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I. THENEEDFORACALCULUS 

The complex utility systems and weapon systems that are built out of 

public resources are basically problem solving systems; society buys them 

in the hope that they will serve to solve problems that broadly affect society. 
In recent times such systems have been developed at an accelerating rate. 

To some extent each new system builds upon the systems that have been 

developed in the past, and, in this manner, the overall size and complexity 

of systems tends to grow. Although this growth in size and complexity has 
made these new systems more difficult to produce, society has nevertheless 

produced many of them when urgent pressures have been broadly recognized. 
Thus, in recent years society has been able to solve problems that were 

thought impossible of solution a few years ago. The importance to society 
of the new complex systems is great and there are strong pressures to con- 
tinue to solve those problems that are shifted into the realm of solvability 
by advancing technology. 

With increasing complexity and with increasing importance of the prob- 
lems encountered, there has also been a trend toward increasing cost of 

systems. Thus, in our time, new systems to serve society, such as waste 

management systems, power supply systems, and transportation systems 

require for their development such a significant proportion of our total 
resources that we cannot undertake them all at once, even though all are 

clearly within the scope of technology to build. Given as opposing factors 

high cost in terms of resources needed for development and great importance 
in achieving success, there is need for capability to predict, to design, and 

to control development processes for the complex systems needed, so that 
our resources can be used most effectively to solve as many problems as 

possible. 

In recognition of the importance of control over the development process, 

in recent years there has been increasing use of one tool that is useful for 
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this purpose, the Program Evaluation and Review Technique called PERT. 

PERT was developed specifically to help solve the problem of gaining control 

of the development process and it does provide a partial answer to the need. 

However, the successful use of PERT techniques for the control of a given 

development cycle depends upon having an adequate description of the develop- 

ment process to be controlled. Given an adequate description, PERT tech- 

niques can be employed to redescribe the process in terms of resource 

requirements, time requirements, and contingencies. But without any 

description of the steps in the development process to start with, PERT is 

of no use. By the same token, a good PERT description cannot offset a bad 

process description upon which it is based. To date it appears that there is 

no generally available method for generating an adequate description of a 

development cycle so that a PERT description may be generated in turn and 

used to full advantage. There is a need for such a descriptive method. 

There have been attempts to describe or model the process of complex 

system development. The most significant undertaking has been sponsored 

by the Air Force. With the support of the Department of Defense (ref. 3), 

the Air Force has prepared an horrendously detailed description of the 

process by which the systems built under its aegis should be developed 

(ref. 1). The Air Force documentation, however, does not lend itself to 

adaptation for solving the development cycle problem in general. It is 

tailored specifically for the management conventions and hierarchical rela- 

tionships of the Air Force. It presents a model for system development in 

great detail, but the model is not one from which general principles may be 

extracted, nor is it one that is amenable to evolution by means of rigorous 

public discussion. Several authors writing in the general area of system 

engineering have recently presented models of what the system development 

process is like (ref. 2, 6, 5); none of these contains sufficient detail nor 
adequate rationale for it to be useful for solving the problem of gaining 

control of the system development process. 

Although existing documented descriptions of the development process 

are not adequate to enable the prediction, design, and control of development 

cycles for complex systems, they all demonstrate that the business of designing 
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a development cycle is essentially that of finding a defensible strategy for 
the sequence and relationships of events that must take place in the course of 

developing a complex system. In order to be able to talk about development 

cycle strategies without ambiguity, and in order to promote, the comparison 

of alternatives in the course of evolving good strategies, we need a special 

language; specifically, there is need for a language whose terms and concepts 

are public and precise and whose symbology is well defined so that there can 

be an exchange of precise ideas among. the specialists interested in the 

development process. Given such a language, there would be a good basis 

for communicating and improving development cycle models which exhibit 

useful strategies. 

The objective of this paper is to present a language which satisfies the 

needs outlined above. 

The vehicle for talking about development systems that is presented 
here was generated within certain ground rules. A basic rule was, of course, 
that the language be useful for talking about development cycles. Another 

ground rule was that the language be presented as a calculus according to the 
conventions of mathematics in order to take advantage of the established methods 

of the mathematical community as a way of providing for the orderly improve- 
ment of the language (ref. 7). Yet another ground rule was that the calculus 

should articulate with PERT and with probability calculus, such that it would 
permit building models of development cycles which could be translated into 

probability equations (models) on the one hand, or into PERT models on the 
other (ref. 4). This ground rule was compatible with our objective that 
the language make it possible to utilize computers for testing and manipulating 
detailed development cycle models which might result from the use of the 

language. Finally, we hoped to provide a language rich enough to enable 

the evolution and elaboration of relatively complex models of the system 

development process, should such elaboration prove to be necessary and 
fruitful. 

