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, The Stability of a Rotating Liquid Mass 

The problem of the fission of a rotating liquid mass is one which draws on 

1 

investigations going back some 200 years. The problem has been most extensively 
treated on the basis of the assumption that the mass i s  a homogeneous fluid. It i s  
quite clear that the earth is not now a homogeneous fluid; it i s  even conceivable that 
the earth never was a homogeneous fluid. Even if the latter is true, it is worthwhile 
to discuss the case of the homogeneous fluid because it gives u s  the best-explored 
road into the problem. Starting from this road we can made such changes as are 
required to account for the actual heterogeneity of the earth. We follow the treat- 
ment of Jeans (1919), and our equations are numbered like his, in his chapter III. 
New equations which we have inserted are followed by small letters. 

I I -  

We begin by asking about the forms which would be taken by a rotating fluid 
body which is constrained to be an ellipsoid. We  shall show that certain ellipsoids 
are in fact equilibrium configurations. Here again we have simplified the problem 
and we must later justify the choice of an ellipsoid by showing thatit is, in fact, the 
stable configuration for certain velocity ranges. Note that we are here interested in 
an exact solution to the approximate problem, rather than, as heretofore, in an 
approximate solution of the real problem. 

I 

In preparation for our problem we note that the equation of the boundary of 
an ellipsoid is 

2 

2 
2 z  - t y + - =  1 , .  

2 
X 

a b2 c 

where the semiaxes of the ellipsoid are a, 5, c. If we wish k esilsider a range of 
possible ellipsoids then it is useful in many cases, and in particular in the present 
problem, to consider the family of confocal ellipsoids given by the equation 

2 z 2 2 

2 
+y + -  = 1  X 

2 + a  a + A  b 2 + 2  

where A ranges from 0 to co. Following Jeans, we put 

\ 
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2 b 2 c 2a + I = A; +_( = B; +A = C

(a +_, )(b 2 +), )(c 2 +_) = (ABC) 1/2 = A •

J

We take the quantity abc = r03 and the mass of the ellipsoid as given by

4 4 3
M=_ upabc=_ypr 0

(53)

Now the potential of this mass at an internal point with coordinates x, y, z is given by

(Thomson and Tait, 1962)

2 2 2 d]

oo x _y__ + z 1)V i = - _pabc ( T + B C A
0

(55)

if we take the units such that the absolute constant of gravitation G is 1. For practical

use, we should multiply p by G wherever it appears. Notice that the integration is

over _l ; thus the potential can be considered as composed of a part which increases
2 2

proportionally to x , another which increases with y and a third which increases with
2

z as we move about in the interior of the ellipsoid.

For an exterior point the famous theorem of Ivory asserts that the potential is

the same as that which would have been obtained for an ellipsoid whose surface passed

through this exterior point and which had the same mass. This result is summed up in

Jeans' equation

2 2 2
.[oo x  YB-B z 1 ) (54)V 0 =- lt pabc (-A--- + + C A
d

where _l is the parameter of the ellipsoid which passes through the given external point.

Fuller discussions of this problem are to be found in Moulton's "Celestial Mechanics"

and in standard treatises on potential theory.

NowJeans introduces a set of abbreviated notations. He writes
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and also

= J

GO

F
= J

0 AmBnCP A AmBnc p (56)

With these notations the equation for the interior potential assumes the form

V i =-T_oabc (x2j A + y2j B + z2J C - J (57)

In this form it is easy to see that the potential is the sum of a constant term and terms

dependent on x 2, y2, and z 2 as previously mentioned. In addition, we find that JA +

JB + JC = 2/abc because

V2Vi = - 4vp .

We can also verify by a fairly simple manipulation the formula that

JB- JA = (a2- b2) JAB (59)

r"

and similarly his equation

J -J = (a2-b 2) J

AmBnc p A m +IBncP Am +lBn +1 C (60)

With these preliminaries we remark that on a rotating body the potential

referred to the rotating axes is given by

1 ,_ 2Vi + 2 (x 2 + y2) . (62)

Here the true gravitational potential V i has been augmented by the potential from
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1 2 1 2(x 2 + y2) is aroutine result ofcentrifugal force _-,,J (x2 + y2). The form _- :
the elementary theory of dynamics.

On a figure of equilibrium the abovepotential must be constant over a whole

boundary. If we also require that the boundary shall be an ellipsoid then we have an

equation of the form (51)° The normal way of combining these two equations is to

multiply one of them by undetermined multiplier, say 6, and add to form a new

function, M, as follows:

1 2 (x2 _ 2 z2
M = V i + _' + y2) + O,pabc ( + Y---b2 + 2 1).a c

When this is done we can regard x and y, for example, as independent variables

on the surface, so that we can legitimately ask that the partial derivative of M with

respect to x and y following the surface shall be 0. When we perform the necessary

differentiations we must include z as a function of x and y° We shall have, therefore,

4

)

6 M (x,y) = 0 M (x,y, z) + b M (x,y, z) B z

_x bx bz _x

5 M (x,y) = b M (x,y_z) + DM (x,y,z) b.__zz

8y Oy bz by

The second terms on the right are rather ugly, and since we have not yet decided what

we are going to do with e it is permitted, since the equations are linear, to say that we

will choose 0 in such a way that

_M (x,y,z) = 0 .

bz

When we do so we have three similar equations in x, y, and z, since the ugly terms on

the right-hand side have now been disposed of.

2
¢o 0

= . (65)
JA 2 v abc 2 '

p a

2
w 0

JB = . (66)
2 _-abc b 2 '

-p
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6
JC =

2
C

(67)

Two of them simply express the condition that M is constant over the surface; but the

third equation in effect defines 6. Naturally it makes no difference which of the

equations we consider to be the one which defines 8. If we add all three equations we

•_k+,_ _ _.

2

2_ . 8 (_+b__ + 1JA + JB + JC 27 abc T )
p a c

2 2_o2 1 2 Tjo

( abc 2Tpabc ) 1 1 1 = O =

_- b-2 -_ abc ( 1 1 1
a c a 2 b2 c2 ) (64)

P

Jeans gets the same result by taking advantage of the special property of the

combined equation. He obtains the divergence of M and notes that if the divergence

vanishes the function is a spherical harmonic. He can find a value for 0 which will

make the divergence vanish. The function is now a spherical harmonic and constant

over the boundary of the ellipsoid, hence it must also be constant throughout the mass

of the ellipsoid. Under these circumstances he can obtain the three important equations
2 2 2

simply by equating the coefficients of x , y and z since the function must be independent

of the coordinates.

From these equations Jeans proceeds to obtain the conditions for the existence

of rotating homogeneous ellipsoids. He first subtracts corresponding sides of (66) and

(67) and obtains:

_- 0 0 = (a 2 _ b 2) 0
JB- JA = (a2 - b2) JAB b 2 a 2 a2b 2

(67a)
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Theta is then eliminated between this equation and (67) which gives us

(a 2 -b 2) [ a2b2JAB- C2Jc ] = 0

Now it will be clear that it is possible to satisfy the three fundamental equations

either by taking

(68)

a 2 = b 2 (69)

q

or

a2b2JAB "_ C2Jc (70)

These two cases correspond respectively to the Maclaurin ellipsoids and the Jacobi

ellipsoids. The Maclaurin ellipsoids, it will be shown later on, are stable for

small values of the angular velocity of rotation. All known planets are in the

region of stability of the Maclaurin ellipsoids. They are oblate ellipsoids of

revolution. The Jacobi ellipsoids are produced only, it turns out, when the

velocity of rotation is such that a breakup is being approached. We, therefore,

begin by discussing the Maclaurin ellipsoids. Clearly these include the case of the

sphere for which a -- b : c and the angular velocity of rotation is 0. It is important

to see that we have shown that these ellipsoids are e_%quilibrium figures, whether or

not they are figures of stable equilibrium°

For the Maclaurin ellipsoids we can omit equation (66) which is identical to

(65) and we can eliminate 0 between equation (65) and equation (67) which gives at

once

2 2
e) a

a2JA - C2Jc = 2 _ioabc (70a)

We next substitute in equation 70a for JA and JC and get

2 co d_ 2 co d_ _ 2 2

a _ - c I _ a
0 (a2+ _)A _ 0 (c2+_()A 2_r_)abc (70b)
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CO

a2(c 2 +
0

_ c2(a 2 +
d_, _2a2

lr
) (a 2 +)_) (c 2 +_)A =2pabc

which is easily transformed into

(a2 2- c2) I e° AC_'_d),. = _2
• - 2 _ pabc (71_a " U --- "t

The integration of (71) offers some difficulties. See Thomson and Tait (1912), Vol. II,

p. 71. According to Moulton, page 13, we have that X 1, the force component in the x

direction, is, in Jeans's notation,

xl /:-- - 2 oabc d
x A-'-_-'

Now Moulton tells us that when the lower limit of integration, which he calls u is 0,

then in the case of an oblate spheroid we have

X 1 / 1-e 2
_-- = -2rp [ -evfl -e z + sin -1 e]e 3

which must equal

oa2ojA27rpa2c/ 0 = - 2

and from this it follows that

a2cJA /1 - e23 / 2= [- e 1 - e
e

In the same way we can use the z coordinate data of Moulton

+ sin

Z 1 p co d_

= - 2 oabc J C AZ
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For i_ = 0

Z___._1 = _ 47r,o [e-_ 1 - e 2
z --fi-

e

so that

a2Jc 2 3 _/ 2- [e 1-e
e

Combining these two we form the equation

tan

-1
sin e].

V

_1 2
JA CJc 1 ( 1 - ec 2 = -2- 2 3

a a c e

[ - e/l - e 2 + sin
-1

e

2
2 1 - e [ e

2 3 /_ 2
a e ql - e

- sin

which reduces, after some trouble, using (70a) to the result

-le ])

_2 1 e-3 ( 2= 3 (3- 2e2) (I- e2) 1/2 sin-I 1 - I) (72)
2 ,p e e

where e is the eccentricity defined by e 2 = (a 2 - c2) /a 2. From this equation itis

possible to calculate values of the quantity 2_r_ 2 as a function of e. These values are

tabulated on page 39 of Jeans. The critical value1-- is 0. 81267 for e which is the value at

which the Maclaurin spheroids cease to be stable and make the transition to the Jacobi

ellipsoids.

A calculation of the Jacobi ellipsoids is considerably more difficult. Numerical

values have been obtained for the use of elliptic integrals by Darwin. Although the '

Jacobi ellipsoids and the Maclaurin ellipsoids can be calculated past the point of junction

the Maclaurin spheroids will be unstable if they are more oblate than this critical value.

The situation with the Jacobi ellipsoids is different. They form a continuous sequence

which goes from ellipsoids with a large value of a through those where a = b, to values

J
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with a large value of b relative to a o The Jacobi ellipsoids for which a = b coincides

with one of the Maclaurin ellipsoids and represents the junction between the Maclaurin

ellipsoids:and the Jacobi ellipsoids as in the diagram. The series is entirely

symmetrical so that those with increasing a and those with increasing b are effectually

identical.

The situation which has arisen here is typical of that in the study of rotating

_11l_11111_1 m_l_D_..______ ............... A _Pq!,_.nr._ nf ennfigurations., in this case the Maclaurin elliDsoids,

can be traced up to its intersection with another series. Beyond this point the first

series becomes unstable and the stability is transferred to the second series.

When we pursue these studies by considering a further addition of angular

momentum we find that the Jacobi ellipsoid becomes elongated. When the long axis

comes to be something like 1.9 x r 0 a new deformation begins. In place of the Jacobi

ellipsoid we have an asymmetrical figure which is generally called the pear-shaped

figure of equiliorium because one end is narrower than the other. The calculated forms

of the pear-shaped figure show, however, that it is more like the shape of a tenpin, that

is to say relatively long as compared with a pear.

A series of pear-shaped configurations can be calculated going to higher and

higher values of the angular momentum. These configurations, however, unlike the Jacobi

ellipsoids, cannot represent the actual path of evolution of a rotating liquid mass. It

turns out that the pear-shaped configurations are unstable. They are unstable not only in

the sense that the effects of tidal friction will gradually tend to modify the body but in the

more drastic sense that as soon as the Jacobi ellipsoid has received enough angular

momentum to begin the formation of the pear-shaped body then it must continue

catastrophically to change in some way which it has not yet been possible to follow mathe-

matically. Although the pear-shaped configurations do not give us the actual path over

which the body moves as it breaks up yet we may be sure that the breakup begins at the

point where the pear-shaped configurations begin to be possible and we can further be

sure that the path of evolution is tangent to the path of the series of pear-shaped bodies

at the moment when breakup begins. This can probably be interpreted as meaning that

the breakup begins with the formation of a neck around one end of the body. It is

reasonable to suppose that further evolution proceeds by the deepening of this con-

striction until one end of the body is separated. In order to validate the above chain of

reasoning for actual application to the problem of the earth it is necessary first of all to



c •

The Stability of a Rotating Liquid Mass 10

show that the ellipsoidal configurations are stable not only if we introduce the con-

straint that only ellipsoids' configurations will be possible but also if this constraint

is removed. This point has been discussed by Poincare.

The fact that we are able with a single value of {} to satisfy these equations

means that the ellipsoid is actually an equilibrium figure in the problem of a self

gravitating liquid. We notice that e is not a function of the coordinates but only of

the angular velocity _. Tracing this fortunate fact backwards we see that it is a

consequence of the fact that the potential can be expressed in the very simple form

shown in Equation 57 or perhaps we might equally well say that it is a consequence

of the fact that the laplacian V 2 takes a very simple form shown in Equation 63a.

Suppose for instance that the equilibrium figure had not been an exact ellipsoid but

something near it. In this case, when we went to solve for 9 we would not have

been able to find a single numerical constant but instead some kind of a function.

Poincar_ showed that there is a method of investigating the stability of a

series of bodies like the Maclaurin ellipsoids which greatly diminishes the effort

involved. Poincar_ begins by considering the general problem of equilibrium.

Stability in a static system implies that the potential energy W is a minimum for a

particular configuration as compared to all adjacent configurations. In a rotating

system_ it can be shown that the same is true_ if we add a term as in (62). * We

might think of a space of many dimensions_ each dimension representing one of the

parameters which describe the configuration° In this space of many dimensions,

we consider a set of surfaces of constant potential energy. Each of these surfaces

must form a hill whose top is at the given configuration. Let us choose one of the

parameters (in our case the angular momentum) and let us think of the set of sur-

faces W = constant which exist for a sequence of values of the angular momentum

saypl,P2 and so on. In the figure we plot ju against one of these variables which

describes the configuration, say eo We draw the surface W = constant; this surface

must be concave downward. The configuration which we are thinking of, if it is

really an equilibrium configuration, must have the value of 9 which brings us up to

V

J

*We must note, however, that the convention is to take the potential energy W as

increasing outward from a gravitating body, while the potential V increases inward.

If the volume is _Q-, and an element off'is d_,
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the top of the surface ,, constant. The value of e which corresponds to equilibrium

will be the value at the top of the bulge. The reason for this is that we are assuming

that W increases as p increases. We chose this sense for plotting p. If we were to
plot two of these variables, e1 and e2 we would see that the curves of varying W

(always for a given fixed value of p) would degenerate into ellipses near the equili-

brium configuration. The lowest value of W would be at the center of these ellipses

and would represent the peak of a bulge coming up from below thc plmue of the diagram.

Now if we consider a series of configurations of equilibrium then we are in

effect considering the series of points which are at the peaks of the surfaces W =

constant for varying values of I1. Let us suppose that one of these values is stable.

Then we cannot reach an unstable configuration as we follow along this sequence of

states unless in one of the parameters, 8, these curves become concave upwards

instead of concave down. When this happens it may be true that the curves when

extended outwards continue to curl up. Or it may be true that when extended out-

wards they turn down again after having gone a sufficient distance. In the latter

case it is clear that we can trace out a new set of crests (or rather two new sets of

crests) which start out at the point where the first sequence becomes unstable and

spread out from it in both directions through the new set of peaks. In the opposite

case, when the surfaces beyond the point of stability turn up then we shall ordinarily

expect that before reaching the point of instability there existed in the surfaces W --

constant dips on either side of the set of humps which formed our original linear

sequence. These configurations can also be represented by a line which passes

through the point of instability of our original linear sequence. The third possibility

is of course the limiting case where the point of instability is represented by a flat

surface extending indefinitely in all directions and corresponding to neutral equilibrium,

Setting this case aside for the moment, as trivial and as included in the other cases

if monor changes of wording are made_ we say that a linear sequence of configurations

can only pass from stable to unstable when it encounters another linear sequence. This

is a topological result. It is not in any way a consequence of the special properties of

rotating ellipsoids.

In our particular case the sequence of Maclaurin ellipsoids must surely be

considered stable at its initial point, where we are dealing with a sphere and zero

rotation. As the angular momentum of this sphere increases we will be passing along a
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series of stable configurations untilthis is interesected by another set. Ithas been

shown, by methods which I am not giving here_ that the firstsequence of forms which

intersects the sequence of Maelaurin spheroids is the sequence of Jacobi ellipsoids.

From this itfollows that the Maclaurin spheroids will be stable up to the point where

they encounter the series of Jacobi ellipsoids.

We can also see thatthe question whether the Jaeobi ellipsoids are stable or

not in this sequence depends on whether the curve which represents the sequence of

Jacobi ellipsoidsturns up or turns down in these diagrams. That is to say itdepends

on whether the Jacobi ellipsoids with higher values of the angular momentum are also

ellipsoidswith higher values of energy or not. Numerical computations have shown

that in fact the Jacobi ellipsoids with higher energy are also those or higher angular

momentum so that the curve does in fact turn upwards and the Jacobi ellipsoids are

stable. From this itfollows that a sequence of bodies of progressively increasing

angular momentum will pass through a series of Maclaurin ellipsoids and then through

a series of Jacobi ellipsoids. The stabilityof the Jacobi ellipsoids is terminated by a

set of non-ellipsoidal pear-shaped figures, which has been found to be unstable. This

second intersection takes place not far beyond the point at which the Jacobi ellipsoids

begin to form. As a consequence in most discussions of stability,the appearance of the

Jacobi ellipsoids is taken as an index of the approaching catastrophe.

In this discussion we have _poken as ifthe angular momentum could increase

steadily. This is_ of course, unrealistic; the angular momentum is constant. It turns

out,however thati,hequotient of the angular momentum divided by the density is the

parameter which enters this discussion. Hence we may treat problems which are

rally those of increasing density as though they were problems of increasing angular

momentum. The problems of increasing density_ however, are exactly those which

would be expected in a liquidmass which has newly condensed and is in the process of

cooling. We may expect that in the early days of the earth the density increased as the

heat was lost. Itis against this background that the above discussions of stability

become relevant. Up to this point we have been considering a mass of liquid of con-

stant density. We have done so because this is the only case in which itis possible to

follow the mathematics very we]lo We have chosen to make an exact treatment of a

problem which is something like the real problem rather than to do the usual thing,

which is to make a rough treat.men/of the actual problem.

_J
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In order to apply our results to the actual case of the earth itself we must con-

sider inhomogeneous masses. Jeans attacked the problem in two ways. His first

method was to consider a model which consisted of a nucleus of finite density surrounded

by an atmosphere of zero density. Clearly this is the limiting case of the kind of a two

fluid system which Wiechert (1897) worked with. The problem is quite tractable mathe-

matter of defining one of the geopotential surfaces above the nucleus as the true surface.

The volume enclosed between this surface and the nucleus is called the atmosphere; it is

referred to as Va; compared with V n of the nucleus. The results which have already

been derived for the behavior of the homogeneous mass can now be applied at once to

this theoretical inhomogeneous planet.

In particular, Jeans found that if the ratio of the volume of the atmosphere to

the volume of the nucleus exceeded about 1/3, then it would turn out that fission would

not take place along the sequence of the Jacobi ellipsoids. The rapidly rotating

Maclaurin spheroid would develop a fissure around its equatorial zone through which

matter would be ejected. This could also be expressed by saying that the contours of

the geopotential no longer close around the earth.

