

Restriction/Classification Cancelled

NACA RM SL56G23

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

RESEARCH MEMORANDUM

for the

U. S. Air Force

DRAG AT MODEL TRIM LIFT OF A 1/15-SCALE

CONVAIR B-58 SUPERSONIC BOMBER

By Russell N. Hopko and William H. Kinard

### SUMMARY

An investigation has been made by the Langley Pilotless Aircraft Research Division utilizing a 1/15-scale rocket-propelled model of the Convair B-58 supersonic bomber. The drag at model trim lift was obtained at Mach numbers between 0.85 and 2.0 at corresponding Reynolds number per foot of  $3.5 \times 10^6$  and  $13.7 \times 10^6$ , respectively. The results of the present investigation are compared with unpublished data obtained from several facilities, WADC 10-foot tunnel, Ames 6- by 6-foot supersonic tunnel and the Langley 16-foot transonic tunnel. A comparison of the drag at transonic speeds and at approximately the same Reynolds numbers showed excellent agreement. A drag coefficient of 0.028 at a Mach number of 2.0 was obtained at zero-lift conditions.

### INTRODUCTION

At the request of the U. S. Air Force, the Langley Pilotless Aircraft Research Division has undertaken a flight test program to determine the drag near zero lift of the Convair B-58 composite airplane. The vehicle portion of the B-58 supersonic bomber consists of two parts; the basic inhabited airframe which is designated the return component, and an expendable pod which is an air-to-surface missile. The complete vehicle with pod attached on a short pylon is designated the composite airplane.

The return component consists of a  $60^{\circ}$  modified delta wing at  $3^{\circ}$  of incidence incorporating 0.15-local-semispan leading-edge camber, a Mach number 2.0 supersonic "area rule" fuselage, and a swept tapered vertical tail mounted atop the fuselage aft of the wing trailing edge. Four nacelles are pylon mounted underneath the wing.



SECRET

2

NACA RM SL56G23

The expendable pod is essentially a body-of-revolution missile with the supporting pylon attached to its upper surface. Aerodynamic surfaces of the pod, canard and wing, are  $60^{\circ}$  deltas with  $\pm 10^{\circ}$  swept trailing edges and the vertical tails are swept and tapered.

Results of some previous investigations during the development of the B-58 have been reported in references 1 to 3. In the present investigation a 1/15-scale rocket-propelled composite model was flown and data were obtained over a Mach number range of 0.85 to 2.0 at corresponding Reynolds number per foot of  $3.5 \times 10^6$  and  $13.7 \times 10^6$ , respectively. This investigation was conducted at the Langley Pilotless Aircraft Research Station at Wallops Island, Va.

### SYMBOLS

| A                       | cross-sectional area                                                |
|-------------------------|---------------------------------------------------------------------|
| Az                      | longitudinal acceleration, $ft/sec^2$                               |
| g                       | acceleration due to gravity, $ft/sec^2$                             |
| C <sub>c</sub>          | chord-force coefficient, Chord force<br>qS                          |
| CD                      | drag coefficient, $\frac{\text{Drag}}{\text{qS}}$                   |
| $C_{D_{\underline{I}}}$ | internal drag coefficient, $\frac{\text{Internal drag}}{qS}$        |
| c <sub>DE</sub>         | external drag coefficient, $C_{D_T} - C_{D_I} - C_{D_B}$            |
| C <sub>DB</sub>         | base drag coefficient, $\frac{P_o - P_b}{q_s} \times \frac{S_b}{S}$ |
| CDT                     | total drag coefficient, $C_{D_B} + C_{D_I} + C_{D_E}$               |
| ъ                       | span                                                                |
| C <sub>N</sub>          | normal-force coefficient, <u>Normal force</u><br>qS                 |
| м                       | Mach number                                                         |
| <b>2</b>                | overall length                                                      |
|                         |                                                                     |

NACA RM SL56G23 Po static pressure, lb/sq ft base pressure, lb/sq ft Ph dynamic pressure, lb/sq ft q R Reynolds number S total wing area including body intercept, 6.86 sq ft Sb area of nacelle base (four nacelles) t time V velocity, ft/sec W model weight, 1b angle between instantaneous flight path and the horizontal, γ deg

### MODEL

The general arrangement of the model is shown in figure 1 and a photograph of the model is shown in figure 2. Other pertinent physical characteristics are presented in tables I, II, and III. The wing, constructed mainly of steel, has a diamond plan form with  $60^{\circ}$  sweep of the leading edge and a  $-10^{\circ}$  sweep of the trailing edge. Outboard of station 3.33 the wing has an NACA 0004.08-63 airfoil section; at the root it has an NACA 0003.46-64.069 section. The wing has  $3^{\circ}$  of incidence and dihedral of  $2^{\circ}13'45''$  outboard of station 3.767. The camber has been designed for a lift coefficient of 0.22 at a Mach number of 1.414. The elevon deflection was  $0^{\circ}$ .