What follows then, is the presentation of a simple calculus which is a 

language for talking about development cycles. It is called a simple calculus 

133 



for discrete systems, because we believe that any development cycle may 

usefully be treated as a discrete system. 1 In this manner, we have avoided 

the complexity which would have been necessary had we chosen to attempt the 

development of a calculus for systems whose individual outputs must be 

described over an interval of time, or whose outputs are distributed over 

time. Only the test of application will reveal whether or not this was a good 

decision. Following the presentation of the calculus in the next section, 

there is a brief discussion which attempts to provide a partial justification 

for the specific coinage and syntax chosen for the calculus. The method of 
justification is to introduce the reader to the use of the calculus for describing 

development cycles. 

II. THE CALCULUS 

We begin the presentation of the calculus with a discussion and definition 

of the key concept, State. 

State 

In the definition of state, we shall employ the intuitive concept, “public 

method of measure. ” By public method of measure we mean a set of 

instructions which is available to a target population of people, and which, 

when used by members of this population, is capable of reliably guiding 

their actions in obtaining information about the real world. We call the 

information obtained (that is, the result of using the method of measure) a 

“symbolic statement” (e. g. , 26 grams). For our purposes, a symbolic 

statement is a sequence of symbols from an appropriate underlying alphabet. 

1 A discrete system is one whose operation can satisfactorily be describedas 
a finite sequence of events moving forward in time and whose terminal output 
state is fully described at a point in time after which no further events occur. 
Such a system must be one whose condition at any point of time can satisfactorily 
be described by stopping the clock and by identifying the complete condition of 
the system at that point in time. (Output state is precisely defined in the 
following section of this paper. ) 
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For the purposes of the people who would obtain a symbolic statement by 
measurement, it would hopefully convey some information about the real 

world, which would be of use to them. We shall assume that there is a basic 

encyclopedia, & , of methods of measure which is publicly available, and 
from which precisely defined methods of measure may be drawn. 

We call the use of a public method of measure “an act of measurement. ” 

We assume that an act of measurement occurs at a particular point in time. 
In fact, measurements are not made at a point in time, but in most appli- 

cations of the calculus there is no penalty for pretending that a symbolic 
statement is associated with a point in time, and to do so avoids need for 

undue complexity in the calculus. 

We are now prepared to begin a rigorous definition of state. Roughly 

speaking, we want our definition of state to carry the idea that a state is the 
symbolic statement resulting from an act of measurement. As it turns out, 
as soon as we get state pinned down to this idea, we will want to expand the 
notion of state to include other ideas as well. Therefore, let us call this 
preliminary notion an atomic state; we will save the word state for the 
expanded notion which will come a little later on. Thus, we define atomic 

state rigorously as follows: 

Definition: - An atomic state is an ordered triple (S, M, t), where S is a 

symbolic statement, M is a public method of measure taken from the basic 

encyclopedia 6 , and t is a symbol (frequently a real number). We interpret 

this triple as follows: S is the symbolic statement which results from the 

use, at time t, of the public method of measure M. 

As already stated, for our purposes a symbolic statement is a sequence 
of symbols from an appropriate underlying alphabet. Likewise, M may be 
thought of as a sequence of symbols; namely, that sequence of symbols which 

makes up the set of instructions of which M is composed. 

Suppose that Ml and M2 are public methods of measure. Then a 
combined method of measure might for didactic purposes be thought of as 

devised by tagging the set of instructions for M2 at the end of the set of 
instructions for M 1’ Then as one finished complying with the instructions 
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for Ml, it would still remain to comply with the instructions for M 2’ If 

people from the target population may reliably use Ml and also reliably use 

M2, they may reliably use the combined public method of measure (denoted 

by M1M2). If Sl and S2 are the symbolic statements resulting from the 

use of Ml and M2 at some common instant in time, then we denote by SlS2 

the symbolic statement resulting from the use of M1M2 at that same instant 

in time. We may now rigorously define the expanded notion of state which 

we need. 

Definition: - We define state recursively in terms of atomic state as follows: 

1. Every atomic state is a state. 

2. If (S1, Ml> t,) is a state, and (S2, Ma, t2) is a different state but 

with tl = t2, then (SlS2, MlM2, t,) is a state. 

Thus, our general notion of state, is that a state is something which may be 

composed of atomic states or other states. Notice that the recursive 

definition above permits states of the following structure: (S1S2 . . . S n’ 
M1M2 . . . M,, 0. Therefore, we may think of a state as being composed 

of many states. That is, the state (S1S2 . . . Sn, M1M2 . . . M,, t) may be 

thought of as being composed of 61, Ml, t), and (S2, M2, t), and,. . . and 

(Sn, M,, 0. We shall call the set of states 
{ 

(Sl, Ml, t), . . . (Sn, Mn, t) > 
a subdivision of the state (S1S2 . . . Sn, MlM2 . . . M,, t). Notice that a 
given state may have many subdivisions. Thus if we let S’ = S2 . . . Sn and 

M’ = M 2 . . . Mn’ then (S1, Ml, t), (S’, Ml, 
1 

t) 
> 

is also a subdivision of 

(S1S2 . . . Sn, MlM2 . . . Mn, t). 