He finds that there are two possible sequences of configurations: for a body in

which the nucleus is small and very dense compared to the rest of its structure we have

equatorial ejection of matter; on the other hand, if the nucleus is sufficiently large

compared to the whole mass, then the behavior is qualitatively like that of a homogeneous

mass, which we have been discussing.

It is true that the model does not really resemble the earth, but let us do the best

we can to fit the earth to it. The polar moment of inertia C of the earth is known to be

given by:

C
2

Ma
= O. 3307

If the earth were homogeneous, we would have 0.4 instead of 00 3307. Thus, the earth has

approximately 5/6 as much angular momentum as a homogeneous sphere of the same size.

The question is, how big a homogeneous sphere would we need in order to have the same

angular momentum as the earth, assuming that the total mass were the same? The answer
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is that the ratio of the radii should be the square root of 5/6 or 0.91. The ratio of the

volumes is then just about 3/4. Hence, if we had an object consisting of the homogeneous

sphere in the interior ands weightless shell outside so arranged that the space V a between

the shells was about 1/3 the volume of the inner shell, then this composite object would

have approximately the same angular momentum and approximately the same value of

C/Ms 2 as the earth. Jeans shows that this configuration is just on the borderline of

the cases when fission takes place by the formation of a Jacobi ellipsoid. For more

homogeneous bodies, fission is sure to take place by the development of the Jacobi

ellipsoid; for less homogeneous bodies, that is bodies with a similar nucleus, break-up

is sure to take place by the spreading away of a portion of the atmosphere around the

equator. From this treatment it appears that the earth is near the limiting case.

Jeans' second, and more realistic model, involves the assumption of a polytrophic

distribution of density. 1)olytropic density distributions have been extensively studied in

the theory of the internal constitution of the stars, largely because R. Emden (1907) made

a series of numerical integrations of them. The terminology of these spheres goes back

toEmden's assumption that stars are in convective equilibrium. For convective equilibrium,

the ratio _( of the specific heat at constant pressure to the specific heat at constant volume is

of decisive importance. Emden took as his parameter the quantity n given by the equation

!

1
Y" = I + -

n

The relation of n to any of the physically significant parameters of the distribution can only

be reached through some detailed numerical integrations; as a consequence, n is for many

purposes, and in particular for this one, merely a parameter which defines the density

distribution. For n = 0, the density is uniform° For n = I, it turns out that it is represented °

_ r For n = 3oby the function a sin -.r a

tion to the center which are believed to be typical of stars like the sun. For n = 5, the star

lacks an outer boundary_ and for n = oo we have the distribution which would characterize

an isothermal atmosphere and would extend to infinity. Jeans has calculated the behavior of

polytropic gas spheres rotating with sufficient rapidity to break up. He finds that if the

polytropic index is less than about 0o 8 the star will be sufficiently homogeneous so that it

will brea: up via the formation of Jacobi ellipsoids. If, however, the polytropic index

exceeds this quantity, it would break up by the formation of an equatorial ring somewhat

we have the kind of distributions with a strong concentra-
a_
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like Saturn's ring. Recently Roberts (1963) has restudied this problem; he finds that

the critical value of the polytropic index is near 1.0o

A numerical integration of the Emden table for the polytrope n = 0° 5 shows

that the value of C/Ma 2 will be 0.32. For the earth the same ratio is 0o 33; it follows

that the earth is slightly more homogeneous than the Emden polytrope n - 0o 5. Here

we see strong evidence that the earth would tend to break up through the formation of

a Jacobi ellipsoid rather than by the equatorial _jection of mattcr.

The actual situation inside the earth may well be intermediate between these

two extreme models. Hence the actual earth would probably break up via the Jacobi

ellipsoid.

A second point on which Jeans made important numerical investigations is the

question of the effect of the internal density distribution on the limiting value of the

angular momentum required for break up. For the case of the homogeneous ellipsoid

and the somewhat similar case of nearly homogeneous ellipsoids, Jeans has sought

the value of the angular velocity _ at which the transition would take place from a

Maclaurin spheroid to a Jacobi ellipsoid. He finds the following general formula

_2

2_ 0.18712 _ + 0.06827 (P0

!

[0. 01602 + 0. 07098 (*(-2) ] ( _°0 -o- 2 (499)

D0

which is applicable really only to relatively small deviations from a homogeneous

mass. In (499), is the mean density, P0 is the densgw at the center of the

earth_ and o-is the density at the boundary.

When this series is applied to _he earth we find that the critical period of

rotation is I h 58 m. For a homogeneous body of the earth's mass, it is 2h 40 m,

and if a homogeneous body rotating at this speed is transformed, without change of

angular momentum, into an inhomogeneous body for which

C
= 0.33

the period of rotation is 2 h 11 m. It would seem to follow that the earth could not
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have broken up as a result of the formation of the core since it would still be rotating

too slowly.
The result is, however, very doubtful, as Jeans would have beenthe first to

say; the series does not convergewell, and in fact the last term is larger than the

onewhich precedes it, in the case of the earth. Jeans applied the series only to the

case in which ¥ is near 2, which improves the convergence.
I have made some calculations based on later work by Roberts, which suggest

that in fact the critical period for the earth is near 2h 18m, so that the earth can in

fact be destabilized by the formation of the core.

t
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Andr_ Deprit

Motion in the Vicinity

of the Triangular Libration Centers

N6717322

I. Introduction. This paper concerns the restricted problem of

three bodies: Two masses (P1 and P2) move in circular orbits under

their mutual gravitation, while a third body (P, called the planetoid)

of negligible mass (that is, it is acted upon by P1 and P2, but does

not perturb their motion) moves in the same plane. We shall assume

that the mass P1 is greater than the mass P2. We are interested in

periodic lib_ations of the planetoid around the triangular equilibrium

point.
Periodic solutions of this type have been studied so extensively

that we cannot attempt a thorough citation of the literature. How-

ever, the common interest was mainly in the first order analysis of

these periodic solutions. Some authors, like E. W. Brown, H. R.

Willard, and P. Pedersen, studied them up to the third order.
This is the first of a series of studies that will finally enable us

to compute a very close numerical approximation of the short and

long period orbits, both in the Sun-Jupiter and in the Earth-Moon

systems, so that we shall be able, at reasonable expense, to extend

these families by numerical integration. It is hoped to check E. W.

Brown's conjecture that they go through orbits which are doubly

asymptotic to the straight line equilibrium points L3, L2 and L1

successively. For the long period orbits in the Sun-Jupiter system,
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E. Rabe already extended the family through the orbit doubly

asymptotic to L3; but the Steffensen's algorithm he uses in order to

integrate the differential equations proved to be so slow and heavy

that he could not push further along. On the other hand, while a

fourth order Runge-Kutta method is quite adequate for the purpose,

the orbits depend so sensitively on the initial conditions that it is

necessary to start the integrations with an approximation closer

than the one given only by a variation orbit. We hope that our

Fourier series will grant us these "good" initial values.

Meanwhile, the completely canonical transformation which we

introduce at the first order suggests that we use the adelphic inte-

gral satisfied by the solutions in the vicinity of the triangular equili-

brium point. Work along that line is now in progress; we already

hold a second order approximation of the general librations in terms

of four canonical variables, two action momenta and two angle

coordinates.

Here we present a treatment of the first order general librations

around the triangular equilibrium, and the Fourier series computed

up to the third order for long and short period librations, in the

Sun-Jupiter system as well as in the Earth-Moon system.

II. The plane restricted problem of three bodies. We shall begin

with fixing the units of length, mass, and time. As the unit of

length we choose the distance between the two finite masses, as

the unit of mass the sum of the two finite masses, and, finally, the

unit of time is determined by putting the angular velocity of the

two finite masses equal to 1. With this choice of units, the gravi-

tational constant reduces to 1.

We shall call the values of the two finite masses u and 1 - _,

assuming _ < 1/2. The motion of the three particles (P_, P2 and P)

will be referred to a rotating coordinate system, the so-called bary-

centric synodical system. Its origin is the center of mass of the two

finite masses, the x-axis passes through the finite masses, the posi-

tive direction being that from the origin to P2. The positive direction
of revolution is chosen as the direction of the absolute motion of

the two finite masses. In the barycentric synodical system, the

coordinates of P1 and P2 are (- u, 0) and (1 - u,0).

The plane restricted problem of three bodies is described by the

Lagrangian function
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1 1 I--_

L = _ (:_ + y2) + (xy - xy) + -_ (x 2 + y2) + _ --,
Pl P2

to which are associated the canonical moments

OL OL

P" Ox :_- v. D.,= Oy V + x

and the Hamiltonian function

1 1--# u
(1) H = -_ (p_ + p_) - (xpy - yp,) .

Pl 02

Here ol and ps are the distances of P to P1 and P2; they are thus

defined by the relations

p_= (x+u) 2+y2, 022--- (x-l+u) 2-t-y2.

Since (1) is conservative, the canonical equations admit the integral

where the integration constant C is called the Jacobi constant.

III. Motion in the neighborhood of the point L4. For reasons of

convenience we put

_r = 1 - 2u;

in the phase space, the translation

1

x=-_.y + X,

1v/3 + Y,
Y=_

1 V/3 + Px,
px----_

I

Py= _'Y + Pv

is a eonservative completely canonical homeomorphism; in the

configuration space, that is to say in the (x, y) -plane, it translates

the coordinate origin from the barycenter G to the point whose
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coordinates are (1/27,1/2V/3). This point is commonly denoted

L4. In the new coordinate system L4XY, the Hamiltonian function

(1) is transformed into the Hamiltonian function

1
(2) H = _ (p_ q- p_) - (Xpv-Xpx) -

where the force function fl is defined by the relation

(3) 2fl = _X q- V/3 Y + 1 +_____q- 1 -
Pl P2

In (2), the terms - (3/8) - (1/8)_2 were neglected, i.e., the Jacobi

constant C is replaced by a modified Jacobi constant C' such that

3 1 C'.
C=_ +_ 2+

To analyze the motion of P in the neighborhood of L4, it is re-

quired to expand (3) in a power series of X and Y. This is done by

introducing the complex coordinates

R = X+ iY, S = X- iY

so that

1 i

X=_(R+S), Y= -_(R-S).

At the same time, the complex number

q = exp i g

is brought in so that the distance functions

are given the symmetric form

(4a) p_ = (q2 q_ R)(q-2 q_ S),

(4b) p_ = (q-2_ R)(q2- S).
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To produce the power series expansion of (3), it is therefore

enough to consider the binomial law

(1)m m!' a-(2m+l)/2zm(a--k z)-l"_ = £ _
m=O

where m! represents the product of the m first natural integers,

rn!! represents the product of the m first odd natural integers,

0!=1 and 0!!=1.

Applying this binomial law to (4a) and (4b), we obtain

1 _ _ __, - - rn! n-----_,q-z(m-'R'nS"'
Pl m=0 n=0

1 _--" _-_ (llm±nm!!n!!.qZCm-n, Rmsn 'P2 m=0 n=U m! n!

and we conclude that

(5) --1+7 +l--v_ _ _'_ _).¢m,nRmSn
Pl P2 m=O n=0

where, for all m > 0 and all n > 0,

Qm,n = m! n-----_.[(1 -- _,) qZ_m-")-t- (-- 1)m-"(1 -t-y) q-Z,m-,,].

We neglect the constant term Qo.o = 2, i.e., we define a new

Jacobi constant r so that

11 1 _z +r.

For the terms of first degree, we notice on one side that

1 q_Z
(6a) Q_,o = - _ [(1 + "r) - (1 - _,) qZ],

1 qZ
(6b) qo,_= -_[(lq-7) - (1-_,)q-Z]

while, on the other side, we compute that
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1 q_,,
.yXq-x,/3Y=-_I(I÷'y) - (1-_)qZ]R

1 qZ
+ _ [(1 + _) - (1 - "/) q-_]S.

Consequently, the function 2_ defined by (3) contains no term

of the first degree in R and S. It means that, as it is well known,

L4 is an equilibrium point. For this equilibrium, whatever the mass

ratio _ may be, the Jacobi constant r is equal to 0.

In view of the coefficients (6a) and (6b), we notice that

l(1+w) qZ- (l-_)q-"][(l+_)q-Z- (l-_)qZ]=3+ 2.

This identity in _ leads to defining a function t > 0 of the mass

ratio _ by means of the relation

_= 3+-/z

and an angle a by means of the relations

1 qZ q-Z
=exp(ia)=_[(l+_) -- (I-_) ],

1

_-' = exp(-- ia) = _ [(1 + _) q-' - (1 - _,) q_].

In real terms

v ,/3
cos a - sin a = --.

Now for the coefficients of second degree in (5), i.e.,

3 q,
Q2,o= -_[(1-{-v) q-(1-v) q-Z],

1

3 q_
Q0,2 = - _ [(1 q- v) + (1 - v) q"],

we observe that

[(1 q- v) qZ _{_(1 - "t) q z] [(1 _- v) q-Z -F (1 - _) q-Z] : 1 -{- 3"yz.

Consequently, we define a function 8 > 0 of the mass ratio u by

means of the relation
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_ = 1 + 3_ z

and an angle B by means of the relations

1

0z = exp(2i/_) = _ [(1 + ,) qZ + (1 - v) q-Z],

1 q-Z
0 -z = exp(- 2i_) = _ [(1 q- _) + (1 - _) qZ ].

7

In real terms

1 _x/3.cos 2_ = _, sin 2/_ =

Define now the rotation

X = _cos/_ + _ sin 5,

Y- - _sint_q- ncos_

which turns the (X, Y) coordinate system at L4 about an angle

equal to -t_. As it will be seen later, the new (_,_)-coordinate

system is made of the principal axis of the first order periodic

librations around L4.

The orthogonal transformation in the configuration space is

extended to a conservative completely canonical homeomorphism

in the phase space if it is multiplied by the following orthogonal

mapping in the moment space:

Px = P_ cos/_ + p_ sin _,

p y = -- p_ sin t_ q- P, cos t_.

In the complex coordinates, the rotation results in substituting

for the complex coordinates R and S the new complex coordinates

r = _ + in, s = _ - in

such that

r = OR, s = 0-_S.

Consequently, the force function fl becomes the power series

_= __, __,ftm,,rms"
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where

_o,o = _1,o = _o,t = 0

and, for all m and all n such that m > O, n > O, and m + n > 2,

1 ml!nl!

_tm,n= 2m__n._ m! n! [(1 -- _) q',_m-nj

+ (-- 1) ...... (1 -- 7) q-"_"-"']O m-".

We list here these complex coefficients up to the fourth degree( l )

24_,,,o = 24_;,2 = - 35,

24_1,1 = 4;

25_3,o = 2_,a = 1070 -a,

2_fl4.0 = 2_fl_,4 = - 3550 -_,

2_,t = 2_,3 = - 205,

2_,,._ = 36.

Having obtained the expansion of the force function _ as a power

series of r and s, it is a matter of easy, but somewhat tedious,

algebra to express it as a power series of the Cartesian coordinates

and n:

_ = _-:_ _ O_p,qt_%q.
p=0 q=0

Here is the list of its coefficients up to the fourth degree

000, 0 = 001, 0 = q.,01, 0 = O;

8o_2,o= 2 - 35,

0)1,1 _- 0,

8¢Oo,_-- 2 + 35;

16o_3.o = 107 cos3B - 3_cos(a + _),

16_ m = 30_ sin 3/_ - 3_sin(a + B),

16_1.2 = - 30_" cos3B - 3_'cos(a +/_),

(l) In the subsequent tormulae, A' denotes the conjugate of the complex
number A.
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16_o.3 = - 10_, sin 3_ -- 3i'sin(a + t_);

128_4.o = 18 - (20 + 35cos6_)_,

128_3.1 = - 1405 sin 6_,

128_2.2 = 36 + 2105 cos 6_,

i28_1,3 = 1406 sin 68,

128_0,4 = 18 + (20 - 35 cos 6/_) 6.

IV. First order librations around L4. Restricted to the terms of

second degree in _ and ,1, the Hamiltonian function describing the

librations around L4 is

1 1( 3 )_ z 1(3)H2=_(p'_+p_)-(_p.-,p_)-_ I-_ -4 i+_ z

and the canonical equations derived from it

__OH2 OH2 1( 3)Op_-P_+"' ion= 0_ p,+_ 1--_ _,

OH2 OH 2 1< 3)_- Op, -P,-L P'= - 0---_-=-P_+2 1+_ 7,

form a homogeneous system of four linear differential equations
of the first order with constant coefficients.

We define the vector

and the matrix

_'= (_, _,p_,p,)

0 1 1 0

1 0 0 1

1( 3)1--7($ 0 0 1

_1oo

so that we can write the canonical equations in the simpler form

As is well known, to study the nature of their solutions, it is

enough to analyze the intrinsic properties of matrix __.
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In order to obtain the proper values of matrix A_, i.e., the

roots of the characteristic equation

(6) det (s __- __¢) = 0

where _ denotes the four dimensional unit matrix,

duce the matrix

we intro-

s -1 1 0

1 s 0 1

1 0 0 0

0 1 0 0

Since det _j_ -- + 1, matrix _ is inversible and

0 0 1 0-1

]0 0 0 1

1 0 -s 1

0 1 --1 --s

Then we compute the matrix product

0 0s 2 3( 1

0 0 2s

-- 1 0 2s

0 -1 2

2sts2 3 ( 1-i .

-2

2s

The polynomial equation

det(s._- _A) = 0

is, of course, equivalent to (6), but it is simpler to solve• Indeed,

it is at once computed that

(7) det(s_._- _A)=s 4+s _+_ 1-_" =0.

The four proper values of __/ are distinct if and only if any one

of the following four conditions is satisfied:

= 1.885 618 085-..,
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1

> _, = _ _/69

).<.1=_ 1 -- _ X/69

#(1 --_) <-
27

We propose to call any one of these special values a critical value

at the first order. Under any of the above assumptions, the four

proper values of A_ are purely imaginary, thus of the form :t: in.

and 4= inl, where n. and nt are strictly positive real numbers de-

fined by the relations

= 0.922 958 208...,

= 0.038 520 896...,

= 0.037 037 037....

1 1

n_=_+ _ x/ (952 - 32),

1 1
n_- _v/(95'--32).

2 4

In view of expressing in a simple way the proper vectors of A_/

corresponding to these four proper values, let us define the fol-

lowing functions of the mass ratio

The form of the characteristic equation (7) clearly implies that

(8) A, Bs = 2ns, AtB, = 2n,.

With the help of these two relations, it is easily seen that in the

following table, each column represents a proper vector corre-

sponding to the proper value written as a heading

P_

P.

in, inl -ins - inl

As

iB_

i(nsA8- Bs)

As - n8 Bs

AI

iB_

i(nlAl- Bl)

At - nl Bl

As

-- iB,

- i(n, As- Bs)

A, - n, Bs

Al

- iBt

- i(nlAl- Bl)

At -- nl B_
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We denote by c_ this four-dimensional complex matrix; from

linear algebra, we know that it is a regular matrix.

Before establishing the most essential property of _:, we

should check the two relations

(9a) As(nlAl- Bl) = BI(As- n,B,),

(9b) At(n,A,- B,) = Bs(AI- ntBz).

To this effect we compute

¢ = A, Bl[A.,(nlAl- Bl) - BI(A,- n,B,)]

= - 2AsBI,ntA_AtB,-4- n,A,B,B_ 2 '_

and we replace the quantities A_, B_ by their definition so that

9(1_1

But, because n_ and ni_ are the roots of the quadratic equation

m2 m+9( 4 41 )- 1---$ z =0,

we have that

1)n_ nl = -_ 1- -_ _"z ,

this shows that • = 0 and consequently it proves (9a). Then (9b)

is proved from (9a) by permuting the indices s and I.