The pod wing and canard are of similar plan form to the wing of the return component and have NACA 0004.5-64 airfoil sections. These surfaces were at  $0^{\circ}$  deflection for the present investigation.

The vertical tail is a swept tapered surface with an NACA 0005-64 air-foil section. The leading-edge sweep is  $52^{\circ}$  and the taper ratio is 0.324.

The pod tail is a swept tapered surface with an NACA 0005-64 section. The leading edge is swept  $60^{\circ}$  and the taper ratio is 0.35.

Convoir, Division of Munual Dynamics Corp. The model was constructed by the Consolidated Vultee Aircraft Corp., Ft. Worth, Texas.



3

## 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

### SECRET

NACA RM SL56G23

### TEST PROCEDURE

### Instrumentation

The models were internally instrumented by the Langley Aeronautical Laboratory of the National Advisory Committee for Aeronautics with an eight-channel telemeter which transmitted the following information: longitudinal acceleration (two instruments), normal acceleration, transverse acceleration, total pressure (two instruments), static pressure, and base pressure. The base pressure measurements were made on one inboard nacelle by using four pressure orifices manifolded together and connected to a pressure pickup instrument. A modified SCR-584 radar unit was used to determine the space position of the model in flight. The velocity was obtained with a CW Doppler velocimeter and a rawinsonde provided atmospheric conditions and winds aloft velocities throughout the altitude range transversed by the model in flight.

### Propulsion

The model attained a maximum Mach number of approximately 2.0 with an M-5 Jato (Nike booster). After burnout the booster drag separated from the model and data were obtained during coasting flight. A photograph of the model in launching position is shown in figure 3.

### DATA REDUCTION

### Ground Radar

Drag coefficients were obtained during model flight by evaluating the following expression

$$C_{\rm D} = \frac{W}{gqS} \left( \frac{\mathrm{d}V}{\mathrm{d}t} + g \sin \gamma \right)$$

where V is the velocity obtained from CW Doppler velocimeter and corrected to the tangential velocity along the flight path and also corrected for winds of the altitudes traversed in flight.

### Telemeter

The longitudinal accelerometer data were used in the following equation

$$C_c = \frac{A_l}{g} \frac{W/S}{q}$$

4

| NACA RM SL56G23 | 0.0<br>3 - 5<br>3 - 3<br>4 - 3 | 333<br>3<br>33 | ្ទ័ំនា | CRET     | 33<br>3<br>3<br>3 | 3 <b>7</b><br>3 | ) )))<br>) ))<br>) ))<br>) )<br>) )<br>) | 3)<br>3)<br>3)<br>3)<br>3) | 53)<br>3<br>33<br>3<br>3 | 33<br>33<br>33<br>33 | 5 |
|-----------------|--------------------------------|----------------|--------|----------|-------------------|-----------------|------------------------------------------|----------------------------|--------------------------|----------------------|---|
|                 | .8.3                           | 3.3.3          | 33     | 0.03 9 9 | \$ 3              | 53              | \$ 3                                     | 3                          | 3.3.3                    | - (3 <sup>-</sup> 3  | - |

A similar expression was used to evaluate the normal and side-force coefficients using the normal and transverse accelerations, respectively.

The base drag coefficients were determined from

$$C_{D_B} = \frac{P_o - P_b}{q} \frac{S_b}{S}$$

### ACCURACY

The accuracies in coefficient form for the Mach number, drag, and normal-force data are estimated to be

| М | CDT     | с <sub>N</sub> | М     |
|---|---------|----------------|-------|
| 2 | ±0.0005 | ±0.008         | ±0.01 |
| 1 | ±.0008  | ±.013          | ±.01  |

RESULTS AND DISCUSSION

The Reynolds numbers per foot are given in figure 4. The total drag coefficients for the configuration are shown in figure 5. These drag coefficients were determined by both CW Doppler radar and telemetered accelerations. The data range of the Doppler radar was from M = 2 to M = 1.5 for this investigation; the data range of the telemeter was from M = 2 to M = 0.85. Excellent agreement was obtained between the Doppler and telemeter data. Base pressures were measured on one inboard nacelle and these data reduced to drag coefficient are shown in figure 6. Also shown in figure 6 are base pressure measurements on both the inboard and outboard nacelles, obtained in the Langley 16-foot transonic tunnel and the Ames 6- by 6-foot supersonic tunnel. Inasmuch as the outboard nacelle base pressures were not measured in flight and because the comparison of the flight and tunnel base pressure measurements for the inboard nacelle shows excellent agreement, the outboard nacelle base pressure measurements obtained in the Langley 16-foot transonic tunnel were employed in evaluating the external drag data for the present rocket model.