Instead of writing a triple each time we wish to refer to a particular 

state, we shall often use a single lower case letter (sometimes with a 

subscript) to denote a state. Thus, for example (S, M, t) might be denoted 

by b, and (S1, MI, t 1) might be denoted by bl. In addition, we shall some- 

times denote the state which results from combining bl, . . . bn. as 

1 
bl,. . . bn . 

> 
(Notice that b 1’ ... bn must all have the same time t - 

associated with them, else they cannot legally be combined into a single state. ) 

Furthermore, if b is composed of the states bl, . . . bn, then of each bi we 

shall say that bi is an element of b. Finally, we shall sometimes use the 

136 



convention of referring to the time t associated with the state (S, M, t) as 

“the time at which the state occurs. ” 

Primitive F-unctions 

We do not use the word function as it is used in the world of mathematics. 

Rather, our use of the word derives from its everyday use in systems 

analysis . We define primitive function precisely as follows: 

Definition: - A primitive function is an ordered pair of states (a, b) such 

that if ta is the time associated with a, and tb is the time associated with 

b, then ta 4 tb (read. “ta earlier than t,,“). 

The first coordinate in the pair is called the input state, and the second 

coordinate is called the output state. 

Isomorphic Primitive Functions 

Let (a, b) be a primitive function and suppose a and b are subdivided 

as follows: a = 
1 

al, . . . a n 1 and b = {%t b2) . Eventually we would 

like to be able to make sense of such questions as: 

1. “What is the probability that bl and b2 occur, given that all of 

aI, . . . an occur? ‘1 

2. “What is the probability that bl or b2 or both occur, given that 

all of al, . . . an occur?” 

3. “What is the probability that bl occurs given that a7 or a3 or both 
occur? ” 

To answer such questions as these, we must define an appropriate sample 

space over which to compute probabilities. This sample space will be defined 

in the following section, and will consist of a collection of primitive functions 

which are in some way “similar. ” This notion of similarity is contained in 

the following definition of isomorphic primitive functions. 
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Definition: - Let F1 = (a’, b’) and F2 = (a2, b2) be primitive functions, . . . 
which are subdivided as follows: a1 = (a;, . . . ai) and b1 = (bi, . . . bm) 

where i = 1, 2. Then F1 and F2 are isomorphic if: 

1. t -t = t -t 
b1 a1 b2 a2’ 

where t . is the time associated with bi, 
b’ 

and t . is the time associated with a’, for i = 1, 2. 
a1 

2. For each at, the method of measure for ai is the same as the 

method of measure for a2. k 

3. For each b,l, the method of measure for bk ’ is the same as the 

method of measure for b 2 
k’ 

Roughly speaking, for Fl and F2 to be isomorphic, there must be a 

subdivision of the input state of Fl and a subdivision of the input state of 

F2 ’ which both have the same number of substates. (Likewise there must 

be subdivisions of the output states of Fl and F2 with the same number 

of substates in them. ) In addition, the time difference between the input and 

output of Fl must be equal to the time difference between the input and output 

of F2.. Furthermore, the method of measure in each substate in the input 

subdivision of Fl , must be the same as the method of measure for the 

corresponding substate in the input subdivision of F2 . (A similar condition 

holds for the output subdivisions of Fl and F2. ) 

Probability Tables for Primitive Functions 

Let F be a primitive function (a, b) , where a and b are subdivided in 

some desired manner: a= 
{ 

al, . . . an) , b = { bl, . . . bm } . With this 

primitive function F and its subdivisions, we associate a class of sample 

spaces. Each sample space X in this class is a finite set of primitive 

functions 
1 

F1> . . . Fn , 1 each of which is isomorphic to F. In addition 

we assume that X contains F. The probability measure, P , on X is defined 

by the number of elements in the subsets of X. Thus if Y is a subset of X, 

then P(Y) = z, where m = number of primitive functions in Y , and n = total 

number of primitive functions in X. Notice that P(X) = 1. 
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Example: - Let F be the primitive function ((S, M, tl, 6’. M’, t’l ) . 

Then the following set of primitive functions is a sample space for F: 

F1 (=I?): ((S, M. t), 6’. M’, t’)) 

F2: ( i, M’. t’ + A ) ) 
Where S # Sl, 

and S’, Sf, and 

F : 3 (::f.MM’t :iZbd:: :I;, M’. t’ + 24)) S2 are all 

F4: (6, M, t + 3h1, 6’. M’, t’ + 361) distinct. 