At this stage, we consider the symplectic matrix

0 0 1

0 0 0

-1 0 0

0 -1 0

A straighttbrward matricial computation

lation(_)

(0 0

(10) tk_ ff/._ = + 2i(n_ - n_)
ns

0

0

1

0

0

gives the important re-

0 - ns 0

0 0 nl

0 0 0

- n_ 0 0

(z) For a given square matrix _y, its transpose is denoted by t .
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As it is apparent from (10), several simple modifications will easily

transfbrm matrix _ into a symplectic matrix _. To this effect we

define the strictly positive numbers p; and pt so that

,__ 1 _ 1
Ps 9n (n 2 -- n'.2"_' PL 9_./_2 __ ,,_ ,

--''S k''s "*t / _'_$kt*S t_l 2

and the complex matrix

ips

0
__=

0

0

0 0 0

- ip_ 0 0

0 p, 0

0 0 pz

Since det 2 = p, pl, the matrix _ is regular. Hence the matrix

product

is also a regular complex matrix. But it is readily seen that

ias - ial as al

- b, bl - ib, - ibt

- (nsas -- b,) nlat- b, -- i(n,a,- bs) -- i(n,a,- bl)

i(a, -- n,b,) - i(a,- nlbz) a, - nsbs a,- nlbl

where the coefficients are defined by the relations

as = psAs, bs = psBs,

al = p_Al, b_ = p_Bl.

Now we are ready to check that

, jos = j,

and this means that ___ is symplectic. Consequently, the linear

mapping

_=_w.

of the phase space _= (_,_,p_,p,) onto the complex phase space

w = (us, ul, vs, v,) is a completely canonical mapping. The fact that

is real implies the reality conditions

v, = - iu',, vl = iul.
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In order to transibrm H2, we proceed in this way. First we ob-

serve that, by construction,

where A / is a diagonal matrix whose nonzero coefficients are the

proper values of __ in this order: (in,, inl, - in,, - inl). Then, we

see that

and we end up with

1
1 i (wjt___C_z___w) = +5 (wl _iA/w)

which means that the Hamiltonian function Hz is reduced to its

complex "normal" form

H2 = + in, u,v8 + in, u,v,

With E. T. Whittaker, we now consider the completely canonical

mappings

u, = V/ I,e'% ul = x/ l,e -'*l,

v, = - ix/I,e '_, vl = ix�lie<%

In view of the reality conditions as stated above, the coordinates

¢, and _t, as well as the moments I, and Il are real. Whittaker's

canonical mappings reduce H2 to its real "normal" ibrm

H,, -- + n, I, - nl It.

We can summarize our first order study as follows: When u(1 - u)

< 1/27, the laws of motion around L4 take the elementary ibrm

¢, = + n,t + _,, I, = const,

4_l= - n,t-4- _,. It = const.

In Cartesian coordinates (_,¢.p_,p.), they are expressed by the

ibrmulae

= - 2a,I_'_sin _ - 2ajll'"sin _bl,

= - 2b, I_'_cos 4_,+ 2b_I_L'_'cos _bl,

p_ = -- 2(n.a, -- b,) I_'ZeOS_s + 2(nla, - b,) I/"eosO.

p, = - 2(a, - n_b,) I_'_sino, - 2(al- nlb,) I/'_sin_l.
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To I_--0 correspond the short period librations around L4; to

18 = 0 correspond the long period librations.

V. Critical mass ratios of order k > 2. Since n, > n_ for any _ < _i,

on one hand there exists no integer k such that n_ = kns, but on the

other hand there might exist an integer k such that n, _ kni.

In view of the fact that

n_+n_ 1 and ' "=9( 1 )= n, nl _ 1--_6 _ ,

the commensurability relation n_ = kn_ turns out to be verified for

a mass ratio such that

k _ 9 (11(k"+ 1)" - 4 4 _"/ "

This equation is explicitly solved with respect to _ to give a de-

numerable sequence of mass ratios

1( _( 16k2 ))#k=_ 1-- 1 27(k z+l), (k->l).

The notation is exempt from ambiguity because, for k = 1, the

right-hand member restores the singular value of _ which has been

denoted already by _1.

We propose to call #k the critical mass ratio o[ order k.

Indeed, according to a well-known theorem (Siegel, 1956), for any

< _, the restricted three-body problem admits a family of real

periodic librations around L4 that have the following properties:

(a) they can be expressed as series of powers of a real parameter ¢;

(b) the periodic libration corresponding to _ = 0 is the equilibrium

configuration;

(c) the period T,G) of these periodic librations is a series of powers

of _ such that T,(0) = 27r/n, = Ts.

In other words, for any g < g_, the infinitesimal short period

librations around L4 belong to a family of periodic librations around

L4 which, in Str6mgren's terminology, terminates naturally at L4.

But the same cannot be said for sure concerning the infinitesimal

long period librations around L4 unless there exists no commensura-

bility of the type ns = kn,, that is to say, unless g is not a critical

mass ratio.
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Actually, it will be seen later how this commensurability can be

described as a resonance between the long period librations and

the short period ones. Often this resonance has been overlooked,

although it may account for peculiarities met by E. K. Rabe (1961

and 1962) and L. J. Wolaver (1963) in their computations of the

long period librations around L4.

For instance, Table I gives the first twenty critical mass ratios,

and indicates that the Sun-Jupiter mass ratio stands between #,2

and _,3. Therefore, a resonance that would amplify the coefficients
of the twelfth and thirteenth harmonics in the coordinate series is

to be expected. As long as the value of the orbital parameter that

characterizes a periodic libration is kept small enough, coefficients

of these two sensitive harmonics do not appear in the numerical

computations; for too large values of the orbital parameter, the

slow convergence of the Fourier series interferes with that resonance

and usually damps it out. From the figures produced by E. K. Rabe

(1962), we conjecture that do = 1.025 is about the right value to

be given to the orbital parameter do used by this author so that

the near resonance of the 13th order shows itself at its best. On

his side, Rabe hints at a commensurability between the synodical

period of the libration and the sidereal period of Jupiter around

the Sun. However, a mathematical analysis of the orbits along

Siegers method does not show up at any stage a resonance of that

type. Rabe's erroneous conjecture is based on a fortuitous approxi-

mation; as may be read from the table in the appendix, the first

order long period for the Sun-Jupiter case is almost equal to 26_

in our canonical units, that is to say, 13 times the sidereal period

of Jupiter.

As another instance of the pervading influence of this resonance

between long and short period librations, we may cite the difference

in shape between long period orbits for the Earth-Moon and the

Sun-Jupiter systems. For sufficiently small values of the orbital

parameter, the orbits in the Earth-Moon case (E. K. Rabe and

A. Schanzle, 1962, L. J. Wolaver, 1963) present the same form

as the corresponding ones in the Sun-Jupiter case. When the orbital

parameter increases, loops begin to occur. This dissemblance is

caused by the near resonance of the short period on the third

harmonic, since the Earth-Moon ratio is found between the critical

mass ratios _:_ and _4 and nearer to _3 than to _4.
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TABLE I. Critical mass ratios
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_1= 0.038 520 896 _11--- 0.001 205 830

#2= 0.024 293 897 u_2= 0.001 015 697

_3---- 0.013 516 016 #13= 0.000 867 085

#4= 0.008 270 373 _4---- 0.000 748 764

_5---- 0.005 509 203 #15= 0.000 653 049

_8-- 0.003 911 084 u16= 0.000 574 539

_7= 0.002 912 185 u17---- 0.000 509 354

_8= 0.002 249 197 UlS-- 0.000 454 645

#9= 0.001 787 848 m9= 0.000 408 285

_10= 0.001 454 406 _20-- 0.000 368 661

VI. Dalembert characteristic of the periodic librations. Under the

restrictions explained in the last paragraph, C. L. Siegel proves

the existence of families of periodic librations around an equilibrium

configuration by first building formally the solutions and then

showing that they have existential meaning.

According to C. L. Siegers algorithm, the variables us, u_, vs, vt

are to be expanded in power series of two complex valued functions

p and a of time t. At the same time, a complex valued function

n of p and a is built as a power series of the product pa, while the

functions p and a are to be determined as solutions of the differ-

ential system

(11) _ =np, b = -- na.

In the case of short period librations, the power series u,, ut, v,, v_

are of the form

u, = p + U_(p, _), v, = _ + Ys(p, a),

u, = U,(p, ,,), v, = Y_(a, ,_)

where Us, U_, V,, and Vt all begin with quadratic terms in p and

a; moreover U, should not contain terms of the form p(pa) l and

V_ should not contain terms of the form a(pa) l.

Consequently, the differential equations (11) imply that the

product pa is a constant and that, in its turn, implies that n is a
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constant. Therefore

p = poe'u a = aoe-'u.

Now the reality conditions impose

p(_= - i_0.

The Hamiltonian being conservative, the origin of time can he

chosen in such a way that p0 is real and positive, let us say po = _.

Hence, the complex valued "normal" coordinates (us, u, v,, v_)

appear as complex Fourier series with multiples of nt as arguments

and power series of _ as coefficients. The lowest power of _ occurring
in the coefficient of exp(knt) equals the multiple k of nt in its

argument; the power series from there onward progresses in powers
of _. In other words, the normal variables come out as complex

Fourier series with the Dalembert characteristic (Brouwer and

Clemence, 1961).

Going back to the real Cartesian coordinates _ and _ by means
of the ibrmulae

= as(iu_ + v,) + a,( - iu, + v,),

= - b,(us + ivs) + b,(u,- iv,),

we thus find that _ and _ expand as real Fourier series with multiples

of nt as arguments and power series of _ as coefficients and that
both series exhibit the Dalembert characteristic.

Obviously all that has just been said about the family of short

period librations can be applied with obvious modifications to the

family of long period lihrations, provided _ is not one of the criti-
cal mass ratios.

Our purpose is to build a scheme that yields numerically the
Fourier series _ and _ tbr both families of librations around L4.

As we shall become aware soon after the second order in _, computa-

tions become quite cumbersome unless convenient notations are

proposed at the very start. The tbllowing ones have proved to be

quite adequate:
(a) The "mean motion" n will denote the series

n = _ nk{ 2k',

k=o
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(b) The Jacobi constant F will denote the series

h=0

(c) Cp.q,h,t (resp. Sp, q,k,t) will denote the coefficient of j+zl in the

power series that is the coefficient of cos knt (resp. of sin knt) in

the product _P_q;

(d) C,,o,k,l (resp. Sl,o,_,l) will denote the coefficient of E_.2l in

the power series which is the coefficient of cos hnt (resp. of sin knt)

in the derivative _; the symbols Cl,o,k,l and 3o,1,_._ have a similar

meaning with respect to _. Corresponding symbols: C_,o,_,l, S2,o,k,t,

Co,2,h,_, and S0,2,k,l are introduced for the second powers _2 and /)'_.

All those coefficients will be determined by induction from the

differential equations

1) 0o._'--2/)--_ 1--_i _=0} '

3( 1 ) 0ft.

that are deduced from the Lagrangian function

1
L=_(_'_+_")+(_-_,)+I((_+ .,)+9

canonically associated with the Hamiltonian function H; here

fl* represents the three function 9 stripped of its second degree

terms. The Jacobi constant r will be computed from the Jaeobi

integral which is now written

r = 2_ + (_ + _) - (_'_ + _).

To start the induction we use the first order normal librations

as they were found above. For the phase constants, we choose

the values

_s _ 7r ¢1 _ 0

so that, for short period librations as well as for the long period

librations, on the first order ellipse, the planetoid starts its

fundamental oscillation from a point on the positive side of the

r/- et2_l_.
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TABLE II. Initial coefficients

Short period Long period

Cl,o,o,o

Cl,o,l,O

Sl,o,l,o

Co, l,O,O

Co, l,l,O

SO,l,l,O

no

ro

r2

0

0

2as

0

2b,

0

n8

0

- 2n,

0

0

2a_

0

2b_

0

n_

0

2n_

VII. Second order |ibrations around L4. To the second order in

_, the Lagrangian equations of motion are

_- 2,i - _ 1 - g _ _ = 3_o3,o__+ 2_o2,_,_+ .,,,2,_,

+ 2_ -- _ 1 -{- _ 8 1/= w2,i} 2_- 2wl,2}_/-{- 3_o.3_ 2.

It is proposed to determine the six coefficients C1.o.o.1, Cl.o.2.o, Sl.o.2,o,

Co,,.o.1, Co,1,2.o, and So.,.2.o so that

= C,.o.o.S -{- Cl,o.,.o_ cosnot -{- S,.o,L,o_ sin not

+ Cl.o.2.o_2cos 2not + Sl,o.2j' sin 2not,

= Co.l,o,S -{- Co.,.l,oE cos not -_ So, l,l.o_ sin not

-{- Co,,.2.o_2cos 2not -{- So.,.2.o_" sin 2not

willbe a solution of these equations up to second order in _.

In order to compute the second order terms in the right-hand

members of the Lagrangian equations, we need the coefficient,,

of that order in the three functions _, _ and _; in our notation

they are
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C2,o,o,1= 2a,2, C1,1,o,1- O, Co,2,o,1-- 2b,2,

C2,o,2,o= - 2a,2, C1,1,2,o-- 0, Co,2,2,o-- 2b2,

$2,o,2,o-- O, S1,1,2,o _- 2a,b,, So,2,2, 0 _ 0

for the short period librations. Corresponding coefficients for the

long period librations are derived from those merely by changing

the subscript.

Then, if the right-hand members of the Lagrangian equations

are decomposed into the sums

X2 = Xo, i_2+ CX2,o_ "2cos 2not + SX2,o E2 sin 2not,

Y2 = Yo, l__ -}- CY2,o _2cos 2not + S Y2,o_2 sin 2not,

we can evaluate the second order coefficients

Xo, x = 3w3,o C2,o,o,1-_- 2we,1 C1.1.0.1 + Wl.2 C0.2.0.1,

CX2,o = 3w3,o C2,o,2,o -_ 2w2,1 C1,1,2,0 -]- Wl,2 C0,2,2,0,

SX2,0 = 3w3,082,0,2.0 -_- 2o_2,1$1,1,2,o+ _1,2S0,2,2,o,

Yo,1 = _2,1 C2,o,o,1+ 2Wl,2 C1,1,o,1 -_- 3wo,3 Co,2,o,1,

CY2,o = _2,1 C_o,2,o + 2wl,2 C1,1,2,o-_- 3wo,3 Co,2,2,o,

S Y2,o = w2,1 $2,o,2,o -[- 2_1,2 $1,1,2,o -_- 3w0,3 So,2,2,o.

From those preliminaries, the unknown coefficients appear as

solutions of the linear equations

3(1-15) Clool = Xoi,
,,, ,

 (1+1)2 2 _ Co,l,O,1= Yo,x,

3(1-1--E4n_+_ -_) ] Cl,o,2.o -4noSo, l,2,o--CX,,o,

F
-- 4no Cl,o,2,o -- k 4n_ + _ ....

[ (
l- _ / 1 \ "-I

4noSl.o,2,0- k4n_-k 2 _l-t-2 6) J Co.l,2,0= CY2,0.
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Of the last two systems, the determinant is

9( 1-152 = 16n04 - 4n_ A- 5z] g

But from the definition of the mean motion no, we have the relation

n_) - ng +-_ 1- _ _"_ =0,

so that, by elimination of 5, we obtain

A2 = 3n_(5n_ -- 1).

A2 is equal to zero if and only if n_ = 1/5, which means that the

long and short mean motions are bound by the commensurability

relation ns = 2n_. Thus we find again the critical case of order 2

singled out by Siegel's theorem. In our context, it suggests that,

for the critical mass ratio #2, coefficients Cl.o.2,o, S,.o,2,o, Co.,.2,o, and

So.,.2,0 for the long period librations are wrongly assumed to be of

second order in _ and that the le._g period librations no longer

exhibit the Dalembert characteristic. To say it in other words, the

commensurability ratio n, = 2n, may be described as a resonance

of the short period librations on the long period ones; this resonance

amplifies so much the second harmonics that their coefficients can

no longer be assumed to be of an order of magnitude less than
the coefficients of the first harmonics.

Reserving this singular case for closer scrutiny elsewhere, we

assume that _ is sufficiently far away from the critical mass ratio

_ so that no substantial difficulty is met while solving the last

two systems.

At this stage, the Jacobi integral

r ---- (2t_2,0 -4- 1) }z -4- (2(_o.2 -4- 1) ,/'_

+ 2(_.o_ _ + _2,, _z_ + _1',_'1 _+ _o._'1_)

_ (_._+ _)

should be used to check the number of significant figures present

in the second order coefficients, ibr these are obtained by dividing

by _., which, in general, is rather small. To do so, we need the

third order coefficients in the functions _, _, _, _z, _z, _; in view

of its use in the third order analysis, we add to them the coefficients

in the function _,.



MOTION iN THE TRIANGULAR LIBRATION CENTERS

C2.0.1.1= $1.0.1.0S1.0.2.0,

C2.0.3.0= - $1.0.1.0S1.0.2.0,

$2.o.1.1 = - Sl.o.x.o Cl.o.2.o+ 26a.o.o.lSl.o.l.o,

$2.o._.o = $1.o.l.o C_.o.2.o,

Co.2._._= 26o._._.oCo.l.o.1+ Co._._.oCo._.2.o,

60.2.3. 0 _--- 60.1.1.060.1.2.0,

So.2.1.1= Co.t.l.oSo.l.2.o,

So,2,3,o = 6o,1,1,o80,1,2, O,

1 1

C1,1,1,1 = C1,o,o,1Co,l,l,o -J(- 2 C1.°,2,° Co, l,l.O + 2 81,°,1,°8°,1'2'°'

1 1

6_._.3.o= _ C_.o.2.oCo._.1.o- _ S_.o.x.oSo._.2.o,

1 1
$1._.1.1= $1.o.l.oCo.l.o.1+ _ S_.o.2.oCo.1.1.o- _ $1.o.1.o6o._.2.o,

1 1 S ..
$l.l.3.o = _ 81.o.2.o6o.1.1.o+ _ 1.O.l.OCo 12.0.

3.o.1.1 _ O_

C3,o,3,o= O,

1

$3,o,1,1 = 62,o,o, lSl,o,l,O - 2 62,o,2,0Sl,o,l,O,

1

$3.o._.o=_ $1.o.l.oC2.o.2.o,

1

C2,1,1,1= C2,0,0,1C0,1,1,0+_ Cz,0,2,0C0,1,1,0,

1

C2.1._.o= _ 62.0.2.0C0.1.1.0,

$2,1,1,1 = O,

$2,1,3, 0 = O,

C1,_,1,1= O,

C1,2,3,o= O,

SI,2,1,1 = C0201S10,1,0 _ _0,2,2,0 1,0,1,0,

23
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1

$123o= _ Co22oSlolo,
1

Co31x = Co lloCo2o1+_ ColloCo22o,

1

Co33o = _ Co,_oCo2_o,

So,3,1,, = O,

ANDRE DEPRIT

So,3,3, 0 _-- O.

We conclude this list of formulae with the corresponding ones for

the derivatives 6, ,, 62, /1_:

Cl.o.2o = 2noS1.o2o, Co.l.2o = 2noSo,2.o,

S, o2.o = - 2no C,o.2o, So.1.2.o = - 2no Co.,.2.o,

C2.0.1.1 = C2.0.3. 0 = C,.01I. 0 C1.0.2.0,

_2.0.1.1 = 82.0.3.0 = C1.0.'.081.0.2.0,

Co._.,..= - C0.2.3.0= _0._.1.0S0._.2.0.
So._._._= - So._._.o= - So._.,.o¢0._....0.