No measurements of the internal drag were made with the flight model. The internal drag measurements obtained in the Langley 16-foot transonic tunnel on both the inboard and outboard nacelles are shown in figure 7. Also shown are internal drag measurements obtained in the Langley 4- by 4-foot supersonic pressure tunnel on one outboard nacelle of a similar



nacelle configuration. The inlet spike for the 16-foot-transonic-tunnel investigation was set at the M = 0.9 cruise position giving a massflow ratio of approximately 0.9. For the present investigation the inlet spikes were set for approximately the flight condition at M = 2 with a respective mass-flow ratio of 1.0 and the mass-flow ratios of subsonic speeds were approximately 0.7. Therefore, calculated values of the internal drag using one-dimensional-flow theory and also reference 4 were used to determine the external drag in this investigation.

6

A comparison of available external drag data is made in figure 8 which sho the drag coefficient at model trim lift (shown in fig. 9) and essentially zero sideslip, as determined from the transverse accelerations, is presented and compared with data obtained at WADC 10-foot tunnel, Langley 16-foot transonic tunnel, and Ames 6- by 6-foot supersonic tunnel; the data of the latter configuration were obtained with the inboard nacelles parallel to the wing chord and the outboard nacelles at  $-5^{\circ}$  to the wing chord. The configuration tested in the Langley 16-foot transonic tunnel was similar to the configuration of this investigation. A comparison of the external drag obtained in this investigation with the results obtained in the 16-foot transonic tunnel at approximately the same Reynolds numbers showed excellent agreement. The 6- by 6-foot tests were made with fixed transition and a  $\Delta C_D$  of approximately 0.0014 due to the boundary-layer trip was estimated. This increment in drag coefficient has not been subtracted from the data obtained in the Ames 6- by 6-foot supersonic tunnel presented herein.

A nondimensional cross-sectional area diagram of the present configuration is shown in figure 10.

### CONCLUDING REMARKS

The drag at model trim lift of the Convair B-58 supersonic bomber was obtained at Mach numbers between 0.85 and 2.0 at corresponding Reynolds number per foot of  $3.5 \times 10^6$  and  $13.7 \times 10^6$ . The external drag of the model at trim lift has been compared with data obtained in the Langley 16-foot transonic tunnel. A comparison of the drag at transonic speeds and at approximately the same Reynolds number showed excellent agreement. A drag coefficient of 0.028 at a Mach number of 2.0 was

SECRET

obtained at zero-lift conditions. The model had a mild transonic trim change. with a drag rise Mach-number of approximately 0.95.

Langley Aeronautical Laboratory, National Advisory Committee for Aeronautics, Langley Field, Va., June 27, 1956.

Russell N. Hopko Aeronautical Research Scientist

maio

William H. Kinard Aeronautical Research Scientist

Approved:

Joseph A. Shortal

Chief of Pilotless Aircraft Research Division

mhg

### REFERENCES

- Hall, James R., and Hopko, Russell N.: Drag and Static Stability at Low Lift of Rocket-Powered Models of the Convair MX-1626 Airplane at Mach Numbers From 0.7 to 1.5. NACA RM SL53F09a, U. S. Air Force, 1953.
- Swihart, John M., and Foss, Willard E., Jr.: Transonic Aerodynamic and Trim Characteristics of a Multi-Engine Delta-Wing Airplane Model. NACA RM 155127b, 1956.
- 3. Hopko, Russell N.: Drag Near Zero Lift of a 1/7-Scale Model of the Convair B-58 External Store as Measured in Free Flight Between Mach Numbers of 0.8 and 2.45. NACA RM SL55G22a, U. S. Air Force, 1955.
- 4. Fraenkel, L. E.: Some Curves for Use in Calculations of the Performance of Conical Centrebody Intakes at Supersonic Speeds and at Full Mass Flow. Tech. Note No. Aero. 2135, British R.A.E., Dec. 1951.

TABLE I

# WING GEOMETRY

# $\left[ \mathrm{Trailing-edge \ radius, 0.010 \ typical; see figure 1(b)} \right]$

| 147.541                  | <b>brdinate</b>   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Root ch<br>Chord = 4     | Distance (        | 0<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 0.667<br>55              | Lower<br>ordinate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| station 20<br>ord = 3.96 | Upper<br>ordinate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Span :<br>Cho            | "B"<br>dimension  | 0.051<br>.197<br>.197<br>.299<br>.597<br>.595<br>.598<br>.598<br>.175<br>.5768<br>.5.768<br>.5.768<br>.5.768<br>.5.768<br>.5.768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.77768<br>.5.7768<br>.5.77768<br>.5.7768<br>.5.7768<br>.5.7768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77768<br>.5.77777778<br>.5.77777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 3.150<br>8               | Lower<br>ordinate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tation 18<br>ord = 8.76  | Upper<br>ordinate | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Span s<br>Cho            | "B"<br>dimension  | 0.189<br>.471<br>.477<br>.645<br>.645<br>.9737<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.109<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.100<br>5.1000<br>5.1000<br>5.1000<br>5.10000000000                                                                                                                         |
| .835                     | Lower<br>ordinate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tation 15<br>d = 13.18   | Upper<br>ordinate | -0-4-2-<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Span s<br>Chor           | "B"<br>dimension  | Line 11, 259<br>16, 272<br>17, 259<br>11, 252<br>11, 252<br>12, 523<br>12, 523<br>12, 523<br>13, 523<br>14, 523<br>15, 523                                                                                                                                                                                                                                   |
| .667<br>8                | Lower<br>ordinate |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| tation 10<br>d = 23.04   | Upper<br>ordinate | 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Span st<br>Chord         | "B"<br>dimension  | 0.288<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 767                      | Lower<br>ordinate | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00 |
| d = 36.21                | Upper<br>ordinate | 6<br>84877,888,894,666,669,899,899,899,899,899,899,899,899                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Span a                   | "B"<br>imension   | 0<br>416<br>1.1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.811<br>1.8111<br>1.8111<br>1.8111<br>1.8111<br>1.8111<br>1.8111<br>1.8111                                                                                                  |