In this example, neither the input nor the output of F is subdivided further 

than one state apiece, whereas in the general case the subdivision may be -- 
quite extensive in each state. Notice however that the input and output states 

of the other primitive functions F2, F3, and F4 in the sample space are 

subdivided to the same extent that the input and output of F is. Thus in this 

example the inputs and outputs of F2, F3, and F4 each have only one state 

in them, in consonance with F Notice also that the method of measurement 

in each input state of F2, F3, and F4 is the same method of measurement 

as in the input state of F Likewise the method of measurement in each 

output state of F2, F3, and F4 is the same as the method of measurement 

in the output state of F Finally, observe that the time differences between 

the input and output states of the primitive functions in the sample space 

X are: 

time difference q t’- t for F, 

time difference = t’+A -(t+A) = t’-t for F2# 

time difference = t’ + 26 - (t + 2A) = t’ - t for F3, and 

time difference = t’ + 3A - (t + 36) = t’ - t for F4. 

Thus all the time differences are identical. In summary, then, we have 

shown that all the conditions for isomorphism exist between F, F2, F3, 

and F4, and hence X is indeed a sample space for F Actually one would 

probably want a sample space to contain a very large number of primitive 

functions in it, rather than a mere four primitive functions as in this example. 

Therefore in practice, a sample space so simple as this one would not be 

used. 
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Special Notation: - If a is x state, then let Sa be the generic symbol for 

the symbolic statement within a. Thus, for example, if bi is a state, then 

Sb 
i 

denotes the symbolic statement in bi . 

Suppose F is subdivided’ . in some way, and let a be any substate in F 

(in either the input or the output of F). Let X be a sample space for F . 

Then we shall define a special subset Xa of S as follows. Let F’ be any 

primitive function in X . Since F and F’ must be isomorphic, there is a 

state a’ in F’ which corresponds to the state a in F . Then we shall let 

F’ be a member o.f Xa if and only if Sa = Sa, . Evidently then F itself is a 

member of Xa. We call the set Xa the occurrence set for the state a. For 

each F’ in Xa, we shall say a occurs in F’ . - -- 

In the example above, the occurrence set for the state (S, M, t) is the 

set of functions i F1, F3, F4 . i 
Or, alternatively, we may say (S, M, t) 

occurs in F - 1’ F3 ’ and F4 ! Notice that F2 is not included because the 

symbolic statement in F2 which corresponds to S , is Sl , and we assumed 

in the example that Sl # S . 

For any sets W and Z, W,fl Z represents the set theoretic intersection 

of W and Z, W U Z represents the set theoretic union, and - Z represents 

the set theoretic complement of Z . We shall define a collection of subsets, - 
r, of X as follows: 

1. r contains Xc, for every state c in the subdivision of the input 

and output states of S . 

2. If Xl and X2 arein r, then Xl” X2, X1u X2, -Xl, and -X2 

are all in r . 

3. r contains X . 

Thus I? is the closure under the operations n , U , and - , of the sets 

X al’ .” n xa ) Xb , . . . Xb 
1 m 

Let us assume that yl, y2, 73, . . yx, 

1 When we say that a function is subdivided, we employ the same idea as in 
the subdivision of states. Thus, a subdivided function is one whose input 
states and output states are expressed in subdivided form. 
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are the sets in r . 

> 

Thus yl might be Xa , and 726 might be Xa u n 
1 1 

Xa 
3 

(-xb) . 
2 

Definition: - We define the probability table for the primitive function F - 
to be a chart: 

The labels along the &I of the chart correspond to the sets in r The same 

labels are used along the side of the chart. The entry 
1 

m the chart at the 

intersection of row ‘li with column 7j is the ratio: 
w 

(see footnote 

2 below). Thus this entry is the probability of 7j given yi’! The unconditional 

probability of Yj (i.e. , P(rj) ), is the probability of Yj given X which is the 

ratio: w or, 
#(Y.) 

since X contains Y. the ratio: This unconditional 
J 3+ 

probability of Yj also appears in some entry in the chart, since X is in r 

and therefore X corresponds to one of the labels. (Notice that all the proba- 

bllities along the main diagonal of the chart are 1, since for every ‘j, the 

probability of ‘Yj given I] is simply 1 ) 

Now we can answer the sort of question that was posed in the preceding 

section. In that section, we considered a primitive function (a, b), with 

subdivisions a = al, . . . an , and b = 
> 

The problem posed 

L It is unnecessary to prescribe every entry in the probability table. 
P(A U B) = P(A) + P(B) - P(A fl B) 

Using 
and its generalizations all entries may be 

computed given relatively few. 
2 If y is any finite set, then #( Y ) means “the number of elements in 7. ” 
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there was to make sense of such questions as: 

1. “What is the probability that both bl and b2 occur, given that all 

of a II 1, . . . an occur? 

2. “What is the probability that b1 or b2 or both occur, given that 

all of a 1, .,. an occur? ” 

3. “What is the probability that bl occurs given only that a7 or a8 

or both occur? ” 

To answer these questions we first construct a sample space X for (a, b). 