Now the Jacobi integral is expanded in a Fourier series and wc

extract its third order part

C I'_,_cos not q- S r,,_sin not + C r3.oCOS3not + S ra,osin 3not

where

C r,,l = (2_z,o + 1) C2.o.l,, + (2_o,2 + 1) Co,2,1,1

-4- 2 (w3,0 C3.0,1,13t- w2,1 C2,,,,.l -_- 0)1,2 C1,2,1., .31_ o_0, 3 Co,3,L1)

- C_,o,,,,-Co,,,,,,,,

S rl.X = (2_2,o + 1) S2.o,l,, + (2wo,2 3t- 1) So,2,,.,

-}- 2(w3.0.$3.0.1.1 21- w2.182.1.1.1 -_ wl.28,.2.1.1 q- w0.3S0.3.1.1)

C Fa,o = (2_o2,oq- 1) C2,o,3,oq- (2wo,2 q- 1) Co,z.a,o

+ 2(_3,o C3,o,a.o+ _2,, C,,.,.3,o + _,.2 C,.2.3.0 -4- o_0.3 C0.3.3.0)

- C_,o,3,o-Co,2,_,o,

S r3,o = (2_2.o + 1) S',.o,3,o + (2_o,_ + 1) So.2,3,o

+ 2 (_3.o S_.o.3.o + _2.t $2.,._.o + _1.2S,.2.3.0 + _0.3 S0.3.3.o)

-- S2.0.3. 0 -- 3o.2.3. 0.
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Third order coefficients in the Jacobi integral should be equal to

zero; to ascertain the accuracy of our numerical evaluations, we

check how close to zero they will remain.

VIII. Third order librations around L4. In the right-hand members

of the third order Lagrangi_ equations

_'-- 2_ -- _ 1 -- _ 6 _ = 30)3,o_2 -_- 20)2,1_q -{- 0)1,2W 2 "31- 40)4,0_3

"3t- 30)3,1 _2r/-4- 20)2,2 _ 2 .__ 0)1,3TI3,

fiA- 2_-- _ 1A-_ T/ ---= 0)2,1 _2 "_- 20)1,2 }7/-_- 30)0,37/2 -_- w3,1 } 3

-3u 20)2,2_2_/ -4- 30)1,3}_/_ + 40)o,47/_,

we replace the different functions }2,...,3 by their third order

Fourier series, and we collect the various coefficients of the third

harmonics. Assuming that these expressions are of the form

CXl,zcos nt + CX3,oCOS 3nt + SXl,zsin nt + SX3.osin3nt

for the right-hand member of the first equation, and of the form

CYl,lCOS nt + CY3,ocos 3nt + SYl,lsin nt + SY3,osin 3nt

for the right-hand member of the second equation, we readily

obtain that

CXI,1 = 30)3,0C2,o,1,1-4- 20)2,1C1,1,1,13t- aJx,2Co,2,1,1-_- 4w4,0C3,o,1,1

-_- 3o)3,1 C2,1,1,1-4- 20)2,2 Ci,2,1,1 -{- Wl,3 C0,3,1,1,

CX3,o = 30)3,0 C2.o.3.o + 20)2,1 CL1,3,o-_- wl,2 Co,2,3.0-_- 4w4,0 C3.o.3.o

"_- 30)3,1 C2,1,3,0 -_- 20)2,2 C1,2,3,0 -_- Wl,3 C0,3,3,0,

SXI., : 30)3.oS2.0.1.1 + 20)2.1S1.1.1.1 -Jr- Wl.2S0.2.1.1 + 4w4.0 $3.0.1.1

-4- 30)3,1 $2,1,1,1 + 20)2,2S1,2,1,1-31- wl,3 S0,3,1,1,

SX3,0 = 30)3,o$2,0,3,0 Jr- 20)2,1$1,1,3,o -3t- Wl.2 S0.2.3.0 -_- 4W4,0$3,o,3,o

-_-30)3,1S2,1,3,0-_-20)2,2SI,2,3,0-_-0)1,3 S0,3,3,0,

CYI,I = 0)2,1C2,o,l,i + 20)1,2C1,1,1,1+ 30)0,3Co,2,,,1 + 603.1 C3.0.1.1

-_- 20)2,2 C2,1,1,i -91- 30)1,3 CI,2,1,1-91- 40)0.4 Co,3,1,1,

-4- 20)2,2C2,1,3,0-+- 3_1,3 C1,2,3,o-4- 40)o,4C0,3,3,o,
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SYI. 1 = 602.1S2.0.l.l -+- 2wl,2Sl,l,l,1 -+- 3wo,3S0,2,1,1 -4- w3,z$3,o3,t

+ 2w2,2Sz, IA,I + 3W1,3Si,2,i,t + 4wo,4So,3,l,t,

S Y_,o = _,1 $2,0,_,o+ 2_l,z Sl,,,_,o + 3o_o,_So,'2,3,o+ c_._,,S'j,o,'J,o

+ 2602.2S2.1.3.o + 3¢Ol.3St.z,3.o + 4t_0,4So.3,3.o.

Once the right-hand members are known, we are able to ibrmulate

the linear equations that will produce the second order coefficient

nl in the mean motion n and the third order coefficients C_,o,_,b S_,o,u,

Cl,o,.J,o,Sl,o.,_.o, Co.l,l,l, So, l.l.l, Co,I,_,o, So, l,3.o in the Fourier series of the

periodic librations. Focusing first on the first harmonic, we obtain

the two systems

[ 1)]-- n_+_ 1 - _ $ CL,o,l,l -- 2noSo, l,l,l = CXI.I,

[ 1)]-2noC,,o.,,,- n_+_ 1+_$ So,_,t,z=SY,,t,

3 1
-[n_+_(1-_6) ]S,,o,,,, +2noCo,,,,,,

+ 2(Co, l,l,o -- noSl,o,,,o)nl = SXL, I,

2noS,,o,,,,- n_+_ 1+_ Co,t,,.,

+ 2($1.o,t,o - noCo, t,l,o)nl = CYl,l.

Since, by definition of no, the determinant of the first system is

equal to zero, its right-hand members are bound by the relation

a.CX, l = b,_SYl,l.

We are at leisure to give an arbitrary value to one of the two

unknown coefficients, and we choose to put

So, l,,,l = O.

Any other choice would do as well and could be reduced to ours

by a proper modification of' the orbital parameter t. From this

choice, it follows that

SYI,I a_CXl,l + b.SYl,l
Cl,o,l,l 2no 2nob.

In the second system, we choose to put



MOTION IN THE TRIANGULAR LIBRATION CENTERS 27

Co,1,1,1= 0,

so that it constitutes now a system of two linear equations in the

two unknowns $1,0,_,_ and nl. Through easy algebraic manipulations,

its determinant is shown to be equal to 2bs/p_. Hence

2p_

S_,0,1,1 - _, [(as - n,b,) SX_,I - (bs - nsas) CYI,_]

1

nl = -- -_ (asSXI,1 nc b, CYI,1).

After the first harmonic, we look for the coefficients of the third

harmonic; they are easily seen to be solutions of the linear equations

[
-- L9ng -t- -_ -_ .......

1
-6noCi,o,a,o- [9ng-t-3 ( l +_5 ) ]So, l,a,o=SYa,o,

-- [u9n_q-_3(l--15)]Stoao_ .... -_-6noCo,l,a,o=SXao,

3 (X-q-15)]Co13o=CY3o,6no $1,o,3,o - [ 9n_ + _ ....

For both systems, the determinant is

= [9n_ 3(I--15)][9n_+ 3 (1-_-15) ]--36n_.

By eliminating 5, in the same way as we did for As, we obtain

A3 = 8n_(10n_- 1).

Thus h3 is zero if and only if either no = 0 or no2 = 1/10. The first

case is evidently to be excluded since we assume _ _ 0; the second

case means that ny = 9/10 and n_ = 1/10. In other words, this is

the case where long and short periods of the first order would be

bound by the commensurability ratio n, = 3m. Here again appears

a critical mass ratio, namely u_, and we see here that this mass

ratio holds its exceptional significance from the fact that the

resonance between long and short period librations amplifies so

much the amplitudes of the third harmonics that their coefficients

can no longer be assumed to be of an order of magnitude less than
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TABLE III. Third Order Librations

(Earth-Moon System)

= 0.012 139 605

ANDRE DEPRIT

Short period

no

Cl,o,l,O

Sl,o,l,o

o, l,l,O

So, l,l,O

Ft

el,0,0,1

C1,0,2,0

81,0,2,0

0.954 546 929 040

0

3.145 804 428 481

1.546 278 039 770

0

-1.909 093 858 080

-5.196 143 148 983

0.088 564 803 926

-0.608 280 006 459

o, l,O,l

o,1,2,o

So,1,2,o

Crl,i

S Fl,l

C ra,o

S Fa,o

nt

Cl,o,l,1

81,o,1,1

Cl,o,3,o

81,o,3,o

o, l,l,l

8O, l,l,l

Co,1,3,o

8o,1,3,o

-1.238 971 241 052

1.270 580 758 217

-0.030 933 383 091

3 × 10-14

- 1.6 × 10 -14

-- 9 × 10 -1_

-- 0.9 X 10 -15

0.231 038 268 650

25.537 262 586 851

-4.811 517 827 891

-0.094 139 704 578

1.185 743 769 640

0

0

-1.460 803 788 615

-0.076 054 033 011

Long period

0.298 060 665 403

0

4.998 242 126 170

0.973 199 813 531

0

0.596 121 330 807

-15.681 265 476 799

- 9.103 149 063 171

1.513 029 566 916

- 5.650 509 279 875

6.427 979 036 353

3.301 138 379 583

1.25 × 10 -la

- 0.77 × 10 -i_

1.57 × lO-la

- 0.19 × 10 -1_

- 0.678 344 111 000

294.136 073 022 983

- 1.669 982 829 189

-42.497 292 211 543

-106.219 595 043 159

0

0

--52.443 419 368 986

39.833 133 928 733
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TABLE IV. Third Order Librations

(Sun-Jupiter System}

--0.000 953 875 35

29

no

Cl,o,l,O

Sl,o,l,O

o, l,l,O

8o,1,1,o

Pl

61,0,0,1

61,0,2,0

$1,0,2,0

0,1,0,1

0,1,2,0

S0,1,2,0

C r1,1

SFI,1

C r3,o

S r3,o

nl

61,o,1,i

81,o,1,1

61,o,3,o

81,o,3,o

o,1,1,1

8o,1,1,1

o,1,3,o

8o,1,3,o

Short period Long period

0.996 757 525 556

0

2.848 471 915 939

1.422 683 843 549

0

-1.993 515 051 113

-4.246 089 894 994

0.004 996 362 605

-0.506 418 069 883

-1.013 949 242 336

0.080 463 875 413

0

8.697 980 412 788

0.465 909 875 774

0

0.160 927 750 827

-49.013 967 358 655

-16.845 454 779 570

0.699 464 015 741

-18.775 890 330 070

1.016 117 577 440

--0.001 597 387 632

2 × 10 -15

- 1.2 × I0 -14

- 1.7 × 10 -14

- 4 × I0 -I_

18.904 603 278 380

1.795 975 982 339

3 X 10 -lu

- 4 × 10 -13

8 × 10 -13

- 7 × 10 -14

0.011 354 365 351

18,192 503 417 118

--3.266 907 250 147

-0.005 046 838 573

0.845 304 608 549

0

0

--1.083 494 388 458

--0.004 018 376 132

- 1.119 733 339 475

6592.373 487 503 260

13.196 039 832 980

- 4.188 635 838 735

-28.375 986 177 146

0

0

--10.192 147 632 790

73.056 804 001 727
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the coefficients of the second harmonics. The periodic librations

do not exhibit the Dalembert characteristic. Reserving this case for

attention elsewhere, we assume that u is different from _a. Now

both systems are easily solved, and their solutions are given by

the following relations:

[ ,)]/x.j . Cl,o,3,o = 6noSY3,o - 9n'_ + -_ 1 -_ _ 8 CX3,o,

3 (1 _t_ 1A3 . Sl.o,3.o = - 6noCY3,o - [ 9n'_-_-_ -2 _ )1SX3,o,

3(1_1A3 . Co,l,a,o = - 6noSXa,o - [ 9n_ + _ _)lCY3,o,

F
A3" S0,1,3,o = 6n0 CX3,o - [_9n_ + -_ -_ ,

IX. Application to the Sun-Jupiter and the Earth-Moon systems.

The computation schedules that we just explained have been applied

to the two most important instances in the plane restricted problem

of three bodies:

(a) the Earth-Moon system;

(b) the Sun-Jupiter system.

The values to be found in Tables III and IV agree with the general

law about the periods, as it has been enunciated by P. Pedersen,

up to the third order, the short period is a descreasing function of

the orbital parameter _, while the long period increases with _.
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Motion of a Particle in the Vicinity

of a Triangular Libration Point

in the Earth-Moon System

I. Introduction. Let ml, m2 and m3 denote three point masses

such that ml _ m 2 _ m 3. The masses move under the influence of

their mutual gravitational attractions; the force between any two

masses is inversely proportional to the square of their distance and

proportional to the product of their masses. It is well known since

Lagrange's work in 1772 (see [1]) that there are in this "three

body problem" five exact solutions in which the three masses

maintain a constant configuration which revolves with constant

angular velocity. An important specialization of the three body

problem is the restricted three body problem in which m3 is in-

finitesimal and m_ and m2 move in circular orbits around their

barycenter. The smallness of m 3 means that it does not influence

the motion of m_ and m2. For many purposes it is convenient to

describe the motion of m3 in a coordinate system which is attached

to ml and m 2. In this rotating coordinate system the five Lagrange

solutions show up as five fixed points at which m3 would be sta-

tionary if placed there with zero velocity (i.e., zero velocity in the

rotating coordinates). It is further known that, in this rotating

coordinate system, m 3 may describe small periodic orbits about

the Lagrange solutions. Gyld_n therefore called the points which

correspond to the Lagrange solutions "centres of libration"; they

31
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are also often referred to as "libration points" or "Lagrange points."

The libration points are singular points of the differential equa-

tions of motion in the restricted problem of three bodies; they are

also equilibrium points since the gravitational forces on a mass

placed in such a point are balanced by the centrifugal force. Three

libration points, the collinear points, are found on the line con-

necting the two large masses; the other two, the triangular points,

form equilateral triangles with the two large masses. By linearizing

the equations of motion Charlier in [2] showed that there are two

classes of periodic infinitesimal orbits around the triangular libra-

tion points, namely those with short periods (periods very nearly

equal to the period of the two large masses) and those with long

periods (the periods depending on the mass ratio of the two large

masses). Each of these classes consists of concentric, coaxial and

similar ellipses with semi-major and minor axes in the ratio 2:1

for the short period orbits and a larger ratio, again depending

on the mass ratio, for the long period orbits. Plummet in [3] con-

sidered Charlier's problem in a more general format and from his

results some additional conclusions can be drawn (although they

were not explicitly mentioned in his paper). For a mass ratio of

the two large masses smaller than 1/27 both classes of orbits

around the triangular points can be expressed with trigonometric

functions; these points are therefore called stable libration points.

Furthermore, only one of the classes of orbits around the collinear

libration points can be expressed in trigonometric functions, the

other requiring hyperbolic functions; the collinear points are

therefore called unstable libration points.

The discovery in 1906 of the first of a group of asteroids which

appear to oscillate (or, in astronomical terms, librate) around the

Sun-Jupiter triangular libration points, gave further impetus to

the study of these motions. This first asteroid discovered was

called Achilles, and since subsequent asteroids of the group were

also called after heroes from the Trojan war these asteroids are

commonly referred to as the Trojan group. Brown in [4] considered

the long period orbits around the triangular libration points by

supposing finite amplitudes of libration and discussed in some

detail the dependence of period and orbit shape on amplitude.

In [5] he discussed libration orbits for a mass ratio of the two

large masses greater than 1/27. Willard in [6] discussed the short
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period orbits, again of finite amplitude and computed a number

of possible orbits. Whereas all this work was based on the re-

stricted problem of three bodies, with the discovery of more

Trojans attempts were made to take into consideration the actual

physical circumstances. Among the first contributions were those

by Linders in [7] and Smart in [8]; Brown in [9] published the

explanation for his theory (published in its entirety in 1926 in

[10]) which was accurate enough to compute the position of a

Trojan asteroid within a few seconds of arc. This theory was ap-

plied numerically to Achilles by Brouwer in [11] and by Eckert

in [12] to Hector, which has a particularly large libration amplitude.

Since this theory was numerical it had to be set up separately for

each asteroid. A group theory was outlined by Brown and Shook

in [13] in which the interesting direct and indirect effects by Saturn

were also discussed. Herz in [14] carried out some of the details of

Brown and Shook's plan. Further work concerning the motion of

the Trojans was accomplished by Wilkins and reported in [15],

[16], [17], and [18].

Thiiring in [19] and [20] considered again the problem of the

long period motions, in particular the dependence of the period on

amplitude. His subsequent contributions in [21] and [22] were

largely based on numerical work and [22] was of particular interest

because of the application of an electronic digital computer.

Thiiring's claim of the nonexistence of long period orbits through

any arbitrary point was refuted by Rabe in [23] who made a

survey of numerically computed long period libration orbits,

expressed in Fourier series expansions. Rabe also discussed some

aspects of the stability of such periodic orbits and extended these

studies in [24]. Similar work was done by him and Schanzle in [25]

on libration orbits for the earth-moon system. His most recent

work, as discussed in [43] and [44] develops the idea that such

periodic orbits should be used as intermediate orbits for the compu-

tation of real, nonperiodic orbits. Stumpff in [26] reconsidered

and refined Thiiring's theory, in particular with respect to the

relations between long period orbits with very large amplitudes

around the triangular libration points and the nonperiodic orbits

in the neighborhood of the collinear libration points.

The study of libration points in the earth-moon system was

initiated by Klemperer and Benedikt in [27]. They argued that,
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in analogy with the Trojan asteroids, there are to be found in

the combined gravitational field of the earth and the moon two
areas in which natural or artificial bodies would move while main-

taining a more or less constant configuration (that of the equi-

lateral triangle) with the earth and the moon. Again, as was the

case with the Trojans, there was a subsequent discovery of two

"faint cloudlike satellites" (anonymously reported by Kordylewski

in [28]) in the neighborhood of Ls, the libration point 60 ° behind

the moon. Later, the discovery of such a "cloud" near L4 (the

libration point 60 ° ahead of the moon) was also reported. Among

some possible applications of the triangular earth-moon libration

points suggested by Benedikt in [29] was the determination of the

lunar mass; the supporting argument was the well-known relation

between the libration period and the earth-moon mass ratio. This

was validly refuted by Colombo in a letter to Nature (see [30]) by

the argument that such periods would be difficult to observe because

of perturbations by the sun. Colombo quoted there the work by

the present author on the effect of solar perturbations, but put a

little too much emphasis on the instability which seemed to be in-

dicated by that work. Thus, Benedikt in turn refuted Colombo, in

the same issue of Nature (see [30]) and equally validly, by sup-

posing that there would be "sufficient permanency to carry out the

required measurements." It is unfortunate that he quoted results

of Sehnal in [31], because of Sehnal's inadmissable assumption that

the sun stays permanently on the earth-moon axis. Colombo fol-

lowed up on his first investigations with [32] in which he considered

the motion near L4 or L5 under the influence of the sun, and the

possibility of stabilizing it with a solar sail; in [33] he gave a numeri-

cal analysis of the influence of the moon orbital eccentricity.