8

|                                                | SECRET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Station<br>77.800<br>72.133                    | 0.231<br>redius<br>subout<br>water<br>9.411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Station<br>76.467<br>70.800                    | 0.709<br>redius<br>about<br>water<br>9.417                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Base<br>line at<br>station<br>74.133<br>68.466 | 。<br>5.55<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.65<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5.75<br>5                                                                                                                                                                                                                                                                                                                                                           |
| Base<br>line at<br>station<br>70.800<br>65.133 | 0<br>460<br>110<br>110<br>110<br>110<br>110<br>110<br>110<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Base<br>line at<br>station<br>67.466<br>61.799 | 0<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Base<br>line at<br>station<br>64.133<br>58.466 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Water<br>linel                                 | 0<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Base<br>line at<br>station<br>60.000<br>54.335 | 0<br>44<br>-607<br>-607<br>-607<br>-607<br>-607<br>-1208<br>-823<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-677<br>-777<br>-677<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777<br>-777                                                                                                                                                                                                                                                                                                                                                         |
| Base<br>line at<br>station<br>56.667<br>51.000 | 0<br>667<br>667<br>667<br>667<br>1.11173<br>667<br>1.11173<br>667<br>1.11173<br>667<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.11173<br>1.111173<br>1.11173<br>1.111173<br>1.111173<br>1.11173<br>1.11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Base<br>line at<br>station<br>53.333<br>47.666 | 0<br>607<br>607<br>607<br>607<br>11112<br>605<br>1117<br>605<br>1117<br>605<br>1117<br>605<br>1117<br>605<br>1117<br>605<br>605<br>605<br>605<br>605<br>605<br>605<br>607<br>607<br>607<br>607<br>607<br>607<br>607<br>607<br>607<br>607                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Base<br>line at<br>station<br>50.000<br>44.333 | 673<br>673<br>673<br>673<br>673<br>11,258<br>1,258<br>1,258<br>1,258<br>1,258<br>1,258<br>1,258<br>1,258<br>1,258<br>1,258<br>1,258<br>1,258<br>1,258<br>1,557<br>1,557<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,558<br>1,5 |
| Base<br>line at<br>station<br>46.667<br>4.1000 | 0<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Base<br>line at<br>station<br>40.000<br>54.333 | 0.640<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Base<br>line at<br>station<br>36.667<br>31.000 | 0<br>.693<br>.693<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Base<br>line at<br>station<br>33.335<br>27.666 | 0<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027<br>1.027                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Water<br>line <sup>l</sup>                     | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Base<br>line at<br>station<br>30.000<br>24.333 | 0.<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Base<br>line at<br>station<br>26.667<br>21.000 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Base<br>line at<br>station<br>23.333<br>17.666 | 0.11<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12                                                                                                                                                                                                                                                                                                                                                             |
| Base<br>line at<br>station<br>20.000<br>14.333 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Water<br>linel                                 | 55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.000111.0000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.00000<br>55.000000<br>55.00000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

9

<sup>1</sup>Water line is distance above water line 6.667.

TABLE II

FUSELAGE GEOMETRY [See figure 1(1)]