Then the required probability for question number 1 is interpreted to be: 

xb ) n (xa n ) 

P = 
#[(Xbln 2 1 

. . . n xa 
n 1 

----- 

In this expression’ for P, the set X n X 
bl b2 

is the intersection of the set 

of primitive functions in which bl occurs with the set of primitive functions 

in which b2 occurs. That is, Xb 17 Xb is the set of primitive functions in 
1 2 

which both bl and b2 occur. Likewise, X n . . . fl Xa is the set of 
al n 

primitive functions in which all of al , . . . an occur. Finally, (Xb fl Xb )n 
1 2 

(xaln . . . 
fl Xa ) is the set of primitive functions in which bl and b2 and 

n 
all of al, . . . an occur. Thus, P is the number of primitive functions (in 

x n . . . 
al 

n Xa ) in which bl and g2 occur, -- divided by the total number of 
n 

primitive functions in X fl , . . fl Xa , This then is how we define the 
al 

probability that bl and b2 occur givennal , . . . an. 

-  --I_- 

’ Notice that each set which occurs in this expression corresponds to one 
of the ri’s in r , by the way r was defined. 
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The required probability in question number 2 is interpreted to be: 

#[ (xblu xb2) n (xaln . . . n xa ) 
n 1 

P = 
# x 

[ al 
n . . . nxa 

n 1 
Finally, the required probability in question number 3 is interpreted 

to be: 

P = 

Special Notation: - For a primitive function with even a moderate number 

of states in a particular subdivision, the construction of a complete probability 

table would be wholly unfeasible. There are simply too many entries in the 

chart to actually fill them all in. Ordinarily, just a part of the probability 

table is filled in. What results, in the working situation, is a “short” proba- 

bility table with only those entries of particular importance in the given 

situation being filled in. Perhaps the shortest, and also the most commonly 

used probability table is the following. Let F = (a, b) be a primitive function 

with subdivisions a = a .} , b = ( bl , . bm) A short probability 

table for this case is: 

x 
al 

r-l 

- (xaun 

n xa n 
l-l xa ) 

n 

xb n n xb 
1 m 

p1 

B p2 

Thus PI is the probability that bl , bm all occur, given that 

alI an all occur. Likewise, P2 is the probability that bl , bm 

occur given that not all of occur! A brief notation for this -- alI 
. 

an 

table is ordinarily employed: 

1 Probability of b 
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Here, we say that PI is the probability that b occurs given that a occurs, 

and Pa .is the probability that b occurs if a does not occur. When we use 

this terminology, it is to be understood that we are just using a shorthand 

terminology for what is said in the sentences above marked with a dagger (/I. 

Finally, in many cases, we shall want Pg to be zero. Then we shall use 

the even shorter table: 
1 PrObabPiry of b, a 

and it will be understood that the probability that b occurs given that a does 

not occur is zero. This is the only case when leaving off part of a chart - 
allows us to deduce something about one of the entries in the part of the chart 

which is deleted. Ordinarily, if part of a chart is deleted, it simply means 

we are not interested in those entries in the deleted part. 

Function 

Definition: - A primitive function F = (a, b) along with its complete proba- 

bility table is called simply a function. A function is sometimes denoted by 

the symbology: 

If the short table 

, a / Probpalbility Oib 

is what is being used, then the function may be denoted by 

PI7 

Probability of Output -- - 

Ilefinition: - In the short table above, PF is called the probability of output 

of the function F Thus, PF is the probability of b, given a. 
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Primitive Array 

Definition: - Let tl , t2, . . . tn be the times associated with the output 

states of some sequence of primitive functions d = Fl , F2, . . . F,.,, each 

of which is subdivided in some pertinent way. Then d is called a primitive 

if: array 

1. tl 5 t2 5 . . . c tn 

2. Every function Fj , 

each element 
1 

whose output state occurs earlier than tn has 

of its output state occurring as an element in the input 

state of at least one of the other functions in d. 

Roughly speaking, % sequence of primitive functions where all the output 

states occur at the same.time for one reason or another, is by definition a 

primitive array. Rut if two or more output states of a sequence of primitive 

functions occur at different times, then that sequence is an array only if all 

the elements of the earlier output states occur as elements in the input states 

of some of the other primitive functions. Thus, the only primitive functions 

in an array whose output states do not “feed into” other primitive functions, 

are those whose output states occur at the latest time. Notice that nothing 

is said which indicates that the elements of input slates have to come from the 

output states of some of the other primitive functions. Our only restrictions 

are on output states. 

Example: - Let & = Fl , F2, F2, F4, F5, F6 be a primitive array 

where: F1 = (al, bl), the time associated with bl is tl, 

F2 = (a,. b2), the time associated with b2 is t2, 

. . . . . 

F6 = (a 6, b6), and the time associated with b6 is t6 

’ An “element of a state” which has been subdivided into other states, is 
any of the states in that subdivision. 
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Suppose that tl < t2, t2 = tg, tgL t4, and t4 = tg = t6. This array might 
. 

be represented diagramatically ’ as follows: 

We have represented &! in such a way as to indicate that bl 

a5 = ( b2, bg) , and bg = a6 With these final provisions, kk2:: kdeed 

a legitimate primitive array. 

