June 1969

AEC-NASA TECH BRIEF

brought to you by

Brief 69-10161

AEC-NASA Tech Briefs describe innovations resulting from the research and development program of the U.S. AEC or from AEC-NASA interagency efforts. They are issued to encourage commercial application. Tech Briefs are published by NASA and may be purchased, at 15 cents each, from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Experimental Prediction of Performance by Superconducting Cables

A method employing a "broken superconductor" method of short-sample testing, which makes possible the prediction of the performance of well-cooled, stabilized, superconducting cable coils, has been described (1); it yields a field-versus-current curve for a short sample of cable having a length of the superconductor removed from the middle of the sample. Plots are given for the superconductor and copper currents at various magnetic-field strengths; these results are compared with results by the "pulsed heater" method on the same type of cable.

The broken-superconductor method of testing allows separation of the performance characteristics of the superconductor and copper constituents of a stabilized cable. The break in the superconductor is in effect an artificially induced steady-state normal region that forces complete transfer of current into the stabilizing copper in the region of the break. Potential taps are placed at the ends of a superconducting section of cable and, as current through the sample is increased, a potential appears across these taps. The current observed at this point is the maximum superconducting current at a given field, or the "H-I" value.

As current through the sample is increased further, current is shared between the superconductor and the stabilized copper. At sufficiently high current the joule heat generated in the copper is greater than that which can be carried away by nucleate boiling of a helium bath, so that the heat-transfer characteristic changes from nucleate boiling to film boiling, and the temperature difference between the copper and the helium changes from about 0.3°K to about 5°K. This rise in temperature causes all the current to transfer from the superconductor into the copper, and thermal runaway results. The characteristics of the copper are obtained by plotting of these thermal-runaway points as functions of the fields.

At low field, the superconducting current may be greater than the current-carrying capacity of the copper. The broken-superconductor sample is forced into thermal runaway in the region of missing superconductor, since all the current must go through the copper at this point. Therefore, if a sample is understabilized at the test field, only the copper characteristics are obtained by this method, with no indication of the true current-carrying capacity of the superconductor.

A conservative value for the rate of transfer of heat from copper to liquid helium during nucleate boiling is 100 mw/cm^2 , which can be used for preliminary design of coils.

Reference:

1. J. R. Purcell and J. M. Brooks, J. Appl. Phys. **38**(8), 3109 (July 1967).

Notes:

- 1. This information may interest those concerned with the manufacture and use of nuclear instrumentation and with cryogenics.
- 2. Inquiries may be directed to:

Office of Industrial Cooperation Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 Reference: B69-10161

> Source: J. R. Purcell High Energy Physics Division and J. M. Brooks, Particle Accelerator Division (ARG-10215) (continued overleaf)

This document was prepared under the sponsorship of the Atomic Energy Commission and/or the National Aeronautics and Space Administration. Neither the United States Government nor any person acting on behalf of the United States Government assumes any liability resulting from the use of the information contained in this document, or warrants that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately owned rights.

Patent status:

•'

Inquiries concerning rights for commercial use of this innovation may be made to:

Mr. George H. Lee, Chief Chicago Patent Group U.S. Atomic Energy Commission Chicago Operations Office 9800 South Cass Avenue Argonne, Illinois 60439