# TABLE III

### PHYSICAL CHARACTERISTICS OF THE MODEL

| Area (included), sq in.       987.         Span, in.       45.         Aspect ratio       2.0         Mean aerodynamic chord, in.       28.         Sweepback of leading edge, deg       28.         Trailing edge sweep, deg       -         Incidence, deg       -         Airfoil section       .         Vertical tail:       .         Area, sq in.       102         Aspect ratio       2.         Sweepback of leading edge, deg       2. | 26<br>49<br>96<br>40<br>10<br>33 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Span, in.       45.         Aspect ratio       2.0         Mean aerodynamic chord, in.       28.         Sweepback of leading edge, deg       28.         Trailing edge sweep, deg       -         Incidence, deg       -         Airfoil section       .         Vertical tail:       .         Area, sq in.       102         Aspect ratio       2.         Sweepback of leading edge, deg       .                                             | 49640075                         |
| Aspect ratio                                                                                                                                                                                                                                                                                                                                                                                                                                     | 96<br>94<br>10<br>+3<br>63       |
| Mean aerodynamic chord, in.       28.         Sweepback of leading edge, deg       -         Trailing edge sweep, deg       -         Incidence, deg       -         Airfoil section       .         Vertical tail:       .         Area, sq in.       .         Sweepback of leading edge, deg       2.         Sweepback of leading edge, deg       .                                                                                          | 94<br>60<br>10<br>+3<br>63       |
| Sweepback of leading edge, deg                                                                                                                                                                                                                                                                                                                                                                                                                   | 60<br>10<br>+3<br>63             |
| Trailing edge sweep, deg                                                                                                                                                                                                                                                                                                                                                                                                                         | 10<br>+3<br>63                   |
| Incidence, deg                                                                                                                                                                                                                                                                                                                                                                                                                                   | +3<br>63                         |
| Airfoil section                                                                                                                                                                                                                                                                                                                                                                                                                                  | 63                               |
| Vertical tail:<br>Area, sq in                                                                                                                                                                                                                                                                                                                                                                                                                    |                                  |
| Area, sq in.       102         Aspect ratio       2.         Sweepback of leading edge, deg       2.                                                                                                                                                                                                                                                                                                                                             |                                  |
| Aspect ratio                                                                                                                                                                                                                                                                                                                                                                                                                                     | <i>и</i> н                       |
| Sweepback of leading edge, deg                                                                                                                                                                                                                                                                                                                                                                                                                   | 61                               |
| sweepback of reading edge, deg                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                               |
| Nimpoli continu                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\int \mathcal{L}$               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 04                               |
| Taper ratio $\ldots$                                                                                                                                                                                                                                                                                                                                            | 24                               |
| Pod wing:                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
| Area (included), sq in                                                                                                                                                                                                                                                                                                                                                                                                                           | 60                               |
| Span, in                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                               |
| Aspect ratio                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                               |
| Airfoil section                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64                               |
| Pod capard.                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
| Area (included) sq in.                                                                                                                                                                                                                                                                                                                                                                                                                           | րր                               |
| Span in 7.                                                                                                                                                                                                                                                                                                                                                                                                                                       | 86                               |
| Agnest metic                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C)                               |
| Airioll section                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·04                              |
| Pod ventral fin:                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                  |
| Area (included), sq in                                                                                                                                                                                                                                                                                                                                                                                                                           | 20                               |
| Span. in                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10                               |
| Aspect ratio                                                                                                                                                                                                                                                                                                                                                                                                                                     | 75                               |
| Taper ratio $\ldots$ $\ldots$ $\ldots$ $\ldots$ $\ldots$ $0$ .                                                                                                                                                                                                                                                                                                                                                                                   | 35                               |
| Airfoil section                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>.</i> 64                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                  |







SECRET

NACA RM SL56G23



) wing geometry. (Aiso, see babie



(c) Detail of drag strut fairing and main landing-gear fairing.



NACA RM SL56G23







| NACELLE GEOMETRY |               |            |      |  |  |  |  |  |
|------------------|---------------|------------|------|--|--|--|--|--|
| STA.             | "A"           | "B"        | "D"  |  |  |  |  |  |
| .124             | •997          | •997       | 8    |  |  |  |  |  |
| .134             | 1.007         | 1,007      | .800 |  |  |  |  |  |
| .149             | 1,015         | 1.015      |      |  |  |  |  |  |
| .170             | 1,019         | 1.019      |      |  |  |  |  |  |
| .184             | -             | <b>4</b> 0 |      |  |  |  |  |  |
| .197             | -             | ale        |      |  |  |  |  |  |
| •333             | <b>1.</b> C49 | 1.052      |      |  |  |  |  |  |
| •453             | **            | -          |      |  |  |  |  |  |
| .666             | 1,100         | 1,115      |      |  |  |  |  |  |
| 1.333            | 1.172         | 1.242      |      |  |  |  |  |  |
| 2,000            | <b>1.</b> 219 | 1.360      |      |  |  |  |  |  |
| 2.666            | 1.254         | 1.475      |      |  |  |  |  |  |
| 4.000            | 1.307         | 1.669      |      |  |  |  |  |  |
| 6.000            | 1.381         | 1.869      |      |  |  |  |  |  |
| 8.000            | 1.447         | 1.966      |      |  |  |  |  |  |
| 10.000           | 1,487         | 1.971      |      |  |  |  |  |  |
| 10.666           | 1.491         | 1.961      |      |  |  |  |  |  |
| 12.000           | 1.486         | 1.919      |      |  |  |  |  |  |
| 1,000            | 1.449         | 1.802      |      |  |  |  |  |  |
| 16,000           | 1.399         | 1.621      |      |  |  |  |  |  |
| 18.000           | 1.369         | 1.455      |      |  |  |  |  |  |
| 18.666           | 1.367         | 1.409      |      |  |  |  |  |  |
| 19.333           | 1.367         | 1.367      | .800 |  |  |  |  |  |

| AC. IN GEOM | NTERNAL<br>ETRY |
|-------------|-----------------|
| STA.        | "R"             |
| .124        | •997            |
| .134        | .987            |
| .149        | .982            |
| .170        | .980            |
| .184        | •979            |
| .197        | .979            |
| •453        | .985            |
| 15,866      | .985            |
| 18.667      | .878            |
| 19.333      | .845            |