Isomorphic Primitive Arrays 

We may define isomorphism between two primitive arrays d and AI 

in a manner which is completely analogous to the manner in which isomorphic 

primitive functions were defined. The definition looks more complex only 
because in general there is more than one primitive function in a primitive 

array, and we must carefully correlate the states of each primitive function 

in -$ with the states of each primitive function in A&. A precise definition 
of isomorphic primitive arrays may be given as follows: 

1 Notice that in the diagram alluded to, symbols such as 

occur, which look suspiciously like our symbol for a function. But in our 
discussion to this point, we have spoken only of primitive functions, and 
indeed have said nothing about any of the things (such as sample spaces or 
probability tables) which are required to bring in the notion of function. 
Later on we shall give a definition of array, in which symbols of this sort 
occur and are intended to be functions. Until that time, however, we shall 
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Definition: - Consider two primitive arrays & = Fl , . . . Fn, and d I = 

Fi, . . . Fm, with appropriate subdivisions in the input and output states 

of each Fi and each F; . Then d and d ’ are isomorphic if n = m, and there 

is a one-to-one correspondence G between the elements of the subdivisions 

in d and those in At such that: 

1. For every Fk in A, if b is a state in the input (output) state of 

Fk, then G (b) is a state in the input (output) state of Fi( . 

2. For every Fk in d, if (S. M, t) is a state of Fk (either in the 

input or in the output state) and if G (6. M, t)) = (Sl, Ml, tl) , 

then M = Ml. 

3. There is a real number A, such that if (S, M, t) is any state in 

d , and if G ((S, M, t)) = (S’, M’. t’), then t’ = t +A. 

Example: - The following two primitive arrays are isomorphic: 

d= 
(S1> Ml> t,) (S3, M3> t,) 

b 

6;. Ma. t2 +A ) (s$, M3, t3 +A ) 
b 

Probability Tables for Primitive Arrays 

With each primitive array .d, we associate a class of sample spaces. 

Each sample space X associated with Aa 1s a finite set of primitive arrays 

Al> . . . A,, each of which is isomorphic to B. Thus the sample space 

use the symbology b to indicate a primitive function, 

or if you will, a function without its probability table. This sort of diagram 
is useful because it helps us keep track of the input and output relations 
between the primitive functions in &! . 
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for a primitive array is no longer a set of primitive functions (as was the 

case for the sample space for a primitive function) but rather is a set of 

primitive arrays. The probability measure, p, on X is defined by the 

number of .elements in the subsets of X . Thus, as before, if Y is a subset 

of X, then p(Y) = %, where m = number of primitive arrays in Y and 

n = number of primitive arrays in X . Again notice that p (X) = 1 . 

Now the probability table for a primitive array is exactly analogous to 

the probability table for a primitive function. A slight change (but a natural 

one) occurs in the definition of the collection r of subsets of X. Here, we 

define r as follows: 

1. r contains Xa , for each state a, in any subdivision of any primitive 

function in J . 

2. r is closed under n , u , and - . 

3. r contains X . 

From this point on, the probability table is defined exactly as it was defined 

earlier for the primitive function. 

Array 

Definition: - A primitive array together with its complete probability table 

(over an appropriate sample space) is called simply an array. 

Component Arrays 

Definition: - Let ,&! be an array with a sample space X Supposed is the 

sequence of primitive functions F1, F2, . Fn. Let d= F. F. 
11' 'i. lk 

be a subsequence of d . Then 2 is a component array of d if d is 

itself an array, and if the sample space, x, ford is defined as follows: 
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For each array dj = Fi , Fi, . . . FA in X. 

we define an array JJ as the subsequence F: , 

. . . F? ofdJ . The set of subsequence arrays 
‘k 

generated in this-way is the sample space %. 

This condition on the sample space of the component array guarantees that 

the probability tables associated with the component array are consistent 

with the original array d . 

Component Function 

Definition: - A component function of d , is a component array ofd which 

contains only one function. 

Now that we have the notion of component function, we may sIjeak of an 

array as a sequence of functions rather than as a sequence of primitive 

functions. 

Partitioning/Adding 

Definition: - Let d be an array with n functions F1, . , Fn. Let A’ 

be an array whose sequence of functions may be divided into n disjoint 

subsequences of functions d i , db, . d:, Thend’ is a partitioning 

of J if: 

1. Allthe di, . . . dn are component arrays of J’ 

2. The array inputs 1 of A; contain all the states in the input state 

of function Fi in d (this being true for each i = 1 , . . n). 

3. The array output ‘ of d i is ecu& to the output state of function 

Fi ind (for each i = 1, . . n). 

1 The array inputs (of an arrayA ) are simply all those states in ,&! which 
occur in the input subdivision of some function in & , but not in the output 
subdivision of any function in&? . 
2 Array outputs are defined in an analogous way to array inputs. 
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Intuitively, we may think of a partitioning of an array d as being another 

array 2 ’ , which is gotten by “cutting up” each function of &! into a bunch 

of functions. This cutting up process, however,. must take care to preserve 

the states in the input and output of the function (although it is permissible 

to introduce new input states). 