Two reports by Ellis and Diana served as introduction to a study

to be performed by this author for the U. S. Air Force RADC. The

first by Ellis presented a review of Pederson's work in [35] on the

critical mass ratio (1/27 for infinitesimal orbits) for noninfinitesimal

orbits; the second [36], by Ellis and Diana, presented some numeri-

cally computed libration orbits in the restricted problem and also

discussed the booster requirements for earth-based launch into a

trajectory which would intercept a triangular libration point. This

author in [37] extended this work by adding to the linearized equa-

tions of motion relative to a stable libration point in the restricted
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problem the principal effects of a fourth body representing the sun

as it is related to the earth and moon. Two linear, second order

differential equations with time varying coefficients, were thus ob-

tained which in principle could be solved in powers of the small

parameter (mass of sun divided by the cube of the earth-sun dis-

taime). The first order solution and the most significant parts of

the second order solution were obtained and for a number of dif-

ferent initial conditions this presented a reasonably close agreement

with numerically integrated orbits. It did appear that any so called

"stability" was strongly influenced by the sun but it also appeared

possible to choose the initial configuration of earth-moon-sun and

initial conditions of the small particle such that this influence was

small enough for a usefully long "libration life" to be possible. In
a subsequent paper [38] the influence of the moon's orbital eccentri-

city was discussed and it was found that, if the sun was introduced

in the consideration of motion near earth-moon libration points,

the moon's orbital eccentricity would have to be considered also.

Because of this it did not seem entirely practical to continue the

work in terms of rectangular coordinates if greater accuracy were

required. Because of the apparently great importance of these per-

turbations, it seemed worthwhile to develop a theory in terms of

orbital elements; this theory is sketched in the present chapter.

Before some additional theoretical matters are touched upon, men-

tion must still be made of the work by Michael in [39] which dis-

cusses orbit envelopes as depending on initial conditions, based on

a linearized analysis of the restricted problem.

It appears that the most fundamental questions about motion

near libration points are those about the existence of periodic orbits

and the stability of such orbits. Most generally, it concerns the

behavior of solutions of differential equations at or near conditions

of commensurability. If stable periodic solutions exist, such solu-

tions may be used as intermediate orbits for the computation of

nonperiodic orbits by perturbation analysis. According to the re-

marks made before, it appears that in the restricted problem of

three bodies the existence of periodic orbits about the triangular

libration points is well established. Actually, this result followed

from the analysis of the linearized equations of motion. Accordingly,

it served to exhibit the stability of the triangular config__!ration,

as one of Lagrange's exact solutions of the restricted problem, only
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in so far as the linearizationisvalid;that is,only for infinitesimal

disturbances. The apparent existence of noninfinitesimalperiodic

orbits (Brown, Thiiring, Rabe) followed either from the analysis

of higher order approximations of the differentialequations (but

stillnot exact) or from numerical work. The stabilityof such orbits,

ifstudied at all,has been investigated only numerically. Only as

late as 1959 it was shown by Littlewood in [40], which is an ex-

tremely difficult paper, that the triangular configuration itself (still

in the restricted problem) is stable in the sense that for an initial

disturbance of order _ the disturbance will remain of order _ for as

long a time as exp(A_-l/211og_l-3/4): where A depends only on the

mass ratio. In a second, equally difficult, paper he improved his

results somewhat (see [41]). A possibly stronger result was ob-

tained by Leontovic in [42], where he states that in the restricted

problem the triangular configuration is stable for mass ratios smaller

than 1/27, possibly excluding a set of mass ratios of Lebesgue meas-

ure zero. All this says precious little about noninfinitesimal libration

orbits and their stability. It appears thus to be very difficult to

derive meaningful results by qualitative methods, and with the

problem of libration orbits we may still be in the position of trying

to come to general results by the study of particular analytical or

numerical solutions. This seems to be typical for the development

of nonlinear mechanics. There is, of course, an extensive literature

concerning questions of this general kind. Still, the three papers

by Leontovic and Littlewood are the only contributions specifically

concerned with the triangular libration points which have come to

the attention of this author.

Considering the modern trends in the study of nonlinear me-

chanics toward qualitative methods one may expect that any new

work on triangular libration points, whether it be in the earth-moon

or the sun-Jupiter case, should concentrate on the establishment

of a proof of stability for libration orbits. If then a solution in the

form of analytical expressions of the coordinates as functions of

time with an exhibition of integration constants would be at all

required, one should use periodic orbits (whose existence would

first be proved) as intermediate orbits for the perturbation analysis.

Two reasons discourage one from following this approach. First

of all, even though the past few decades have seen a significant

development of methods and theorems in nonlinear mechanics there
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is still very little known about systems of higher than second order.

The methods of the phase plane, so convenient and easily visualized

for second order systems, must be transferred to multidimensional

phase space which introduces some formidable complications.

Secondly, the few qualitative results which are known about the

triangular libration points specifically have been derived only for

the restricted three body problem which is really very special since

its Hamiltonian does not contain the independent variable explicitly.

On the other hand, preliminary studies have shown clearly that in

the case of the earth-moon libration points the influences of the sun

as the fourth body and of the moon's orbital eccentricity are quite

important. The Hamiltonian of such a problem contains the inde-

pendent variable in periodic terms of short and long periods, and

especially (in the present problem) with periods commensurable,

or nearly so, with the principal periods of the problem. Very little

is known at all about how certain qualitative results derived for

constant Hamiltonian could be transferred to a similar problem

with time-varying Hamiltonian.

Thus, the purpose of the present chapter is to develop a solution

in the form of analytical expressions for coordinates (strictly

speaking, elements) as functions of time, containing integration

constants which in some way can be related to initial conditions

of position and velocity. This goal is slightly more general than is

usually the case in the development of such a "theory" for

astronomical purposes. In that case a theory is developed for a

particular celestial body, even though there is considerable flexi-

bility in choosing the stage of the work where this particular body

is introduced. In some way the integration constants are numerically

evaluated by relating the solution to observations and they need

not be related to arbitrary initial conditions of position and velocity.

In the present case a theory is developed for the more general

purpose of precomputing the orbit of a not yet existing space

vehicle, or of not yet observed natural bodies. Even more important,

it is hoped that this theory will enable one to determine the initial

conditions for a space vehicle to complete its mission most suc-

cessfully, or to describe a libration orbit of greatest "stability."

Of necessity, the integration constants will thus appear as symbols

throughout the entire development. Probably the be._t that can be

obtained is that the initial values of the elements are functions of
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the integration constants; the elements themselves are related to

the position and velocity components through the equations of

elliptic motion. Some intricate inversions will therefore be necessary

before the theory can be used to compute an orbit from specific

initial conditions. Still, many important features of the motion

will emerge from the analytical expressions even without compu-

tation of specific orbits, more than could possibly be obtained by

the numerical integration of many orbits. According to a statement

made by Brown in 1923 concerning the lihration orbits of Trojans,

but still applicable today to libration orbits in the earth-moon

system, the problem "presents so many points of mathematical

and mechanical interest, that a general explanation of certain

features of the motion and of the methods adapted to obtain a

solution of the problem may not be out of place."

If. Problem statement and outline of method of solution. The prob-

lem is that of motion of a particle in the vicinity of the earth-moon

triangular libration points. A representation of that motion is to be

developed in the form of analytical expressions for certain variables

as functions of the independent variable time. In this development

the gravitational force of the sun and the moon's orbital eccentricity

shall be considered. The analytical expressions shall serve the pur-

pose of (1) pointing out certain general features of the motion,

as for instance the effects of the sun, the moon's orbital eccentricity

and the initial configuration on the appearance of various periodic

terms and their amplitudes, (2) providing a means of orbit pre-

diction (or ephemeris computation), after substitution of initial

conditions and evaluation of the integration constants, (3) pro-

viding a theory for the determination of an orbit from observations,

(4) providing a tool for the simulation of libration orbits from which

insertion conditions may be determined for smallest libration

amplitudes during a desired "libration lifetime," (5) providing

the basis for the determination of station keeping requirements.

The method of solution is explained in the following sections.

At this time the purpose is not to present a complete solution, but

rather to highlight the essential features and difficulties of the

problem and to present a plan according to which the details of

the solution are to be carried out. The equations of motion are

derived from a formulation of the problem in Jacobi coordinates.

After the identification of the Main Problem and the problems
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due to the Direct Effect of the Sun and the Indirect Effect, a

slight digression is made by writing the equations for the main

problem in rotating rectangular coordinates attached to L4. It is

shown how the two fundamental frequencies are derived and how

these are changed by the introduction of the sun's attraction. This

provides a lh]k with earlier work by this author and others. The

method of solution adapted here begins with the introduction of

Delaunay elements as variables. An explanation follows of the

development in terms of these elements of the disturbing function

for the main problem, the direct effect of the sun and the indirect

effect. The appearance of short period terms, long period terms

and libration terms is identified. The procedure by which the short

period terms are to be eliminated according to the von Zeipel
method is outlined and some remarks are made about the work

which will be required in order to eliminate the long period terms.

The libration terms are discussed in some greater detail because

they embody the essential difficulties of the problem: the libration,

or motion in mean longitude, and the variation of the semi-major

axis. Especially of interest is the demonstration of the dependence

of the libration frequency on amplitude.

III. Equations of motion and disturbing function. Let mo, ml, m2,

m3 be the masses of earth, particle, moon and sun respectively.

The equations of motion according to the inverse square law of

gravitation can be formulated conveniently in terms of Jacobi

coordinates, defined in Figure 1.

},n 1

L- /S13 / r3

lit, 2

FIGURE 1. Jacobi Coordinates

The position of ml is given with respect to m0 by the vector rl; the

position of ms by the vector h, beginning at the barycenter of mo

and ml; the position of mo by the ,,_*_- r3, -_s ........ _ at _l_e uary-

center of m0, m_ and m2. To take full advantage of the generality
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of thisformulation, the substitutionrn_= 0 isleftuntil later.Since

the motions of the moon and the sun with respect to the earth

are known, only the equations of motion for m_ are needed. They

are in vector form

(1) fl = mo+ ml OF F= k2_i,i mimjmom----_Or_' Jrij[' i_j, i,j=0,1,2,3,

where k2 is the gravitational constant and rij is the vector from mi

to mj. To express the force function F in the Jacobi coordinates,

we observe from Figure 1,

r01 _ rl

ro2 =- r2 -}- klrl, kl _-'--

ml

mo _ ml

r23 = r3 -- (1 -- k2)r2, k2 _-
m2

mo+ml+m2

A little more difficult are the expressions for 1/r03 and 1/rl3; they

may be expanded according to the binomial theorem and it is then

seen that two series of Legendre polynomials result and a series

of "coupled terms." For instance, for l/r03,

[ r2 (k2r27 (3c0s2S23 _I) ....ro_1 = r3 1 1 -- k2--cosS23 +
r3 \ r3 /

r, (kr,_ (3 cos2S_3 1)(3) - kl--cosS13 -_- .....

r3 \ r3/

I, i, rl r2 J
"Jr- _1_2"-_ "- (3 cosS13cosS23 - cosS12) -Jr- -°. _ ,

and, similarly for 1/rtz.

= r2-' [1 -- kl r-LcosS12-_- k2r_ [3t2 1_2 _2 cO32S12- 1 ) + "'']-

to3 = klrl -}- k2r2 -_- r3

r13 --'--r3 -- (i -- kl) 1"1-_- k2r2

r12 = r2 - (1 - kl)r_.

To get the inverses, 1/rij, Legendre polynomials may be used

without any difficulty for the first three expressions; for instance,

rl ._- 1/2r_21 = r21 1 -4- 2klrl cosSt2-Jr- --
r2 r2 /

(2)
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Finally, no such expansions can be used directly for r_ 1, since

both parts of r12 are of equal order of magnitude. Instead, we define

(4) A2 = r_ -- 2rlr2CosSl2 -Jrr22

and write

, . _ r2 "I-1/2_ r _. r,r_

(5) r l 2- = A " L i -Jr- _1 _ COS $12 - (2 - kl) kl "_zJ

and the binomial theorem may again be used for the part in the

brackets.

Now, all the expressions for the ri] 1 are substituted in the dis-

turbing function, equation (1), and finally the smallness of ml is

taken into account by putting ml = kl = 0; in particular it is

noted that the expansion of the factor in brackets, equation (5),

is not needed since all the terms, except unity, vanish. The result is

[ (I rlcosS12_ ]
F = k 2 mo-_- ml -4- m2

r_ A r_ )

(6) rrl2 /_3 r3 (5 3cos813 )I) ',2

1 _, r2r2 (3c08S23-{-6c0s813c0sS12- 15c0s2S13c0sS23) ]

With the Main Problem is meant the problem of which the dis-

turbing function is given by the first bracket in (6) and in which

also the motion of the moon follows the ellipse which results from

taking the elements of the moon's orbit to be constant. The second

bracket in (6) is the disturbing function for the Direct Effect of

the Sun; the Indirect Effect of the Sun is considered by using in

the disturbing function the motion of the moon as it is perturbed

by the sun. If units are chosen such that the average earth-moon

distance, the sum of the masses of earth and moon, and the gravi-

tational constant are all unity, the coefficient rn2k 2 is about .012

and the coefficient of the sun's force function, rn3k2/r_ is about

.0052. This is a first indication that the sun, as the fourth body,

plays an important role in this problem. The second term of the

second bracket in (6) is about 400 times smaller than the first, but

there are indications (see [37] and [38]) that it is important, be-

cause it introduces a nearly resonant frequency. The coupling term

(the third term of the second bracket in (6)) has a coefficient of

about 8 X 10 -8 and can probably be neglected.
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IV. Relative rectangular coordinates. Some of the important aspects

of the problem are revealed by the linearization of the equations of

motion. For this, consider the three bodies mo, m2 and ml; also,

confine the motion of m_ to be in the plane of the motions of mo

and m2. Let (X, Y) be the rectangular coordinate system in this

plane, centered at mo, the X-axis going through m2. This coordinate

system rotates with the angular velocity of m2, v. The equations

of motion of m_ are then

J_ - 2 Yi_ - i_2X - VY = OF
OX

Y A- 2Xb - i_2Y A- VX = OF
OY'

where • denotes d/dt, and F is the force function defined in equa-

tion (1), with i,j--O, 1, 2. The units have been chosen such that

(mo+ m2)= 1 and k 2= 1. For motion of ml in an infinitesimal

neighborhood of the leading triangular libration point L4 these

differential equations may be linearized by developing OF/OXand

OF/OYin a Taylor series about the point (½, ½V/3) and retaining

only the constant terms and the terms which are linear in x and y,

where x = X- ½, y = Y- ½v/3. If the further simplification is

made that m2 moves in a circular orbit about m0, so that k = 1,

the equations of motion of rn, are

(7)

with c1=3/4, c2=3V/3

- 22- c,x - c2y = 0

f¢ -4- 2x - c2x - c3y = O,

(1 - 2g)/4, c3 = 9/4, # = m2/(mo-4- m2).

The frequency equation of this fourth order system has only

imaginary roots so that the solution can be expressed in terms of

trigonometric functions. The frequencies are .95459 and .29792

(if the mass ratio _ is taken to be .01213) which corresponds to

periods of 28.62 and 91.7 days.

An approximation to the perturbation by ma (the sun) can be

found by subjecting the second line of equation (6) to the same

expansion in a Taylor series. The equations of motion are then

Yc- 2y - c_x - c2y = v(1/4 -4- terms with cosCt, cos2_t)
(8)

y¢+ 2x - c2x - c_y = v(V/3/4 + terms with cosCt, cos2_bt),
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where c_--3/4 + _/2, c2= 3V_3 (1 - 2_)/4, c3= 9/4 + v/2,
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v = ra2/r33 = .00567, ¢ = .92520.

The terms in the right-hand sides with frequency 2¢ come from

the first te__,_._ of the second line of equation (6), those with fre-

quency ¢ come from the second term. The new fundamental

frequencies are .9457 and .3161, corresponding to periods of 28.91

and 86.8 days; the shorter period is rather close to the length of

the synodic month, 29.53 days. Also, the two fundamental fre-

quencies are nearly commensurable (with ratio 2.99, versus 3.20

in the three body case). A solution of equation (8) could be at-

tempted in powers of the "small parameter" v, but the commen-

surabilities will unavoidably lead to trouble with small divisors.

If the orbital eccentricity of the moon is taken into account,

there will be additional terms on the right-hand side with the

small parameter e = .056 and frequency equal to unity; this new

frequency is also close to one of the fundamental frequencies,

again causing trouble with small divisors.

A solution of equation (8) was carried out, in terms of arbitrary

initial position and velocity components, to include all terms

with the first power of v and the most important of the terms

with the second power of v. This solution is interesting for

"engineering" purposes but it lacks accuracy. Most importantly,

it was found that the realistic problem cannot be discussed

reasonably by considering either the sun's effect or the moon's

orbital eccentricity separately; both perturbations must be con-

sidered together. Because of the almost immediate difficulty with

small divisors it appears quite impractical to formulate a solution

of any reasonable accuracy in the relative rectangular coordinates.

Of course, inasmuch as one may argue that these small divisors

really reflect the typical physical behavior of the dynamical

system and are therefore more or less independent of the particular

mathematical formulation, one may expect that similar difficulties

will be encountered with any other set of coordinates. But one

may also hope to formulate the problem in such variables that the

difficulty is postponed, or such that some of the equations are

decoupled so that the difficulty appears in a lower order system.

An outline of such a solution is the subject of the following secLions.
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V. Formulation in orbital elements. Just as the Lagrange solu-

tion (in which ml maintains the equilaterial triangle configuration

with mo and m2) was used as the basis for a perturbation analysis

in rectangular coordinates, it will also serve as the basis for a
formulation in terms of orbital elements. A basic difference be-

tween the two formulations is that in one the motion is given in

the rotating coordinate system, whereas in the other the motion

is given in inertial space. It must be noted that the Lagrange solu-

tions hold not only when m2 follows a circular orbit around mo but

also for any elliptic orbital motion of m2. The elements will thus be

chosen such that for constant values of the elements of ml an ellip-

tical orbit follows with the same eccentricity as m2, according to

the Lagrange solution. For this purpose the force function F is put

in the form

(1 1 rlcosS_2)(9) F= m0WmlWm,_ +m2 +m3[ ],
rl rl r22

where, in comparison with equation (6), rn2/r_ is added to the
first term and subtracted from the second. The brackets with the

coefficient m3 contain the sun's contribution, as in equation (6).

Units have been chosen such that k 2= 1.

Now, with u= m0+ml+rn2 and

(1 1 rlcosS_2)(10) m2R = m2 - -- + m3 [ ],
r 1 r22

the equations of motion are

x OR

(11) _ -4- _r-_ = m2 0---x'

and similarly for y and z. If m3 = 0 (neglect the sun), it is easily

seen that at the triangular libration points R and grad R vanish,

as they should according to the Lagrange solution. Let the elliptic

orbit which then results from equation (11) be characterized by

the elements

a, semimajor axis

e, eccentricity

i, inclination

I
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l, mean anomaly

w, longitude of perigee

h, angle from vernal equinox to line of nodes,

then, according to page 539 of [45], equation (11) may be re-

placed by a set of canonical equations

off

with the Hamiltonian

(13) ff = g
_-_l + m2 R

i = 1,2,3

and the variables (sometimes called modified Delaunay variables)

cl = v/(ga), wl = l A- g A- h, mean longitude

(14) c2 = _¢/(ga) (v/(1 - e2) - 1), w2 = g A- h = w, longitude of perigee

c3 = v/((ga) (1 - e2))(cosi - 1), w3 = h, longitude of node.

A slightly more convenient form is obtained by dividing cl, c2, c3,
and ci by _ = _¢/(ga) and by using

(15) g = n2a 3 = _2ff3 (n is "mean motion"),

where the bar refers the symbol to the moon's orbit. The problem

is then stated in the form of the canonical equations

OH OH

(16) di = _-_/, wi = - Oc----_,'i = 1, 2, 3

with the Hamiltonian

(17) H=_ +m_R ,

and the disturbing function

r 1 r 2
(18)

m3 _r_
+mo+ml r_ [(_ c°s2S13-1) + ""]

where m = mz/ (too + m;).
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This sixth order system is to be solved with six integration

constants (or "arbitraries"); ideally these six integration constants

should be initial conditions of position and velocity. The intro-

duction of orbital elements has of course precluded any convenient

reintroduction of rectangular components of position and velocity.