(f) Nacelle geometry.



| SPIKE G   | EOMETRY |
|-----------|---------|
| NAC. STA. | RAD.    |
| 955       | 0       |
| 0         | •445    |
| .113      | •474    |
| .227      | •486    |
| .340      | .478    |
| .1,53     | .469    |
| .567      | .458    |
| 1.133     | •399    |
| 1.700     | .342    |
| 2.267     | .283    |
| 2.833     | .214    |
| 2.947     | .181    |
| 3.060     | .136    |
| 3.173     | .091    |
| 3.287     | .045    |
| 3.400     | 0       |

(g) Engine nacelle spike.



| 9 | STRAIGHT  | LINE | BETWEEN | ORDINATES | BEARING |
|---|-----------|------|---------|-----------|---------|
|   | THIS SYMI | BOL  |         |           |         |

|         |    |       |      |       |       |       |        |       | generation of the second s |
|---------|----|-------|------|-------|-------|-------|--------|-------|----------------------------------------------------------------------------------------------------------------|
| ST4.    | 0  | STA.  | 1.00 | STA.  | 6.000 | STA.  | 10.000 | STA.  | 12.159                                                                                                         |
| WLl     | BL | WLJ   | L    | LJ    | BL    | WLl   | BL     | WLl   | BL                                                                                                             |
| 1.042   | 0  | .877  | 0    | 0     | 0     | 0     | 0      | 0     | 0                                                                                                              |
|         |    | .917  | .167 | .217  | .0    | .083  | .803   | .083  | .930                                                                                                           |
|         |    | 1.000 | .253 | .250  | .617  | .167  | 1.052  | .167  | 1.173                                                                                                          |
|         |    | 1.083 | .261 | .333  | .893  | .250  | 1.230  | .250  | 1.343                                                                                                          |
|         |    | 1.167 | .225 | .417  | 1.023 | .333  | 1.350  | .333  | 1.453                                                                                                          |
|         |    | 1.250 | .120 | •500  | 1.107 | .500  | 1.527  | .500  | 1.620                                                                                                          |
|         |    | 1.273 | 0    | .667  | 1.213 | .667  | 1.633  | .667  | 1.723                                                                                                          |
| <b></b> |    |       |      | 1.000 | 1.340 | 1.000 | 1.759  | 1.000 | 1.850                                                                                                          |
|         |    |       |      | 1.333 | 1.370 | 1.333 | 1.805  | 1.333 | 1.907                                                                                                          |
|         |    |       |      | 1.667 | 1.297 | 1.667 | 1.802  | 1.667 | 1.920                                                                                                          |
|         |    |       |      | 2.000 | 1.090 | 2.000 | 1.781  | 2.000 | 1.903                                                                                                          |
|         |    |       |      | 2.167 | .867  | 2.333 | 1.650  | 2.333 | 1.852                                                                                                          |
|         |    |       |      | 2.333 | .420  | 2.667 | 1.411  | 2.667 | 1.748                                                                                                          |
|         |    |       |      | 2.380 | 0     | 3.000 | .887   | 2.897 | 1.608                                                                                                          |
|         |    |       |      |       |       | 3.108 | .450   | 3.000 | 1. 78                                                                                                          |
|         |    |       |      |       |       | 3.140 | 0      | 3.333 | 1.017                                                                                                          |
|         |    |       |      |       |       | 3.483 | 0      | 3.633 | 1.37                                                                                                           |
|         |    |       |      |       |       |       |        | 4.543 | 0.083                                                                                                          |
|         |    |       |      | 1     |       |       |        |       | 0                                                                                                              |

1WL is distance above WL 6.667,

(h) Fuselage geometry.