Example: - Letd be the following array: 

b u, v > . 

Then a partitioning ofd might be the following array &I : 

a 

In the example, the component array d i = Fi, Fi of dl corresponds 

to the function Fl , and the component array A$, = Fb, Fi corresponds 

to the function F2. The array inputs of di are the same as the inputs of 

function Fl (likewise f or the outputs). The set of array inputs of d2 contains 

the inputs of function F2, and the array output of d 2 is equal to the output 

of function F 2 Therefore, d’ is indeed a partitioning of d 

We shall want the probability tables for a partitioning A’ of ,J, to be 

consistent with the probability tables for r$ . We may ensure this consistency 

by placing conditions on the sample space for -$I, just as we placed conditions 

on the sample space of a “component array, ” when we defined it. We shall 

assume that such conditions are placed on the sample space of -$I as part 

of the definition of a partitioning. Thus for a partitioning r$’ of d , it will 

always be the case that the probability tables of A1 are consistent with 

those of &. 

Convention: - If dr is a partitioning of d , we shall sometimes use the 

phraseology: ” d is obtained from d’ by adding. ” 
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Three Special Types of Functions 

There are three important types of functions which are distinguished by 

their probability tables. We shall adopt a special notation for those functions 

which, employ these tables. This notation will be used in our diagrammatical 

representations of arrays in order to circumvent the necessity of writing out 
these tables whenever these functions occur in an array. 

The AND Table: - Consider a function F: 

a={al’ a2}a b 
b 

If the probability table ’ for F is: 

Given: I Probability 
of b I 

al and a 2 1 pF 1 

then the function F sometimes is denoted by: 

al 
b 

0 

’ In this probability table, the labels al and a2, are supposed to stand for 

x nx 
al a2’ 

and the label l1 and a2 is supposed to stand for (- Xal) II (Xa ). 
2 

Likewise the label “probability of b” is supposed to stand for Xb. The use of 

these new labels above, make for a quicker interpretation of the entries in 
the table. 
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The symbol A is called the AND symbol, and the table is called the AND 

table. Consider for example the array: 

This array may seem to convey the idea that somehow the outputs of FI and 

F2 are “joined” so that they can be fed into F Actually, what this symbology 

tells us is that the input to F is precisely the state 
1 

(al, a2 } , and the 

probability table for F is the AND table. No “joining” function is implied. 

The Exclusive OR Table: - Consider the function F: 

“={“lsa2f b . 

If the probability table this time is: 

I Probability 
Given of b 

I I 

al and a 2 I 0 

I 
. . 

al and a 
2 I 

0 

’ The AND table above is for an input state with two component states. The 
table may be easily generalized to input states with three or more component 
states. The notation would not change. Thus, in a pictorial representation, 
the AND table for three components would be implied by: 

b 
b 
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then the function F will be denoted by: 

+ 

The symbol @ is called the exclusive OR symbol, and the table is called the - 
exclusive OR table. This symbol tells us that the input to F is precisely 

aI. a2 . I 
and the probability table for F is the exclusive OR table. 

The Monitoring Table: - Consider the function C = (a, b). Suppose this func- 

tion is accompanied with the following probability table: 

When such a probability table is associated with (a. bl, then (a, bl is called 

a monitoring function. The table is called a monitoring table. In a pictorial 

representation of an array, a monitoring function will be denoted by a large 

circle. Thus in the array: 

X 

a M denotes a monitoring function. 

-9 
m 

Roughly speaking, M responds when the output of A fails to occur. 
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III. USE OF THE CALCULUS 

Thus far we have not employed the term system. That is because system 

is simply a term of convenience within the calculus. Its most frequent use 

will be outside of the calculus when making application of it. Indeed, the use 

of the term system in the title of this paper is an extramathematical usage. 

Within the calculus it is useful to have a term to refer to the “most 

comprehensive” array that will be considered in a given discourse. Thus, 

suppose xdl> * * * A& are all the arrays under consideration in a given. 

discourse. A very typical situation is that one of these arrays (say -$I) is 

a “parent” array to the others. By this we mean that the other arrays may be 

divided into two classes C and C’ where each di in C is a partitioning of 

4’ and each c$. in C’ is either a component of &I or a component of 

some k!4 i in C. i!v e say that this parent array is the most comprehensive 

of all the arrays under consideration. In a natural way we may associate a 

unique function (a, b) with this parent array. The input state a of this function 

is the earliest of the array inputs of &I, and the output state b is the array 

output of i$l. We use the word system to refer both to the function (a, b) 

and to any partitioning of it. 

System is used in engineering and in everyday communication with a wide 

variety of connotations. In fact, one might suspect that the number of con.- 

notations is somewhat greater than the number of users. In a situation in 

which the calculus is being applied, it is suggested that the use of the word 

system to refer to real world objects be restricted to application to a collection 

of objects that may be set in correspondence with the parent function in the 

discourse. 