Even stronger, because of the complications inherent in the formu-

lation of a solution, it will also be impractical to let the integration

constants be the initial values of the osculating elements.

VI. Development of the disturbing function.

a. Main Problem. Using equation (4), the disturbing function for

the main problem (namely the first term in equation (18)) can be
written as

For convenience in using expansions for elliptic motion, wherever

a radius appears it has been combined with its corresponding

semimajor axis to form a dimensionless quantity. This disturbing

function is to be expressed as a trigonometric series in terms of

the canonical variables defined in equation (14). Actually, a

development in terms of the elliptic elements a, e, i, l, w, h is a

little more convenient; the transformation to canonical variables

is then performed whenever it is required, through the relations

in equation (14). The procedure which is to be followed to achieve

this development will now be outlined; the complete development

will not be given here.

First of all, the expressions (a/rO, (a/r2) 3 and (rl/a) 2 in equation

(19) are easily expressed in trigonometric series in multiples of

the anomaly with powers of the eccentricity as coefficients, by

referring to Cayley's tables (Mem. Roy. Astronom. Soc. 29 (1861),

191-306). The expansion of the first term, a-/A, is best obtained by

using the binomial theorem on the expansion of _2/E2. To obtain

the expansion of _2/_2, the expression cos S_2 which appears in

equation (4) has to be expressed in the true longitudes ¢ and ¢

of m_ and m2 respectively, the inclinations and the nodal longitudes.

This expression is given in [13, p. 34].

With the following definitions

(a) 2 a(20) _2 = 1 + - 2=cos r,
a
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the difference in mean longitudes of ml and m2

(21) i _-

3'=sin_, _=sin_,

and

47

. o ° -z-

Q= _smtsmt,

the expression a2/_ _ becomes

_=A_A-\_-f-- 1)q- (aa_---)2 \_---1)

-2air' _----2cos($ --¢ -) -cos,]

+ 2a=r-' + - -
(22) a a a

--(i --3"2)¥2cos(¢A- _--- 2h)

-- 75(1 -- _2)COS(_b -{-_-- 2h)

- 3"2_2cos(¢ -- _-- 2h + 2h)

- Qcos(¢- _- h + h)

+ Qcos(¢ -}- _-- h - h)].

The expansion can then be completed except for _, without great

difficulties (but with a great amount of labor!) by substituting

the elliptic expansions for rl/a and r2/-a. _2/-_2 is of course of the

form (1-+-terms of order e, e 2, etc.); the first term of equation

(19), N/A, can therefore be obtained by applying the binomial

theorem to equation (22). But first the term _ must be expanded;

use is now made of the fact that a theory is to be developed for

motion near the libration point. The difference in mean longitudes

of m0 and rn2 is therefore written as

T = wl - wl = r0 -4- _T, _0 = -4- 60 ° for L4,
(23)

_0 = - 60 ° for Ls.

(For convenience the following shall be specialized for L4, so that

r = 60°.) The expansion of _ in a power series of _T will then
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complete the expansion of A2/a 2, whereupon _/A can be ob-

tained by the binomial theorem.
For the purpose of outlining the expansion of _R in a little

more detail, let

4 2
= 1 A- 01+ 02+ 03+ 04+ ---

and

(-d-_2)3=l-4-EI-4-E2A-Ez.4-E4-4-... ,

where 01 and E1 indicate all the terms with the first power of the

eccentricities and inclinations as coefficient; 02 and E2 indicate

the second order terms, and so on. Then

1_1 3
= _ (O1+ O2+ 03 + 04) + _ (02 + 20102 + ---) + ....

Let also

a
(24) _ = (1 + Xl) 2

a

then after some amount of algebra it is seen that

3 e2 3 3 3
aR = - _ - _ e2cos/+ _ eecos(/+/) + _ eecos(/-

(25) + _ 0 2 + _ E10, + _ 0,02 - 0 3

1 1 E201 -4- ....+ -_ E102 +

Therefore, the disturbing function contains no zeroth and first
order terms; also, if a development to fourth order in eccentricities

and inclinations is desired, the expansions 04 and E4 do not have
to be obtained.

To carry out the actual development the eccentricities e and
and the inclinations i and i have been considered to be smaller

than 1/10, which is in line with the physical facts about the moon's
orbit and with the kind of orbits that are to he considered for ml.

Furthermore, the angle _T is taken to be smaller than 1/10, and



MOTION IN THE VICINITY OF A LIBRATION POINT 49

therefore (as will be seen later) it is reasonable to assume xl to be

smaller than .01.

The general form of the disturbing function will be

m-fiR = rn__, Coeff(e, _, xl, 5T, e,_)

(26) .cos(j1/ ' "r' • , :-, :r-_-'1- J2 t "5- J4W -3- J5 w -7- jTh -_ Js,,J.

The entire series is made up of cosines with arguments con-

sisting of various combinations of the angular elements l, w and

h. The coefficients are mostly functions of the other elements, e,

a through xl and i through ,, except that the angle _ appears in

some of the coefficients due to the expansion of Ao in terms of 6T.

It is important to recognize two kinds of terms, those in which

Jl + J2 _ 0 and those in which Jl + J2 = 0. The former are called

"short period" terms, the latter are "long period" terms. The

long period terms are those which do not contain either l or /-and

those which have l and lonly in the combination (l -/); the short

period terms are all others. The significance of and the reason for
this distinction will become clear in the later treatments. The actual

development has been carried out to obtain all short period terms

of second order (18 different arguments are present) and all long

period terms of second, third and fourth order (producing 14 dif-

ferent arguments). It must be noted that, because of the expansion

ofa/A as (A2/a -_) -1/2 some of the numerical coefficients of the fourth

order terms are so large that they are actually of third order. It

may therefore be argued that the development has been obtained

only to the third order. If this development may not lead to the

ultimate accuracy which is desired, it is at least accurate enough to

bring out the important features and difficulties of the problem;

the results from this development may show how certain terms

must be carried to higher order for greater accuracy.

b. Direct Effect of the Sun. In considering the sun's effect it will

be assumed that the earth-moon barycenter describes a constant

ellipse around the sun. It is thus reasonable to adopt the plane of

that ellipse for the fundamental plane in the entire analysis. This

is also the plane with respect to which the moon's coordinates are

given in Brown's lunar tables. In the following the quantities re-

lating to the sun's orbit will be indicated by a double bar.

The disturbing ......,unc_xu_ due to *_^_,,_sun is given in _h_..........final bracket

of equation (6). This may be written as
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o?:m E Ill

+ 6 cos S13cos $12 - 15 eos2Slacos $23)J •

After cos $13 and cos S2a have been expressed in the true longitucles,

nodal angles and inclinations of ml, m2 and ma (see [13], p. 34)

the expansion of this disturbing function is obtained without great

difficulties by referring to Cayley's tables for expressions as

(r/a)Pcosn[. The first and second terms of equation (27) do not

contain the moon's coordinates and have therefore no long period

terms with (l- i} in the argument. The only long period terms

are those in which neither l nor l" appear. The third term of (27)

does have the moon's coordinates but its coefficient is so small

that even the first term of its expansion is of the fourth order, and

this term is a short period term. The general form of the expansion
of (27) is

(m'_R)_ = m,___, Coeff (e,.y, x_,_, e, _,-d)

X cos(j_l + j21+ J37+ j4w + j_ + jN+jTh + jsh)
(28)

with

m3 _ms - _ .0052.
m0 -_- m2

Terms of first order in eccentricities do now appear as long

period as well as short period terms; there is even one short

period term of zeroth order. If the development is carried out to

second order in short periods and fourth order in long periods,

there are 17 different short period arguments and 10 different

long period arguments.

c. Indirect Effect of the Sun. In the development of the disturbing

function for the main problem the moon's orbital elements were

assumed to be constant. The indirect effect of the sun is taken

care of by considering the elements of the moon's orbit as they

are perturbed by the sun, that is by considering the actual motion
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of the moon. In the disturbing function due to the direct effect

of the sun the moon's orbit is present with a very small coefficient

so that there the elliptic values provide sufficient accuracy.
Whereas here orbital elements are used to describe the motion of

the moon, the best available information about the moon's actual

motion uses coordinates. In E. R. Brown's Theory o[ the motion of

the moon (Mere. Roy. Astronom. Soc. 57 (1906), 130-145), trigo-

nometric sequences are given for sin(I/r2) the sine of the parallax

(i.e., the inverse of the earth-moon distance), v, the longitude

in the fundamental plane and s = tan _, the tangent of the latitude

(see Figure 2). The arguments contain the mean anomaly of the

\

-h v
coordinates of ml coordinates of m2

FIGURE 2. Brown's Lunar Coordinates

moon, the longitudes of the moon's perigee and node and the

mean longitude of the sun. These angles are to be taken as linear

functions of the time, so that

l = lo-k-Kt, "_= 1,

w = Wo-k n_t, n_ = 1/117.3159,
(29)

h = ho + nht, nh = 1/246.5471,

l = l0 -4- _t, _ = 1/13.25575.

Brown's lunar coordinates consist of an elliptic part and a part

due to the perturbations, as follows.

v = v, -k _v, a = ae -k _a

Ion_ l / 1 \ / 1 \

Brown's expressions are for v, tan a and sin l/r2, but because of
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the smallness of a and 1/r2 the errors in putting _fi = _s and _(1/rs)

= 5(sin 1/r2) will not show up in the development of the disturbing

function. All the numerical coefficients of 5fi and $(1/r2) are of the

second order or higher, and only one of the coefficients in 6v is of

first order, the others being of higher order. When the expressions

(30) are substituted in the disturbing function of the main problem

it, too, will consist of an elliptic part and a perturbed part. The

expansion of the elliptic part is identical in form to the development

which was obtained earlier, but for l, _ and h the expressions (29)

have to be used while the other elements, _, _ and _, are constant.

The perturbed part of the disturbing function is best obtained

by computing the additions to 01, 02, 0_ and 04 (which are the

first, second, third and fourth order parts of A2/_ z) and to El, E2

and Es (which are the various parts of (a-/r2) 3) and substituting

these in equation (25). The additions to (a-/r2) 3 offer no difficulty,

since only 5(1/r2) is involved; the addition to E1 is zero, because

the largest term in _(1/r2) is of second order. The additions to

A2/_ z are obtained from equation (4) as follows:

A2 (A2)e (A 2) r_ r2 2rlr2cosS12

= + (_)3 (__$ (_-2)) {3_6 (_-2) - 2}

r,a r=_-Sa (_-s) (cosS,2)e}

to high enough accuracy for the present purpose. The index e

indicates the elliptic parts, the symbol _ indicates the perturbed

parts. The addition to cos S12 is determined from the definition

cosS_2 = r_ • r_/rlr_

in which now the angles i, _ and h are used for r_/r_ and the angles

v and a for r2/r2, as follows:

IIC°shc°su - c°sisinhsinu I c°s(fie + 6fi)c°s(v_ + _v)l'
cosS_ = Isinh cosu + cosicoshsinu • cos(fi e -3 I- _fi)sin(v e -3I- _{'/) I °

[ sin i sin u sin (ae + _a) [
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After some algebra and the use of relationsin sphericaltrigonometry

toreintroduce the angles_, h and _,the addition to cos $12 isfound

to be

cosS12 = _vsin(_b - _) + _-_asin(_ - 2_ + h)

- _asin(_ - h) + 2_asin(_ -h)
(31)

+ _v[- (,2 + V2) sin(¢ _ _) _ .r2sin($ + __ 2h)

l

-4- _2sin(¢ A- _ -- 2h) ] - _ (_v)2cos(_b - _).

The completion of the expansion presents no further difficulties.

The development has been carried out to the third order for long

period terms and to the second order for short period terms. In the

short periods there are ten different arguments; the coefficients con-

tain only one of the numerical coefficients in Brown's expressions

for 5v, besides the eccentricities (e and _) and _r (in two terms

only). There are 15 different arguments in the long period terms;
the coefficients contain two of the numerical coefficients from Brown's

expression for _v and only one coefficient from the expression for

_(1/r2). The angle _ appears in six of the coefficients; the perturba-

tion in latitude does not appear at all.

d. General Appearance of the Development of the Disturbing Func-

tion. The complete development of the disturbing function is the

sum of the three developments which have just been outlined, those

for the main problem, the direct effect of the sun and the indirect
effect of the sun. When carried out to the second order (in eccentri-

cities and inclinations and considering 5T of first order, xl of second

order) there are 79 different arguments, including the argument zero.

The arguments contain the eight quantities l, l, _ w, _, _, h and
in various combinations; four of them, l, l, _, and h are known linear

functions of the time, their initial values being known for any initial

time. The coefficients are functions of the variables e, i (through

= sin ½i) and a (through (a/-a) = (1 + xl) 2) and the corresponding

numerically known quantities of the moon and sun; some of the

coefficients also contain the angle _T( = r - 60°). Some of the co-

efficients are simple functions, involving only a single variable; some

are even purely numerical. A few of the coefficients, in particular

that with zero argument (the "nonperiodic" term), are very compli-

cated, but algebraic, expressions. For the further development
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it is important to recognize three kinds of terms. The classification

of the terms depends on their arguments and is as follows.

Short period terms. Those in which l and l-appear, but not in the

combination (l - 1), so that Jl + j2 _ 0.

Long period terms. Those in which l and l-appear only in the

combination (l- _, so that Jl +J2---0, including the case where

Jl = j2 = 0, but excluding the terms of the third class.

Libration terms. Those in which the argument is T only, or mul-

tiples of T; these include the term with argument zero (the "non-

periodic" term).

Table I gives the number of terms in each classification, ac-

cording to the lowest order of the separate terms in each coeffi-

cient; also indicated is the number of terms in which _T does and

does not appear in the coefficients.

TABLE I. Number of Terms in Each Classification

Short period

5T in coefficient

No _T in coefficient

Long period

_T in coefficient

No _T in coefficient

Libration

5T in coefficient

No ST in coefficient

ORDER

0 1 2 3

1 6

1 3 31

0 7 7

1 11 8

TOTAL

42

34

79

It must be noted that the nomenclature of "short" and "long"

period is somewhat arbitrary. In some of the long period terms

J_- J2- 0, J3 _ 0 and they have therefore a period which is only

I
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about 13.3 times longer than the short periods. Also, the libration

term with argument has a period only 3 times longer than the

short period, corresponding to the "long period" motion which was

discussed in the preliminary work in rectangular coordinates.

VII. Elimination of the short period terms. The problem has been

formulated in the canonical variables Cl, c2, c3, w_, w2 and w3, with
the Hamiltonian

H = -_ + m-dR ,

where the disturbing function has the general form

m-aR = m _ Coeff(e, 7,_r, xl) cos (Jl l + J2 l+ J3F

%- j4w + Js_ + jew + j7h + jh).

The relations between x, e, 7 and Cl, c2, c3 and between l,w, h and

Wl, w2, w3 are according to equations (14) and (24).

The Hamiltonian contains the independent variable time ex-

plicitly because Y, _, h and Tare functions of the time by equations

(29). This inconvenience is taken care of by introducing a fourth

pair of variables

c4 and w_ = _t = 1.

The problem is then

(32)

OF OF
d i -- W i i = 1,2,3,4

OW i _ _C i '

in which now the Hamiltonian does not contain the independent

variable explicitly any more. The general form of the argument is

now, using the variables wi,

jlWl -4- (J2 %- _J3 -4- v, js + vhjs) w4 + (Jr - J_) w2 + j7w3
(33)

-4- J3_ %- js_0 + J_ %- jsh0,

where _ = _/n, v,_= n J-if, _,h= nh/-ff.

The elimination of the short period terms will be accomplished

by a canonical transformation. Let the generating function of this

- c4 + m-SR
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transformation be a power seriesin m,

(34) S -- So -t- $1 + $2 -{- ...

the index indicating the power of m, and let So be the generating

function for the identity transformation

SO = C[Wl "_- C2W2 "-I"- C3W3 "71- C/4W4,

where the new variables are indicated by primes. The relations

between the old and the new variables are then

OS OS

(35) ci=owi, w_=-_i, i=1,2,3,4.

The new Hamiltonian may be written, also in the form of a power

series in m, as

F* = F_ (cb c_) + FI (ci, wi) + F_ (ci, wi ) -t- ....

Because the Hamiltonian does not contain the independent vari-

able explicitly, the old and the new Hamiltonian are equal, so that

Fo(cl, cJ + Fl(Cl, C2,C3, --, Wl, W2, W3, W4)

* ' ' _*_' c' c' - w_,w_,w' w3= F_ (cl,c4) + ,1 _cl, 5, 3, , 3,

or, using equation (35),

as1 os_ os, os,'_fo c; + _w _ + g-_w,' c_+ _w, + Ow,/

( osl osl c, os1 )+ F, cI +-_w _, c_ + _--_2, 3 + Ow----,-,w,,w2, w3,w`

(36) / OS_ 0S1

t t _ C / C t - --= F_ (cl, c4) + F_ c[, 2, 3, Wl + 0_ 1 , w2 Jl" 0c 2

OSl 
w3+_c3, w4+ 0c4/ + F_(---).

Expanding both sides of equation (36) in Taylor series and equating

terms with equal powers of m produces the relations from which

the generating function and the new Hamiltonian are to be deter-

mined. The zero order relation is

(37) F$(c[, c_) = Fo(c_, c_) = 2c[---_ - _c_

I
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and gives immediately the zero order part of the new Hamiltonian.
The first order relation is

OFo 0S1 OFo aS1
(38) --- +--

Oc_ Ow_ Oc_ Ow4
+ F1 = F_ (C_, C2,' C3," -- , Wl, W2, W3, W4)

wln_a ul_ notation _v _., i_w/n_ The se _nnel
u.vO/V_ 1 means xv_ u/_i/Cl=C 1......

order relation is

10'Fo (OFo OFo
20c'_ 2 _ Ow 1 ] + _ Oc_ ] _w 1 Dr. 0c__._4 0w_.___4

OF10S1 OF10S1 OF10Sz
(39) + Oc---_Ow-----_+ 0c---_20w----_2+ 0c---_30w'---3

OF_ OS_ OF_ OS_
-----+ +

Ow_ Oc_ Ow2 0c6

If now F_ is split in two parts

(40) F_ = F_p + F_,,

equation (38) is satisfied by putting

(41) El" = F_,

and

OF_ OS_ OF_ OS_
-}-----+F_.

aw3 0c6 aw4 0c_

(42) OFo OS_ OFo OS_
oc----T,ow----],+ oc_ ow, - F_..

Equation (41) defines the first order part of the Hamiltonian and

equation (42) is a partial differential equation for the generating

function S_. Upon evaluation of OFo/Oc_ and OFo/Oc_ equation (42)
becomes

_OS_(43) n' aS----!+ n--
OWl OW4 = Flp ,

where n' is symbolic for-n/c_ a.

In F_p may be included all the short period terms, including those

that have 5r in the coefficient. The new problem, with the

Hamiltonian F3 = F1, has then only long period and libration

terms; the short period terms have been "eliminated." The rela-

tion between the old and the new variables is completely specified
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of equation (43). In this integration no integration constants need

be specified, since only the derivatives of S_ are of interest.
With

(44) _T = T -- T0---- Wl -- Wl-- TO= Wl-- W4-- W2-- TO

the general form of one term of F_p is

_(w_ - w, - _ - _o)_COS{j_w_ + (J2 + _J3 + _.J_ + _,js)w,

-[- (j4 -- 11) W2 -[- j7W3 -{-J3_ -[- Jswo -'[-j6 _ '[-/sho },

where i may have the values 0 or 1. For such a term the integral

of equation (43) is for i = 0,

n 1sin{ }(45)

for i= 1,

(46) Sl n_T sin{ } + K(n' - K)=7 cos{ },

where, of course, the arguments are unchanged and

(47) p = n'jl -k- -nj2 + n j3 + n,js + nhj8.

