89
113

145

230,000
220,000

210,000
200,000
190,000
180,000
170,000
160,000
150,000
140,000
130,000
120,000
110,000

220,000

210,000
200,000
190,000
180,000
170,000
160,000
150,000
140,000
130,000
120,000
110 000

100,000

TABLE I I I

RMS ERRORS FOR ROBIN DATA USING THE AN/FPS-16 RADAR AND

THE "MARCH 65" DATA REDUCTION PROGRAM

Me teor ological

Parameter

Altitude, km

Magnitude of wind vector, m/sec
Density, %
Pressure, %

Temperature, %

70 - 60,

km

Altitude Bands

60 - 50,

km

+10
+ 3
+ 3

+ 6
+10

+10
+ 1.5

+. 3
+ 3
+ 3

50 - 30,

km

+ 10
+ 0.5

+ 3

+ 3
+ 4
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TABLE IV

RMS ERRORS FOR ROBIN DATA USING THE AN/MPS-19 RADAR AND
THE "MARCH 65" DATA REDUCTION PROGRAM

Meteorological

Parameter

Altitude, km

Magnitude of wind vector, m/sec

Density, %
Pressure, %

Temperature, %

70 - 60

km

Altitude Bands

60 - 50

km

+ 5O
+15

¥ 6
+I0

+12

+ 5O

+i0

+ 6

+ 8

+ 8

50 - 30

km

+ 5O
¥ 5

¥I0

¥i0

¥ 10

TABLE V

APPROXIMATE ERRORS FOR ROBIN USING THE AN/FPS-16 RADAR AND
THE "MARCH 65" DATA REDUCTIC_q PROGRAM

Meteorological

Parameter

Wind

RMS Noise Error, m/sec
Bias Error, m/sec
Sinusoidal Wind Field Bias Error,

% of Amplitude Measured
4 km Sinusoidal Wind
10 km Sinusoidai Wind

Dens ity

Random Error, %
Bias Error, %

70 km9O km 8O km

2O 5

3 3

I 5

16 40

5 3
14 2

2O

8O
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Figure L- ROBIN (ML-568/AM) spherical balloon.
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Figure 2.- Meteorological rockets utilizing ROBIN.
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HOLLOW PIN ISOPENTANE

RUBBER SEALING STRIP

OLD INFLATION CAPSULE (PILLOW TYPE)

Figure 4: Isopentane inflation capsules.
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Figure ]0.- Density profile from a ROBIN flight.
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