View metadata, citation and similar papers at core.ac.uk

August 1970

Brief 70-10050

NASA TECH BRIEF

NASA Tech Briefs announce new technology derived from the U.S. space program. They are issued to encourage commercial application. Tech Briefs are available on a subscription basis from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151. Requests for individual copies or questions relating to the Tech Brief program may be directed to the Technology Utilization Division, NASA, Code UT, Washington, D.C. 20546.

Gas Flowmeter

The problem:

Development of a mass flowmeter for measurement of the rates of flow of all common gases from purges and collected leaks at leak ports. Without dependence on gravity the meter had to measure rates between 5 and 650 cm³/min (standard) with pressures ranging from 1.333×10^{-1} to 1.333×10^{-11} N/m² (10^{-3} to 10^{-13} Torr) at ambient temperatures between 70° and 500°K; the gases were to be discharged into a void.

The solution:

Such a meter has been built and tested successfully with both nitrogen and helium; all specifications are

Configuration of Flowmeter

met or exceeded. It handles hydrogen, helium, nitrogen, oxygen, organic vapors, and other common gases; the principal characteristics are as follows:

Weight overall	\sim 3.51 kg or 7.75 lb
Dimensions, handles and inlet included	
Length	31.7 cm or 12.5 in.
Width	23.5 cm or 9.25 in.
Height	21.6 cm or 8.5 in.
Ambient-temperature range	20° to 500°K
Max. operating back pres- sure to ensure	
Thermal insulation	$1.333 \times 10^{-1} \text{ N/m}^2 \text{ or}$ 10^{-3} Torr
Metering accuracy	$1.333 \text{ N/m}^2 \text{ or } 10^{-2} \text{ Torr}$
Orifice pressure at full- scale flow	$49.8 \times 10^2 \text{ N/m}^2 \text{ or}$ 20 in. H ₂ O
Battery	
Туре	Storage, sealed silver- zinc, rechargeable
Number of cells	6
Voltage, full charge	~ 9 V
Recoverable full-charge energy	$\sim 7.9 \times 10^4$ J or 22 W-hr
Heat sink	
Туре	Uses latent heat of crystal- lization of $Na_2 HPO_4 \cdot 12H_2O$; rechargeable
Temperature range of crystallization phase change	306° to 322°K or 92° to 120°F

(continued overleaf)

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States

Government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights. Inlet connection

Approximate full-scale at 297°K (75°F) [cubic centimeters (standard) per minute at 293°K (68°F), $10.13 \times 104 \text{ N/m}^2$ (760 Torr)]; four gases through three orifices.

Gas	Orifice		
	1	2	3
Hydrogen	9500	850	270
Helium	7000	650	200
Nitrogen	2500	250	75
Oxygen	2400	225	70

Note:

The following documentation may be obtained from:

Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 Single document price \$3.00₁ (or microfiche \$0.65)

Reference:

NASA-TN-D-5517 (N70-12393), Flowmeter for space

Patent status:

No patent action is contemplated by NASA.

Source: T. F. Morris and F. E. Wells Marshall Space Flight Center (MFS-20663)