Although n' and _ are nearly equal, the denominator p is never

small, because only the short period terms have been included in

F_ so that ja + J2 _ 0.

The second order determining function $2 is computed in similar

manner by dividing equation (39) into two equations, one being

a partial differential equation for $2, the other determining the

second order part, F_, of the new Hamiltonian. The prodigious

amount of labor to be expected by the appearance of equation (39)

can be lessened considerably by the judicious choice of terms to be

included. For instance, since this part of the work is concerned

with contributions to the solution which have m 2 as a factor, it

seems reasonable to include only zero and first order terms. The

elimination of the short period terms is completed by (1) inverting

equation (35) to express the old variables wi in terms of the new

w_ and (2) expressing F_ and F_ as functions of the new variables

w_ (they were computed as functions of wi). Both inversions can

be performed by employing the Lagrange expansion theorem. In

each case the first term of the new expression is obtained by simply
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switching the primes; it will probably be sufficient to compute only

two terms.

It must still be noted that in the discussion of this work the

canonical variables ci, wi are used, whereas the disturbing function

has been expanded in terms of elliptic elements. In the actual execu-

tion of the work the transformation from elliptical elements to

canonical variables does not need to be performed. In the first

place, the arguments of the cosines in the expansion do not change

and only the numerical coefficients of the wi need to be considered

for the computation of the coefficients in $1 and $2. Secondly, the

variables x,, e and _ present a far more efficient notation; it must

only be remembered that they always stand for the following ex-

pressions in ci:

X 1 = C 1 -- 1 = _- -- 1 ,

(48) 13' = sln_ i =

e:_(1-- (Clc_)2),

)2 (cl + c2) "

Using (48) the partial derivatives to ci can be computed in terms

of partials to x, e and 3'.

0 _ (_ 3C__40 + 1 -- e 2 -- _¢/(1 -- e2) 0 3" 0
0Cl Oxl _ ecl Oe 2c1_/(1 -- e2) 03,

o v_(1-e _) o 3" o
(49) 0c 1 - _eel Oe 2c1%//(1 e 2) 03"

0 --I 0

0c3 43"c1_¢/(1 -- e 2) 03"

VIII. Elimination of long period terms. Because the new

Hamiltonian

F* = -- - -_d. + F_(cL ... wL...)
2C_2

contains w_ and w_ only in the combination j,(wl- w4), a new
variable is introduced

(50) Yl = w{ - (w_ A- 7) = 1' - i-A- o_' -- _.

Let further

(51) Y2=W_, y3=w_, y4=w_
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and let xl, x2, x3, x4 be the variables conjugate to yl, Y2, Y3, Y4.

The transformation from c[, w[ to xi, yi is canonical if

(52) c_= 1-4-xl, c_=x2, c_=x3, c_=x4-- (1-4-xl).

In writing a/-_ = (1 + x_) 2, the x_ was of course introduced in antici-

pation of this last change of variables.

The problem is now with the canonical variables xi, Yi, i = 1, 2, 3, 4

and the Hamiltonian

(53) F* - + _(1 + x,) - nx4 + F_" + F_.
2(1 + xl) 2

The general form of the arguments in F_ and F_ is

[jlYl + (J4 - Jl) Y2 -4- j7Y3 -_- {jaP--_- (j_ + Js) ._+ jsvh }Y4

(54) + J3_0 + (J_ -4- js)_0 + J6_ + jsho].

The method which was so successful in eliminating the short

period terms will not quite take care of the long period terms. It

is instructive to see why and how the method fails; this may help

in formulating other approaches to deal with the long period terms

and it will lead into the discussion of the equations of libration

and semi-major axis.

Let the Hamiltonian F_ be divided in two parts F5 and F_v, in

a way still to be determined. Let S_ be the generating function of

a new canonical transformation from xi, Yi to x[, Y'i. Then, in pre-

cisely the same way as this was done in the previous section, a

new Hamiltonian is determined by

(55) F** = F_ + F_:

and the generating function S_ follows from the partial differential

equation

OF_ OS_' OF_ OS_
(56) + ---- - Fb.

Ox_ Oyl Ox'4 0y4

From the general form of the arguments in F_p (see (54)) it can

be seen that the general form of terms in S_ is

nsinl }
(57) s_ =

(n" - -if)J1 + _J3 A- n_(jl + j_) + nhjs'

where n" = (1 + x_)-3_.

|
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The coefficient of j_ is always small since the periods of m_ and

rn2 are quite close. The other terms in the denominator are also

small, with _ = 1/13.4, nw--1/117 and nh = 1/248. The smallness

of the denominator may cancel two orders of magnitude; this is

of course an indication of the difficulty caused by the long period
terms of the _:-*"-_':--u,_u_ul,_ fuliction and it is the reason ibr carrying

out the development of the long period terms to a higher order

than the short period terms.

The canonical transformation under discussion here may still be

successful for the terms in F_ in which J3 _ 0, because _ is not really

very small. It is also conceivable that it may be used (probably

at the expense of developing the disturbing function to higher

order) for the terms in which Jl -k j_ _ 0 or J8 _ 0. This must still

be investigated with great care; it is already clear that the second

order part of the new Hamiltonian, F_*, must be computed and

that the inversions required to express the old angular variables

(as discussed before, relating to the short period terms) will cause

additional difficulties with small denominators, especially in the

case of Yl.

The terms in F_ for which this method is entirely powerless

are those in which J3 = Jl q-/'5--J8 = 0. Those are of course just

the terms which were classified as "libration terms"; their treatment

is the subject of the following section.

IX. The equations of the libration. In the previous section it was

shown that the elimination of the long period terms by the same

method as was used for the short period terms is difficult. It will

not do to neglect this difficulty, which is quite basic to the whole

problem, but in order to discuss the most fundamental aspects of

the problem it will now be assumed that the long period terms

have been eliminated by some canonical transformation. The prob-

lem which is then left consists of canonical equations in the vari-

ables x', y', i = 1, 2, 3, 4, with the Hamiltonian

F** - + n(1 + x_) - nx4
2(1 ÷ x_} 2

(58)
_k _k ! If ft f

-t-F1 (xl,e , _ ,Yl, , , ).

The first order part, F_*, consists of the terms in the disturbing

._.._"_*;_._..which previously nave' been identified as "libration terms,"
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with double primes attached to their variables. As before, the vari-

ables e and _, even though noncanonical, have been kept in favor

of the canonical variables and according to previously introduced
transformations

and

y_ = w_' - (w_' -t-w--).

It turns out that the new Hamiltonian, at least up to its first

order part, is independent of y_, y_ and y_. Three pairs of the

canonical equations can thus be integrated immediately, resulting

in constant eccentricity and inclination and linear function for the

apsidal and nodal angles, as follows.

(59)
OF**

x_ = x2o, Y_ = Y_o- Ox--T t

OF**
x' = X' -- --t

a 30, Y_=Y'so OX_
(6O)

and (trivially)

OF**

x_ = X_o, Y'4- Ox_ t --- -nt --

What is left is a one-dimensional problem in the variables x_ (re-

lated to the semi-major axis) and y_, the libration. With equations

(14) and (52), considering the smallness of the eccentricity and

the inclination and observing that these variables appear in F?*

only squared, it follows that

( (1)(61) e1'2= 1- l+x_+x_ =_-2x_ 1-x_+_x_
l+x_

= 3 ,_ 1 X'(62) _,,,2 - x'
2(l+x_+x_) =-2 _(1-x_-x_)

to sufficient accuracy.

F** can thus be written easily as a function of x_, x_, x_ and

expanded in powers of y[. For convenience in notation the primes
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will now be dropped and in particular x_ and y_ will be written as

x and y. The result is

(63) F**=-_ VoX +-_ mlx 2-2x z + U+ xV ,

where U and V are power series in y,

U= Uo + uly + u2y 2+ uay a + ...

V= vl y + v2y 2 + ray 3+ ...

the coefficients Uo, U_,...,Vo, Vl,... are functions of x2 and x3 only,

and rn_=l-3m+m,.

The equations for x and y are thus

dx OU 0 V
(64) - + -- x

Oy Oy

(65)

Hdt

dy
-_dt

(Vo+ 3mix -- 6X 2 -_- V).

If the first is substituted in the derivative of the second, there follows

d2y
__2dt2 + ( ) y = ( ) xy + terms with x 2, y2, y3,

which is mainly a harmonic equation for y, as expected. The coupling

with x, as presented by the first term of the right-hand side can

be removed by a transformation of the time. Let the transformed
time be

(66) t_ = _t +/_y

let also, for brevity, (Vo+ 3mix - 6x 2+ V) = f(tl).

Equations (64) and (65) then become

oU oV

dx Oy Oy

dtl 1 -- B[

dy - f

dt_ 1 - _["

Substitution of the first equation into the derivative of the second
results in
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(67) _ (1 /,)3 (m,-4x) OU l(vo+V+6 xs) OV- 0y 3 -_-

the right-hand side of which can be worked out in terms of Uo,

ul, us, • • •, Oo,Ol, us, • • • • If now

4

= 9m2

the variable x disappears from the coefficientof y. The libration

equation becomes then

dSy 27
(68) dt_ 4- --_ rnm,y = Uo + U_y + Usy 2 4- U3y 3 -}- ....

The most important parts of the coefficients are

3 V/3 ramsUo=_

27 13

U, = --_ m s + --_ mm,

81X/3 297V/3 rn 2 4- 81V/3
Us = 1--6- m 16 _ rnm,

297 213 rn2 297
/-73- 32 m-q---if- --_ rnrns.

The appearance of the square of the small parameter is due to the

time transformation which required the multiplication with the

factor (1- _/,)-3 (see equation (67)). The variable x appears in

the coefficients Ui only with the square of the mass ratio as co-

efficient. The other variables of the problem are more prominent,

but at this stage of the work they are all constants.

The solution of (68) begins with the first approximation, ob-

tained by putting the right-hand side equal to zero,

(69) Y0 = b cos(_t, + So)

with v2 = (27/4) ram,. The integration constants are b and So. For

the second approximation the terms with coefficients Uo and Us
are introduced. The result is

Uo b s 1 Us1 Us _ b2cos 2 (vt, 4- _bo)(70) Y'=_- +2 6 us
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When this is substituted in the terms with coefficients U1 and /-3"3,

there will be a term with cos(rtl + 4'0) in the right-hand side of

the equation for the third approximation. This term is taken care

of by introducing it in the left-hand side of the equation for the

first approximation. The libration frequency is thus changed, and

such a change must be made with every odd numbered approxi-

mation. The third approximation produces

E ]v_=_ 2- Ul+ 2--7- + g-- +_U3b 2(71)

and

1F b 1
(72) Y2= 6 L 9r1_2+ _ -9--_-vls/ cos3(rlti + _o).

The magnitude of the coefficients U0, U_,... appears to be such

that this process may be continued to obtain any desired degree

of accuracy. The appearance of the libration amplitude b in the

expression for v_ shows how the libration frequency depends on the

amplitude. When a solution for y is obtained, x can he computed

relatively easily; the differential equations for x and y are coupled,

but because of the time transformation this coupling is at low enough

order to expect that it introduces no great difficulties.

X. Summary of major results. The major results follow from the

work on the libration equations which was outlined in the previous

section. The variables x_ and x'3, related to the eccentricity and

inclination respectively, are constant. The actual eccentricity and

inclination will show long period and short period variations. The

short period variations have been found as a result of the elimina-

tion of the short period terms. The long period variations have not

yet been determined. Short period and long period variations must

also be added to linear functions y_ and y_ in order to find the

actual motion of apse and node. It was found that

OF**

Y_ = Y_o - Ox-_2 t

and

OF**

Y_ = Y_o Ox_ t,
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where Y_0 and Y_0 are integration constants.
The rate of the apsidal advance is, in first instance,

[( +(1 1Ox_ -- -_rn 8 4 m 64 -- 4

The effect of the sun, and the effect of the moon's orbital eccentricity

are evident; they are of about the same magnitude and together de-

crease the time required for one revolution of the apse line from about

24 ( = 8/27m anomalistic months to about 23.5 months. Also, there

is an important effect from the satellite's eccentricity; the coefficient

of x_ (= - (1/2)_ 2) is about 173, as compared to 1419/64, the co-

efficient of _.

The rate of regression of the nodal line is

OF** [_ m, 3m, x_ 1Ox_ - -_m m 4 m

and is thus, at least to this order of approximation, due to the

sun's effect. The time required for one revolution is about 256

anomalistic months. The libration y_ and the variation of the

semi-major axis x_ have been expressed as functions of a time-

related variable t_ which includes the libration itself as follows:

4
tl = t -k _-:-_2Y_, ml = 1 - 3m -km,.

9m_

The real time can be reintroduced later by inversion, using the

Lagrange expansion theorem.

It was found that the libration is given by

y_ bcos¢_,t,+,0) + u0 1_ b2 1 u2b_cos2¢_,t,+= - +_-u_ 6 ,,1

[ 11 U_2 ba _ U3b a']
+ 6 v_ 9r_-k4 9v_ jc°s3(v't_-k¢°)'

where b and ¢0 are integration constants. The coefficients U depend

especially on the mass ratios m and m, (see the previous section)

and contain also the other constants of the problem. The frequency

v_ is given by

_=v 2 [U1--k 2U°U2 5_b2 k_U3b21 v2 =27- v2 + -6 -- , --_ rnlrn

I
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and decreases with increasing libration amplitude. The variation

of the semi-major axis is, in first approximation,

by1

x_ = _-1 sin(rltl + _b0).

The coefficient rl/3ml is about 1/10; it was thus indeed reasonable

to assume that xl is of the order of .01 if the libration amplitude

is of the order 1/10.
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The Dominant Features

of the Long-Period Librations

of the Trojan Minor Planets

P. J. Message

I. The Trojan minor planets. The problem of three bodies possesses a

class of solutions in which the bodies move so that the triangle they de-

fine is always equilateral, as was shown by Lagrange. This type of solu-

tion found application in the study of the solar system with the

discovery of minor planets moving so as to approximate such a con-

figuration with the Sun and Jupiter. These planets are known as the

"Trojan planets," and are names after heroes of the Trojan War.

The present treatment seeks to present the long period features of

motion in the vicinity of the equiangular triangle configurations,

making use of the elements of an osculating orbit, and methods

taken from the work on the motion of these planets by W. M o Smart

{Mem. Roy. Astronom. Soc. 62 {1918); part 3), and I-I. G. Hertz

(Astronom. J. 50 (1943), 121), taking into account only the gravita-

tional attractions of the Sun and Jupiter, which of course dominate

the motion.

II. The equations of motion. Consider the system comprising the

bodies S and J, of masses ms and mE, and position vectors ps and

pj in an inertial frame, and a third body P with position vector

pp, which has no attraction on the other two. The equations of

motion are

70



(PJ- PS)

]Ss = Gma (r,) z ,

(1) i_# = Grns (P(S--r_PJ) ,

_p = Gins (ps - pP) (pa - pP)
-_ + Gmj A3

where r' -_- ]pJ -- psl,r = IPs -- PPI, A = IPJ -- PPI"

lative position vectors

(2) r = pp -- ps, and r" = p# - ps,

and the first two of (1) give

(3) _" = - --

where

_r t

(r') 3,

71

m

We use the re-

(4) V = G(ms + mj).

This is the equation of the Keplerian two body problem, and we

suppose that its solution is an ellipse of major semi-axis a', and

eccentricity e', which is the orbit of J relative to S. The first and

third equations give the equation for the relative motion of P
and S as

Gmsr Gmj(r' - r) Gmjr'
(5) _ = 4-

rz _3 (r,)3 •

Now in the equiangular triangle configuration, the orbit of P

relative to S is identical in size, shape and period to that of J re-

lative to S, and therefore is a solution of the equation

#r

(6) t' = - -_-.

-+ grad R,

1 r.r' 1 _.
A (r') _ r )

So we rewrite (5) in the form

(7) _ = - -

where

t_ R = am"
,v/ [

with
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{%) m' -- my
m S _- rnj

The solution of (6) will be regarded as the osculating orbit of P,

and R is therefore the disturbing function for the action of J on P.

Now if a is the angle subtended by P and J at S, we have r. r'

= rr'cosa, and 4 2 = r2 + (r') 2 -- 2rr'cosa. From these we find

that

OR { l (r_ r, cosa) + l cos_}Or - _tm' - 4a r2 (r,) 2 ,

and

OR { rr' r}0(cosa) - urn' _a (r,)2 •

Both of these vanish if S, J and P form an equiangular triangle

since then r = r'= 4, and a = r/3. Therefore, since R only de-

pends on the position of P through its dependence on r and cosa,

grad R vanishes while such a configuration holds, and the motion

of P is governed by equation (6). But one solution of this is the

elliptical orbit identical with that of J, but oriented at 7r/3 to it in

such a way that the equilateral configuration of SJP is always

preserved, and this is therefore a solution of the original equations,

confirming Lagrange's result for the case of the three body problem

here considered.

We suppose the motion of P to take place entirely in the plane of

the orbit of J, in which the true longitudes of P and J are ¢ and ¢%

respectively, and their mean longitudes are X and X', respectively.

If the elements of the osculating orbit of P are a, e, w, e, then X

= nt+ _, where tt = n_/_a -3/2, and we use variables

5a = a -- a',

(10) _ = X - x',

and

which satisfy the equations,

equations for the elements,

k = e cosw

h = e sinw,

derived easily from the Lagrange
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(ii)

d (iia) 2 ORna Or_ '

dcp n' 2 OR B (k OR h OR_
dt - n - + +na O(Sa) _ \ Ok Oh/

_11 _ n

u_ A OR B k °n
dt na z Oh 2na z O_

and

dh _ A OR B h dR
d--t - na_ O--k-- 2na_ 0¢_'

where

(12)
1

A = 7/(1 - e _) = 1 - _ (k _-b h_) q- O(k4,h4,k_hZ),

and

,) 1

B=_-_x/(le.,__ -eZ)- l+eZ}=l-_ (kZ-}-h _) +O(k4, ha, k_hZ).(13)

III. The disturbing function. The disturbing function takes the

form

{1 r cos(,-,',(14) R = urn' (r,)_

We expand it, making use of the following expressions, in which

M=_,-w is the mean anomaly,

(15)

lez_ecosM_ 1 }r=a 1-b_ _eZcos 2M+O(e_) ,

(  e ic°s"rcos(¢--w)=a -_e+ 1--_ -k_ecos2M

+ _ e'_c°s3M + O(e _) ,

{ 5e_) sinM q- 1 esin2Mrsin(¢-w) =a _1--_

3 e_si n 3M 4- O(e J)
+_ . . .),
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and their counterparts for J. Making use of these expansions, we

find for the secular and long-period part of R, that is, the part

which does not involve X or X', and the part which involves them

only in the slowly varying combination ¢ = k- _,', respectively,

= _.m' 1[ 1 }(16)
a' (x/(2(1 - cos_)) - cos_-k X ,

where

X= (5_,){i--cos_-

(17)

1

2V'(2(1- cos¢))}

-t- \a'] - 1-1- 8V'(2(1 - cos_b)) - 4V'2(1 -cos_) _'z

-k g,(¢_)(kZ + h _) + g2(¢)(kk' -k hh') + g_(C_)(hk' - kh'),

where

7 5 1

gl(_) = 8V_2(1 _ cos¢)_,z - 16%/2x/(1 - cos_b) -k _ cos¢,

7 11

g'_(_) = -4%/2(1 - cos_) _''_ + 8X/2%/(1 - cos_)

V'(1 - cos_)
(18) - - cos 2_,

8x/2

5 1g3(_b) = -- 4V_2(1 -- cos¢) _'z + 8X/2(1 -- cos_) _'_

-- 2 cos _ } sin _.

Terms of the third and higher degrees in 5a/a', k, h, k' and h' have

been neglected.