| STA. 50.000 |       | STA. 5 | 3.333 | STA. 5 | 6.667       | STA. 6         | 0.000 | STA. 64.133 |       |
|-------------|-------|--------|-------|--------|-------------|----------------|-------|-------------|-------|
| WLl         | BL    | WLl    | BL    | WLl    | BL          | WLl            | L     | WLl         | BL    |
| 1.647       | 1.369 | 1.377  | 1.547 | 1.085  | 2.045       | •777           | 2.732 | •590        | 3.278 |
|             |       | 1.417  | 1.347 | 1.250  | 1.641       | 1.000          | 2.127 | .833        | 2.437 |
|             |       | 1.611  | 1.324 | 1.333  | 1.567       | 1.167<br>1.333 | 1.789 | 1.000       | 1.872 |
|             |       |        |       | 1.667  | 1.395       | 1.500          | 1.673 | 1.667       | 1.648 |
|             |       |        |       | 1.002  | 1 + • ) / ) | 2.000          | 1.445 | 2.333       | 1.425 |
|             |       |        |       |        |             | 2.233          | 1.393 | L           |       |

| STA. 67.467 |                                                                                                                | STA. 70.800                   |       | STA. 72.000 |      | STA. 72.667 |      | STA. 73.333 |    |  |
|-------------|----------------------------------------------------------------------------------------------------------------|-------------------------------|-------|-------------|------|-------------|------|-------------|----|--|
| WLl         | BL                                                                                                             | WLl                           | BL    | WLl         | BL   | WLl         | BL   | WLl         | BL |  |
| .520        | 2.207                                                                                                          | .790                          | .873  | 1.103       | .455 | 1.067       | .227 | 1.223       | 0  |  |
| .540        | 2.207                                                                                                          | .803                          | .873  | 1.167       | .500 | 1.160       | .380 |             |    |  |
| .583        | 2.060                                                                                                          | .833                          | .850  | 1.203       | •753 |             |      |             |    |  |
| .667        | 1.963                                                                                                          | 1.000                         | •919  |             |      | -           |      |             |    |  |
| .750        | 1.883                                                                                                          | 1.167                         | .987  |             |      |             |      |             |    |  |
| .833        | 1.823                                                                                                          | 1.443                         | 1.113 |             |      |             |      |             |    |  |
| 1.000       | 1.713                                                                                                          |                               |       |             |      |             |      |             |    |  |
| 1.333       | 1.567                                                                                                          |                               |       |             |      |             |      |             |    |  |
| 1.667       | 1.463                                                                                                          | -                             |       |             |      |             |      |             |    |  |
| 2.113       | 1.419                                                                                                          | WL is distance above WL 6.667 |       |             |      |             |      |             |    |  |
|             | han an an high is a second |                               |       |             |      |             |      |             |    |  |

(i) Fuselage-wing fillet geometry.









| ACTUATOR FAIRING SECTIONS |                    |       |              |        |  |  |  |
|---------------------------|--------------------|-------|--------------|--------|--|--|--|
|                           | Span Station 7.918 |       |              |        |  |  |  |
| STA.                      | Dist.              | Dim A | Radius       | FinOrd |  |  |  |
| 0                         | 0                  | a     | -            | 0      |  |  |  |
| 1.25                      | .075               | 680%  | 400          | .045   |  |  |  |
| 2.06                      | .123               | .054  | 0            | eia    |  |  |  |
| 2.50                      | . 148              | a.,   | 4100         | .060   |  |  |  |
| 5                         | •298               | .097  | •02 <b>2</b> | .081   |  |  |  |
| 10                        | •595               | .163  | .062         | .105   |  |  |  |
| 20                        | 1.191              | .282  | .130         | .132   |  |  |  |
| 30                        | 1.786              | •375  | .176         | .145   |  |  |  |
| 40                        | 2.382              | .437  | .198         | .148   |  |  |  |
| 50                        | 2.977              | .461  | .199         | .145   |  |  |  |
| 60                        | 3.571              | .443  | .185         | .132   |  |  |  |
| 70                        | 4.167              | • 389 | .155         | .111   |  |  |  |
| 80                        | 4.762              | .287  | .111         | .082   |  |  |  |
| 90                        | 5.358              | .151  | •059         | .047   |  |  |  |
| 95                        | 5.655              | .082  | .031         | .025   |  |  |  |
| 100                       | 5.953              | 0     | 0            | 0      |  |  |  |

(k) Actuator fairing.









| RADOME GEOMETRY |      |  |  |  |
|-----------------|------|--|--|--|
| STA.            | ORD. |  |  |  |
| 63.100          | .316 |  |  |  |
| 64,244          | .408 |  |  |  |
| 65:911          | .500 |  |  |  |
| 67:233          | •534 |  |  |  |
| 72.417          | •534 |  |  |  |
| 72:617          | :529 |  |  |  |
| 72.817          | .498 |  |  |  |
| 73.217          | •357 |  |  |  |
| 73.416          | .260 |  |  |  |
| 73.633          | .000 |  |  |  |

(1) Radome geometry.









Figure 1.- Continued.

(n) Strut geometry.



