December 1969

NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U.S. space program, to encourage their commercial application. Copies are available to the public at 15 cents each from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

A Sterilizable High-Impact Antenna

Figure 1(A). Front

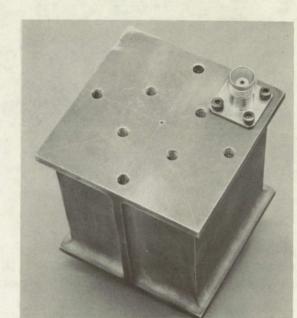

A relatively simple, rugged, lightweight rectangular cup antenna has been designed to withstand indirect impacts up to 10,000g and direct impacts up to 250 ft/ sec of impact velocity and provide radiation of selected (circular, elliptical, or linear) polarization and beam shape. The antenna is also sterilizable at 275°F. Other features of the antenna are its high radiating efficiency, and relatively broad bandwidth. The antenna is intended to survive crash impacts on space vehicles and beacons. Figure 1 shows an experimental model of the antenna, which was designed to radiate a circularly polarized pattern at S-band frequencies. It con-

Figure 1(B). Back

sists of an aluminum cup, $2.10 \times 2.10 \times 2.20$ inches, internal dimensions having metallic perturbations along the inside surfaces of two opposite walls. The cup, whose open end defines the antenna's radiating aperture, is excited by a probe that is slanted along one of the diagonals of the cup, as shown in Figure 2. The probe, a metallic rod having a diameter of 3/32inch, is an extension of the center conductor of the input coaxial connector located at the rear of the cup. The probe is completely imbedded in a commercially available foam-in-place plastic dielectric, which provides an all-around rigid support for the probe and cup

(continued overleaf)

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use of the information contained in this document, or warrants that such use will be free from privately owned rights.

provided by NASA Technical Reports S

brought to you by T CORE

Brief 69-10697

walls. This dielectric material also enables the construction of an antenna of reduced size and prevents the entrance of foreign matter. The cured foam in the experimental model has a density of approximately 30 lb/ft^3 , a relative dielectric constant of approximately 1.5, a compressive strength of over 2000 psi, and an excellent adhesion to the cup walls.

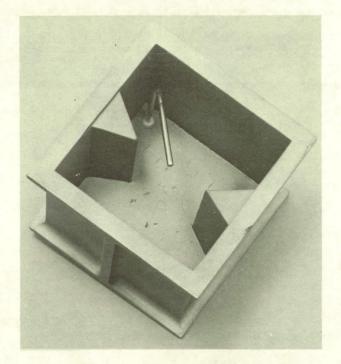


Figure 2. Inside .

When microwave energy is applied to the probe, the latter excites the orthogonal rectangular TE_{10} and TE_{01} modes in the cup. Because of the presence of the perturbations in the cup, these two modes propagate with different phase velocities. By properly selecting the cup dimensions, the perturbations, and the probe size, position, and angle of inclination, orthogonal waves of selected amplitudes and phase relationships may be achieved at the cup's open end. Consequently, radiation of a selected polarization is obtained. When the orthogonal waves are of equal amplitude and in phase quadrature at the aperture, the radiation is circularly polarized. By properly selecting the cross-sectional dimensions of the cup, radiation of a selected beam shape may also be obtained.

A coupling loop, in place of the probe, may be used in this design to accomplish the same capabilities of the antenna.

Note:

Documentation is available from: Technology Utilization Officer NASA Pasadena Office 4800 Oak Grove Drive Pasadena, California 91103 Reference: TSP69-10697

Patent status:

This invention is owned by NASA, and a patent application has been filed. Royalty-free, non-exclusive licenses for its commercial use will be granted by NASA. Inquiries concerning license rights should be made to NASA, Code GP, Washington, D.C. 20546.

Source: Kenneth E. Woo of Caltech/JPL under contract to NASA Padadena Office (NPO-10231)