The calculus that we have presented, then, is intended to be useful for 

talking about real world systems. The systems to which it may be applied 

will be discrete systems or they will be systems which may reasonably be 

treated as discrete systems. Thus the calculus may be used only to talk 

about real world systems all of whose system outputs occur at the same time. 

Our principal interest is in development cycles. 
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In the introductory section of this paper, and in the above paragraph, 
we employed the term “development cycle” with the expectation that it would 

be understood in the everyday sense. Without a calculus, that is about the 

best that we can hope for. We are now in a position to identify more precisely 

how we wish to use the term. 

A development cycle is a discrete system whose input is a Primitive Need 

Statement ’ and whose output is a collection of means for implementing an 
operational system 2 that will satisfy the need which occasioned the Primitive 

Need Statement. Not all processes in the real world that we would like to call 

development cycles are discrete, and thus not all development cycles in the 

everyday sense of the phrase match the definition above. However, we believe 
experience will show that virtually all development cycles (in the everyday 

sense) may be treated as discrete systems for the purpose of designing and 

controlling them. 

Once a development cycle that is of practical interest has been described 

as a system by identifying its input and output states, we may employ the 

calculus as an aid to determining an appropriate basic strategy for carrying 

out the develppment process. Thus, a development cycle can be partitioned 

to define a prime function array 3 in a manner that precisely identifies a 

chosen strategy. 4 A strategy that is described in this manner can be presented 

for public inspection and, as the result of such inspection, may be corrected, 

i By Primitive Need Statement, we mean the first verbalization which has the 
effect of calling attention to a real world problem which requires a new system 
for its solution (ref. 2 , page 18). 
2 A man-made system which is built to satisfy a need in another system is 
called an operational system. 
3 A prime function array is an array in which the probability of the array output 
(given the first array input) is equal to the product of the output probabilities 
of all the component functions. Recall that an “array input” is a state in the 
array which does not occur as an output of any of the functions in that array. 
Recall also that states which occur at the same time may be considered as a 
single state or as multiple states, whichever is the most convenient. 

4 By a strategy we mean here a sequence of steps for carrying out the develop- 
ment process which can be justified where justification is in terms of cost of 
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accepted, or rejected. An example of a basic strategy for carrying out the 

development of complex aerospace systems is presented in Part A of this 

report. 

Not only does the calculus permit the precise description of a strategy in 

terms of the prime functions essential to the development cycle, but it also 

permits the elaboration of such a prime function array to provide for high 

probability of success of the development process being described. To achieve 

such a goal, we use monitoring functions to build additive loops. Thus, a 
monitoring function, M, is often used in an array as follows: 

al 

Here ?i denotes the same state as a, except that % > ta (see footnote 1). We 

interpret the purpose of the monitoring function in this array as follows: M 

responds only if the state a fails to occur. If a does not occur, M produces 

bl ’ which is an input to function F2 which in turn produces output b2. The 

probability that Z or b2, or both occur, is greater than the probability that 

5 occurs, if PM and PF are both greater than zero. The role of M in the 
2 

array is defined precisely only by the probability table associated with M . 

development and in terms of the quality and cost of use of the system that is 
produced by the development cycle. See Report I, A Simple Model of a Man- 
Machine Development Cyc’le. 

’ The function D is inserted to preserve time relationships such that % = tb . 
2 
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An abbreviated notation for the above array is sometimes employed: 

I 
In such an array, the set of functions {MJ F21 is called a first-order 

additive loop. 

By means of additive loops we can provide for “management” to ensure 
the high probability of the success of a development cycle. Chapter 5 of L 
Part A suggests some of the ways in which this may be done. 

By the manner in which the concept of function and array are defined in 
the calculus it is articulated with probability calculus such that one may readily 

derive a system description in terms of a probability equation given a system 
description in terms of the calculus. One may also readily translate a system 
description in terms of the calculus into a PERT description. In this translation, 
each function becomes a PERT activity, and time relationships are preserved. 

Any attempt to recapitulate the rationale underlying the selection of the 
specific basic concepts and syntax which make up the calculus presented above 
would be both incomplete and tedious. It would be incomplete because much 

of the rationale is difficult to retrieve. The calculus was employed in its 

earliest form as an informal working tool; initially there was no intention to 

formalize it. It evolved as a working tool over several years as it was used to 

help solve a wide variety of system problems. By the time the decision was 

made to formalize it, the calculus was well shaped as an intuitive method and 

the many specific motives underlying it, like most evolutionary forces, were 

no longer identifiable. The best that can be done now is to test whether the 

calculus can be used to begin the task of describing the system development 
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process; one attempt is presented in Part A. Whether or not the adjustments 

made over the years of use have indeed generated a calculus that is broadly 

useful (or which is amenable to modifications so that it will be useful) can only 

be determined if others attempt to use it as an aid to solving real problems. 

No amount of rationalization will make it any better than it is. 

Serendipity Associates 

Chatsworth, California, October 1966. 
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