POD STA. 2.120



TYPICAL SECTION NACA 0004.5-64

CANARD AT ZERO INCIDENCE AND DIHEDRAL ROOT CHORD 2.200 INCHES BELOW PARTING PLANE NACA 0004.5-64 AIRFOIL SECTION

|       | SECTIC | DN C-C | SECTION | D-D  |  |
|-------|--------|--------|---------|------|--|
| CHORD | DIST.  | ORD.   | DIST.   | ORD. |  |
| 0     | 0      | 0      | 0       | 0    |  |
| 5     | •375   | .092   | .184    | .045 |  |
| 10    | .750   | .119   | • 368   | .058 |  |
| 15    | 1.124  | .137   | •552    | .067 |  |
| 20    | 1.499  | .149   | .736    | .073 |  |
| 30    | 2.248  | .164   | 1.104   | .080 |  |
| 40    | 2.998  | .169   | 1.472   | .083 |  |
| 50    | 3.748  | .1644  | 1.840   | .080 |  |
| 60    | 4.497  | .149   | 2.207   | .073 |  |
| 70    | 5.247  | .126   | 2.575   | .062 |  |
| 80    | 5.996  | .093   | 2.943   | .046 |  |
| 90    | 6.746  | .053   | 3.311   | .026 |  |
| 95    | 7.120  | .029   | 3.495   | .014 |  |
| 100   | 7.495  | .0     | 3.679   | 0    |  |
|       | L.E.R  | .015   | L.E.R   | •007 |  |

(o) Pod canard geometry.









### TYPICAL SECTION NACA 0004.5-64

| Pod Wing Geometry |        |      |       |      |  |  |  |
|-------------------|--------|------|-------|------|--|--|--|
|                   | Sect.  | A-A  | Sect. | B-B  |  |  |  |
| Chord             | Dist.  | Ord. | Dist. | Ord. |  |  |  |
| 0                 | 0      | 0    | 0     | 0    |  |  |  |
| 5                 | .653   | .160 | .453  | .111 |  |  |  |
| 10                | 1.308  | .208 | .907  | .144 |  |  |  |
| 15                | 1.961  | .238 | 1.360 | .165 |  |  |  |
| 20                | 2.615  | .260 | 1.814 | .180 |  |  |  |
| 30                | 3.923  | .286 | 2.721 | .198 |  |  |  |
| 40                | 5.230  | .294 | 3.628 | .204 |  |  |  |
| 50                | 6.538  | .286 | 4.535 | .198 |  |  |  |
| 60                | 7.846  | .261 | 5.441 | .181 |  |  |  |
| 70                | 9.153  | .220 | 6.348 | .152 |  |  |  |
| 80                | 10.461 | .163 | 7.255 | .113 |  |  |  |
| 90                | 11.768 | .092 | 8.162 | .064 |  |  |  |
| 95                | 12.422 | .050 | 8.616 | .035 |  |  |  |
| 100               | 13.076 | 0    | 9.069 | 0    |  |  |  |
| LER               |        | •029 |       | .020 |  |  |  |

(q) Pod wing geometry.

Figure 1.- Concluded.







L-92185.1 Figure 3.- Model and booster in launch position.









Figure 5.- Total drag.



.

SECRET

 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 3)
 <

Figure 6.- Base drag.





Secret and a sec





· · · · SECRET. · · · 33 33 3 33 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 000 000 000 0000 00000





9999 999 9999

1000

SECRET

000 000 000 000 000 000

3

000

0 030 0 0 0 0 0 0

) 333 3 83 3 83 3 3 3 3 3 333

3 3



Airplanes - Performance

| 9<br>3 | ° 3. | 333      |       | 3      | 3             | . 3.3  | 3.3  | - 3     | 5.3.3    | ÷3         | 5.3.3    | ÷э-э  |
|--------|------|----------|-------|--------|---------------|--------|------|---------|----------|------------|----------|-------|
| 3      | 3    | 3.3      | 3     | 3      | 3 3           | ંગ્ર   | ്ര   | -3<br>6 | 33       | 3          | े<br>२ क | 3     |
| 6      | 3    | 3<br>333 | ്കും  | ~~~~   | 000<br>000000 |        | a. a | ્ર      | 3        | 3          | 3        | 3     |
| Restri | ctic | on/Cla   | assif | icatio | on Cai        | ncelle | d    |         | <i>™</i> | з <b>у</b> | - 1 9 Q  | 34.39 |

### INDEX

| Subject   |                  | Number  |
|-----------|------------------|---------|
| Airplanes | - Specific Types | 1.7.1.2 |
| Airplanes | - Performance    | 1.7.1.3 |

### ABSTRACT

An investigation has been made by the Langley Pilotless Aircraft Research Division utilizing a 1/15-scale rocket-propelled model of the Convair B-58 supersonic bomber. The drag at model trim lift was obtained at Mach numbers between 0.85 and 2.0 at corresponding Reynolds number per foot of  $3.5 \times 10^6$  and  $13.7 \times 10^6$ , respectively. The results of the present investigation are compared with unpublished data obtained from several facilities, WADC 10-foot tunnel, Ames 6- by 6-foot supersonic tunnel and the Langley 16-foot transonic tunnel. A comparison of the drag at transonic speeds and at approximately the same Reynolds numbers showed excellent agreement. A drag coefficient of 0.028 at a Mach number of 2.0 was obtained at zero-lift conditions.

