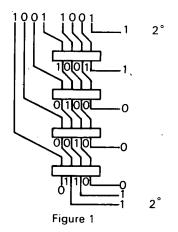
December 1970

Brief 70-10496

NASA TECH BRIEF



NASA Tech Briefs announce new technology derived from the U.S. space program. They are issued to encourage commercial application. Tech Briefs are available on a subscription basis from the National Technical Information Service, Springfield, Virginia 22151. Requests for individual copies or questions relating to the Tech Brief progam may be directed to the Technology Utilization Division, NASA; Code UT, Washington, D.C. 20546.

Rapid Method for Interconversion of Binary and Decimal Numbers

The problem:

To increase the speed of interconversion of binary and decimal numbers by avoiding the use of time-consuming software subroutines or of slow iterative sequential logic circuits.

The solution:

The conversion is accomplished by a decoding tree consisting of a few 40-bit semiconductor read-only memories. The speed of conversion is proportional to the propagational delay in the operation of the readonly memory.

How it's done:

The decimal-to-binary conversion algorithm is based on the divided-by-2 iterative equation

n

$$\frac{Q_{j-1}}{2} = Q_j + b_i \quad \begin{array}{l} j = 1, 2, ..., \\ i = j-1 \end{array}$$

where Q_0 = the decimal number N, Q_j = quotient of jth iteration, and b_i = remainder of jth iteration,

which is also the converted binary digit. The decimal number digits are represented in the 8-4-2-1 BCD form. The dividing-by-2 process is performed on a decimal number by shifting, and the shifting is accomplished by decoding. The truth table of the

ſ		aad	or In		Decoder						
		ecod	er m	put	Output						
	с ₁	×8	X4	x2	Y8	Y4	Y2	Y ₁			
	0	0	0	0	0	0	0	0			
	0	0	0	1	0	0	0	1			
	0	0	1	0	0	0	1	0			
	0	0	1	1	0	0	1	1			
	0	1	0	0	0	1	0	0			
	1	0	0	0	0	1	Ò	1			
ſ	1	0	0	1	0	1	1	0			
	1	0	1	0	0	1	1	1			
I	1	0	1	1 -	1	0	0	0			
L	1	1	0	0	1	0	0	1			
	Table 1										

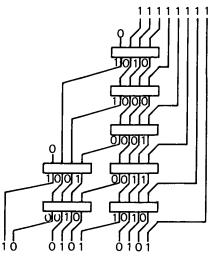

decoder is emulated by a 40-bit read-only memory module, and a converter is formed by connecting many identical modules in the form of a tree. The tree consists of j levels and k columns, where j is the number of binary digits minus three and k is the number of decimal digits. The conversion speed and the number of modules required for a converter are dependent only on j.

Figure 1 is a decoding tree for converting the decimal number $(99)_{10}$ to the binary number $(1100011)_2$. The decoding tree implements the dividedby-2 conversion algorithm; the tree consists of four decoders having four inputs $C_1X_8X_4X_2$ and four outputs $Y_8Y_4Y_2Y_1$, with the decoding function indi-

(continued overleaf)

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States

Government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights.

cated in Table 1. The decoder is emulated by a 40-bit read-only memory, but the structure of the decoding tree grows in complexity such that for any given decimal number having p digits, the number of decoders, $M_{\rm db}$, required for the converter is

 $M_{db} = 2p(p-1) - (1/2)(4p-n-1)(4p-n)$

where n is the number of digits in the resulting binary number.

The binary-to-decimal conversion algorithm is based on the multiplied-by-2 iterative equation

 $S_{n-1} = 2S_{n-j+1} + b_{n-j}$ j = 1, 2, ..., nwhere $S_{n-j} = sum$ of jth iteration, $S_{n-j} = b_{n-1}$, $b_{n-j} = binary$ digit at position n-j, and S_0 is the resultant number in decimal form. Implementation of the above equation is accomplished as described previously.

Figure 2 is a decoding tree for converting the binary number (11111111)₂ to the decimal number (255)₁₀. The decoding tree implements the multiplied-by-2 conversion algorithm. The decoding tree consists of seven decoders having four inputs $X_8X_4X_2X_1$ and four outputs $C_0Y_8Y_4Y_2$. The decoding function is shown in Table 2. The number of decoders, M_{bd},

	Inp	ut		Output						
×8	x ₄	x ₂	x ₁	с ₀	۲8	Y4	Y2			
0	0	0	0	0	0	0	0			
0	0	0	1	0	0	0	1			
0	0	1	0	0	0	1	0			
0	0	1	1	0	0	1	1			
0	1	0	0	0	1	0	0			
0	1	0	1	1	0	0	0			
0	1	1	0	1	0	0	1			
0	1	1	1	1	0	1	0			
1	0	0	0	1	0	1	1			
1	0	0	1	1	1	0	0			
Table 2										

required for a given converter is (n-4)

 $M_{bd} = n(p-1) - (3/2)p(p-1) - (\frac{11-4}{10})_{I}$ where the term (K)/I as (K)₁ is defined as the integral part of K.

Notes:

- 1. With typical commercially available read-only memories, the speed of a 15-bit binary-to-decimal converter is 540 ns and a 4-digit decimal-to-binary converter is about 495 ns. Conversion speeds are at least 50 to 100 times faster than methods in current use.
- 2. Since the converter is a combinational net, random transient disturbances are without effect and timing and clocking are not required.
- Additional information is available from: Technology Utilization Officer Ames Research Center Moffett Field, California 94035. Reference: TSP70-10496

Patent status:

No patent action is contemplated by NASA.

Source: Raymond S. Lim Ames Research Center (ARC-10159)