IV. The relative equilibrium solutions. We suppose that the long

period part of the problem has been separated from the short period

part by Von Zeipel's transformation or an equivalent procedure,

and proceed to solve the equations for the mean and long period

parts of the elements. The transibrmation will add to the dis-

turbing function terms proportional to (m') z and higher powers

of rn', but we will work now only to the first order in m'. The

equations then take the form

J
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_(5a) -- _7 X/2(1 -- cos¢) _z_ } q- a_ J

[(19) = m'na'sinO 2 --X/2(1 - cos¢) _/'_

, }]_-3 aa 2 _ 2X/2(1 _ cos_b)3/2 + O((m')Z);

d_ n' 2m'na _ OX m'na ( OX h OX_d-t = n - a' Oaa _- _ k-_-_÷ Oh ]

1= n - n' + m'n x/(2(1 cos_)) 2 q- 2cos¢

1 ,q- _T - 1 -+- 2X/(2(1 - cos¢)) q- { 2(1 -- cos¢) iJ'z

(20)

dk

dt

(21)

q- 2 cos¢/] q- O((m')Z);

m'na aX m'nak[ sin#_{ 2_ 1 I a_]a' Oh 2a' x/2(1 - cos¢) _/_ -b

- - m'n 12hg,(_b) -k h'g2(¢) q- k'g3(o)

1 , ( 1

_m nk sin_ _ 2 - x/2(1 - cos_) _p_ + 0((m'#);

and

dh

dt m'na OX m'na h[ sin¢ { 2 - 1 } 0_¢ ]a' Ok 2a' x/2(1 - cos_) 3j' +

-- m'n 12kg1(¢) q- k'g2(_) - h'g3(_) 1
(22)

lm,nhsin¢ { 2 - 1 1- 2 X/2(1 - cos¢) _/" 4- O((m')'_)"

The equation (19) shows that 5a is constant only if _ = 7r, (which

is the collinear relative equilibrium configuration with P and J on

the opposite side of S), or if 5a -- 0 and 2 - l/x/2(1 - cos¢)_J'_ = 0.

The latter requires cos¢ -- 1/2, that is, 0 = ± r/3. This is the equi-

angular triangle configuration. Substituting in (20) shows that ¢

is constant, since n = n', and, putting ¢ = ± _r/3 in (18), (21) and

(22) give

dt m'n h - 27 h' _ 27 v/3k ,
16 16 '
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and

(24) dt - m'n k - _ + -_ _/3h' .

We can have k and h constant provided

(25)

and

h=_ ± = e'sin w' rr

p. J. MESSAGE

1 _3h, =(26) k=-_k'::t= e'cos @' ± 3)

Thus e = e', and w =w'± r/3, confirming that the orbit of P is

congruent, to that of' J, but inclined to it at an angle r/3.

V. Librations about the relative equilibrium positions. Put 4_= 7r/3

+ de. Then, to first order in m', 5¢, and 5a, equations (19) and

(20) lead to

(27)

and

d(sa) = 3_ z Im'na' {_5_± (_-_) } +O{(m')

from which

d _

(28) d_Z-(5¢)

d 3n

d_-(5_) - 2a' 5a + O(m'n),

_- m'n"%¢) = O(m'ng.
d 27

3 m'n _-{ (5¢) + _-

A trial solution with de proportional to exp(at) leads to

.,q= 3x/3 27 m,nZ
2-- m'n_+--_ O,

so that

(29) o_= ±3V/(3m')ni + O(m'n).
2

Thus the second term in (28) is of order (m')_'Zn _, and so is of an

order to which this equation has not been completely derived. Thus
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the expression (29) cannot be extended to higher powers in m'

without computing some of the nvglected powers of m' in (27),

which would require knowledge of terms of order (m') z in R.

To our accuracy, then, the solution fbr a and ¢ is

6¢ = A sin(,t + ¢/),
(30)

5a = - X/(3m') Aa'cos@t + _),

where A and t_ are disposable constants, and u = (3V/(3m')/2n. Now

for Jupiter, m' = 1/1047, and hence v = 0.08028n. The orbital period

of Jupiter is 11.862 years, and so the period of the libration in a

and ¢ is 11.862/0.08028 = 147.8 years. The amplitudes of the os-

cillations in a'6o and 6a are in the ratio 1 :x/(3m'), that is 18.6:1,

and these correspond approximately to oscillations in the transverse

and radial directions, so that this libration, when its amplitude A

is small, is approximately an ellipse, with its centre at the equi-

angular triangle point, whose axes are in the ratio of 18.6: 1, the

minor axis being in the direction towards S.

For the eccentricity and apse, put

k=e'cos '+g +_k,
(31)

h=e'sin '+g +_h.

The equations (23) and (24) now give

d 27

d---[(_k) - 8 m'n _h,
(32)

d
(6h) 8 m'n 5k.

dt

The solution of these is

5k = Ceos(vt + _),
(33)

6h = Csin(_t + 5),

where C and 5 are disposable constants, and

27

(34) v = _- m'n = 0.003222 n,

substituting the value t'nr Jupiter. The period of this motion is
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2,r/_ = 3682 years. Thus the eccentricity and apse longitude are

given by

ecosw = e'cos (w' + 3) + Ccos(_,t + 5)

(35)

e sinw = e'sin w4-g + Csin(_t + D.

If C < e', w librates about w' ± 7r/3, if C > e', w increases mono-

tonically through all values.

The treatment of these librations in rotating rectangular co-

ordinates in the restricted problem does not exhibit this very long

period oscillation directly, but shows a short period oscillation cor-

responding to a small eccentricity, but with period differing from

that of Jupiter by an amount corresponding to the motion of the

apse given by (35) when e' = O.

The relative equilibrium positions may be considered as a special

case of periodic solutions associated with a commensurability of

period, but differ from other such cases in that there are here two

independent free librations about the solution, in place of only one,

as in the other cases, and also in that the mean orbital period in

librating solutions in the present case is always exactly equal to

that of Jupiter, while the librating and periodic solutions associated

with other commensurabilities in general have periods not exactly

commensurable with that of Jupiter, since the exact linear relation

that exists involves the apse motion as well as the mean motions

in longitude.

UNIVERSITY OF LIVERPOOL

LIVERPOOL, ENGLAND



Eugene Rabe

Outline of a Theory of Nonperiodic Motions

in the Neighborhood of the Long-Period

Librations about the Equilateral Points

of the Restricted Problem of Three Bodies

N67-17325

I. Summary. In the rotating coordinate frame of the restricted

problem of three bodies, all motions which are nonperiodic, but

of a librational nature relative to one of the equilateral points,

are treated as oscillations about given periodic solutions of long

period.* On the basis of the Fourier series representation of the

periodic reference orbit, the displacements from this intermediate

orbit take the form of infinite series of periodic terms, with co-

efficients proceeding essentially in powers of those of the principal

terms of short period established in the first, linear approximation.

It appears that the stability of such nonperiodic librations will

be endangered only when the predominant oscillations are so

large as to prevent the convergence of the series proceeding in

powers of their amplitudes. The results also prove the "higher

order stability" of the periodic orbits themselves, beyond the

first-order stability previously proved on the basis of Hill's

(linearized) equation. _ t)_ nff'_

II. Introduction. It has been known for a long time, from the

integrals of the linearized, approximating differential equations,

*This work was supported by a grant from the National Aeronautics and

Space Administration.
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that for a sufficiently small ratio _ of the two finite masses of the

plane restricted three body problem the librational motion of any

particle in the immediate vicinity of either one of the two equi-

lateral Lagrangian points is characterized by the superposition of

two independent periodic oscillations. The smaller one of the two

periods is of the order of the period of the relative orbital motion

of the two finite masses, while the larger one amounts to about

150 years in the case of the typical sun-Jupiter system, and goes

to infinity with u-_ 0. Either one of the two oscillations can be

reduced to zero by an appropriate choice of the starting conditions

or constants of integration, so that the remaining motion is periodic

in the rotating frame of reference. For particles permitted to depart

to noninfinitesimal distances from the equilateral center of libration,

the two superposed elliptic solutions of the simplified equations

cannot be expected to represent their more complicated motions.

Even the existence of rigorously valid periodic solutions of large

amplitude and long period has been doubted (see [5] and [6]),

but with the aid of electronic computers such rather asymmetrical

periodic librations have recently been established for the astro-

nomically interesting sun-Jupiter case (see [1] and [2]) and earth-

moon case (see [3]) of the restricted problem.

Subsequent to the numerical determination in [2] of a whole

series of conveniently selected long-periodic libration orbits of

hypothetical "Trojan"-planets in the restricted sun-Jupiter prob-

lem, additional numerical work has been devoted to the study of

motions deviating from a given periodic Trojan orbit by specified

initial displacements or velocity differences. The resulting non-

periodic trajectories have the general appearance of a series of

short-period fluctuations superposed on a predominant libration

of long period, but the Jacobi or energy constant C of the non-

periodic orbit differs from that of the most "similar" periodic

reference orbit, and increasingly so with an increasing amplitude

of the principal short-period oscillations. Various such trajectories

have been computed over one or several librations on the SIEMENS

2002 electronic computer of the Astronomisches Rechen-Institut at

Heidelberg, Germany, in cooperation with J. Schubart, during the

summer of 1962. From the results then obtained, but especially

from those of a more systematic and extensive survey undertaken
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by A. Schanzle on the IBM 1620 computer of the University of

Cincinnati (see [4]), the following principal findings emerged rather
clearly.

As long as a nonperiodic trajectory has a very small initial de-

viation from the periodic orbit (of long period and small, moderate

or large amplitude) with an identical value of the Jacobi constant

C, the nonperiodic Trojan continues to oscillate in a vine-like

fashion about this reference orbit, with principal fluctuation

periods of the general order of Jupiter's orbital period. With

starting conditions producing more substantial fluctuations, how-

ever, the displacements towards the outside of tl_e periodic orbit

increase more rapidly (with increasing initial deviations} than those

towards the inside, and already for rather moderate initial dis-

placements the "vine" detaches itself from the periodic orbit. This

detachment from the periodic solution with the same value of C

occurs first in the vicinity of the "turning points" of these rather

elongated libration orbits. For even larger initial displacements from

the isoenergetic periodic libration, the nonperiodic orbits exhibit

libration amplitudes which may be several times larger than those

of the reference orbit. Obviously, then, any theory of such fluctua-

tions about the periodic librations should not be based on the as-

sumption that the Jacobi constant of the nonperiodic trajectory is

identical with that of the reference orbit. This assumption is some-

times made when the ordinary stability of a periodic orbit is studied

by means of Hill's equation, but no harm will normally be done

then because only infinitesimally small displacements are envisioned

in such first-order proofs of orbital stability. Any theory considering

more substantial deviations and a more rigorous proof of stability,

however, has to discard this restrictive assumption with regard to
the values of C.

All the nonperiodic orbits, computed over extended periods of

time, suggest that "librational stability" exists for relatively large

superposed short-period fluctuations. Furthermore it became evident

that the geometrical picture of vine-like fluctuations about some

suitable periodic reference orbit can always be restored by associa-

tion of the nonperiodic Trojan under consideration with such a

periodic Trojan orbit which, in the nonrotating heliocentric co-

ordinate system, varies its osculating semimajor axis a, as a long-
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period function of time, in close synchronization with that of the

nonperiodic planet. The fluctuations of the nonperiodic Trojan about

such a periodic orbit, in the rotating frame of reference, are then

closely related to, and in their total amplitude roughly proportional

to, the nearly constant eccentricity e of the osculating heliocentric

orbit of the nonperiodic planet. Since the heliocentric eccentricity

of any periodic Trojan is rather close to zero at all times (see [1]),

the close association of the nonperiodic Trojan's principal short-

periodic fluctuations with its eccentricity e is not surprising. How-

ever, the very pronounced noninterference of the more or less con-

stant total fluctuation amplitude and eccentricity with the libration

of long period, even in the cases of very large libration and fluctua-

tion amplitudes, is a phenomenon which could hardly be anticipated

with certainty. This common feature of all the computed trajec-

tories indicates that, in spite of the more complicated shape of the

periodic librations of large amplitude, and in spite of the varying

orientation of the superposed "epicycles" as they move around on

the reference orbit, the combined nonperiodic motion can still be

conveniently described in terms of two such basic periods. All these

orbital characteristics, as revealed or confirmed by the numerical

survey, can be utilized now in devising the most convenient and

suitable analytical approach, in order to deepen our insight into

the nature and stability of such nonperiodic librations and to

develop a theory which may eventually be extended to deal with

the still more involved motions of the actual Trojan planets.

III. The periodic reference orbits. The theory to be presented

is applicable not only to the sun-Jupiter or Trojan case, but to

nonperiodic librations for all mass ratios permitting stable periodic

orbits about the equilateral points. For the Trojan case, however,

the application is greatly facilitated by the availability of a suf-

ficiently dense net of periodic solutions, given in [2]. The Fourier

expansions representing these periodic librations converge very

satisfactorily for those amplitudes which are of main interest for

the real Trojan planets. Any desired periodic orbit can readily be

obtained by interpolation between the tabulated data. With the

immediate application to the Trojan case in mind, as well as for

the sake of a simplified terminology, all the subsequent considera-

tions and derivations will be expressed in terms of a theory of
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nonperiodic Trojans, even though the analysis will be valid, except

for the particular numerical data, also for other mass ratios # < 0.04.

The convergence of the series expansions involved must be expected

to deteriorate, however, for g-values approaching the critical one

of 0.0401.

The numerical results........uescrmuu_ in _lI_Tsuggest *_1,_.........._v._o_.._.._.v.._*;'"

of any nonperiodic librational motion by a series of Fourier terms

of short periods, superposed on that periodic solution which is most

closely approximated with regard to amplitude and period of the

librational behavior. Therefore, if

(i)

with

x = X_,o + _ xczcos(ja) + _ x,jsin(ja),
i=1 i=1

Y = Y_,o -4- _--_y_j cos(ja) + _y,jsin(ja),
j=l i=1

271-

(2) a = -_ (t - to) = n(t - to),

represents a given periodic libration of period T, all the nonperiodic

trajectories with this librational component or basis should be

representable in the form

(3) x* = x + u, y* = y+ v,

where u, v consists of periodic and constant terms only. If solutions

u, v of this nature can be found to satisfy rigorously the complete

differential equations of motion, then such results would indeed con-

stitute the desired theory of all those motions which have a stable,

permanent association with one or both equilateral libration centers.

In this theory, the role played by the periodic reference orbit will be

similar to that of Hill's variation orbit in the lunar theory.

To facilitate a later extension of the theory to the case of an

elliptic orbit of Jupiter, the origin of the rotating x, y coordinate

system will be identified with the center of mass of sun and Jupiter.

The orientation of the axes and the choice of the units of mass,

distance and time, however, will be the same as in the earlier in-

vestigations dealing with the periodic orbits, specifically in [1] and
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[2]. Consequently, the x, y coordinates used here differ from the

earlier p, q only by the constant x-p = -1/(1-k_). As an il-

lustration of the convergence of the series representing the periodic

librations according to Equations (1), Table I lists the Fourier

coefficients of the particular orbit which intersects the straight

line connecting the sun with the libration center Ls at a solar

distance do = 1.02. This periodic solution has a total amplitude of

about 43 ° in longitude, larger than those of almost all the real

Trojan planets, so that it may serve also to test the convergence

and usefulness of the subsequent analysis of nonperiodic motions

for a rather extreme case. The coefficients given in Table I are

TABLE I. Fourier Coefficients of Selected Periodic Orbit

j xc.i x,j Ye.j Y,.J

0

1

2

3

4

5

6

7

8

9

10

11

12

13

- .403 1971

- 114 1352

_- 8 2615

- 2049

2146

-t- 282

- 119

- 24

+ 10

+ 4

- 1

- 1

0

- 2

.308 9355

-k .877 1222

- 34 3026 -k .155 1070

+ 25 0714

- 3 7777

- 8710

+ 191

+ 434

+ 56

- 23

- 9

0

-t- 1

0

+ 1

-t- 9 5859

-k 8844

-t- 1308

- 466

- 72

+ 33

+ 9

- 3

- 2

0

0

0

-k 36 3535

-t- 4 7200

- 3633

- 1869

- 88

+ 102

+ 24

- 4

- 4

0

0

0

based on an epoch to coinciding with the periodic Trojan's inter-

section of the sun, L5 line at the solar distance do = 1.02, and on

= 1/1047.355 for the mass of Jupiter in terms of the solar unit

mass. The period of this selected libration is T = 80.26303, as

compared to Jupiter's orbital period P= 2T/(1 __u)l/_ = 6.28019.
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The related frequency or mean motion n of a, as defined in Equa-

tion (2), amounts to

(4) n = 0.0782 8243.

Any expansions proceeding in powers of n should benefit, as far

as convergence is concerned, from the first-order smallne_s of this

quantity as illustrated by (4).

The periodic solution (1) satisfies the differential equations

_- 2Ny-- _x,
(5)

2 + 2Nx = f_y,

where

(6) N = (1 q- _)1/2 = 1.0004 7728

denotes the angular rate of Jupiter's circular motion around the

sun, and fix and fly are the partial derivatives with respect to x

and y of the function

1 _ 1

(7) fl = 4--_+ _22 + 2 (412+ #422)"

fl is a function of the Trojan's distances _x and 42 from the sun

and Jupiter, respectively, which depend on x and y through the
relations

4_ = (x - m_) 2 + y2,
(8)

A_ = (x + m) 2 A- y2.

The auxiliary quantity

(9) rn = 1/(1 + _)

simplifies the Equations (8) and some subsequent relations.

IV. The differential equations for the variations u, v. The differential

equations (5) have to be satisfied not only by any periodic solution

x, y as given by Equations (1), but also by the nonperiodic solutions

x*, y* according to Equations (3). If the latter expressions for x*,

y* are substituted into Equations (5), the partials flz(x*,y*),

fly(X*,y*) may be expanded as Taylor series in u, v, provided that

these variations or displacements from the periodic reference orbit

will remain small enough to permit convergence. After ft_(x_,y _)
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and _y(x*, y*) have been expanded about ft_ and _, the differential

equations satisfied by x, y may be subtracted from the complete

equations satisfied by x*, y*, leading to the following equations
for u and v:

_t - 2 NO = _,= u -4- fl_yv

1 u2 1
+ _ _ + _ _yV _ + _uv + ...,

(10)
_ + 2Na = _u + _yyv

1 uS 1
+ -2 _=.y + -2 fZyyyv2 + _ uv + ....

In these differential equations, all the higher-order partials _=,

f_y, etc., are functions of the periodic Trojan's coordinates x, y,

and thus periodic functions of a and of the time t. Assuming there-

fore the second-order derivatives of _ to be given by

_= = Ac,o :+ 2 _ [Ac,rCOS(ra) A- A,,rsin(ra) ],
r=l

(11) _yy = B_,o "k 2 Z [B_,reos(ra) -'k B.,rsin(ra) ],

fl_y = Cc,o q-2_-_. [Cc,rcos(ra) A- Cs,rsin(ra)],
r=l

and the third-order partials by similar Fourier series, the co-

efficients of these expansions have to be determined on the basis

of the particular periodic solution (1). Two entirely different pro-
cedures are available to find the numerical values of the coefficients

At,r, As,r, etc.

First, the equations resulting from the repeated differentiation

of Equations (5) with respect to the time t constitute a number

of relations connecting the _=, _, etc., with the x, y, 2, y, etc.,

where the latter group of functions is easily obtained from the

corresponding differentiations of the solution (1) with respect to

time. It will be found, however, that the number of equations

established in this manner is not yet sufficient to permit their

solution for _=, t_, etc. The additional relations required are

those represented by the equation
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(12) y [_2,.,-I- _2_,] -_ 3N2y - 2N2: - _,

and its first and higher derivatives with respect to t and y. Equa-

tion (12) follows from the differential equations valid for three

coordinates x, y, z when the specification z -= 0, as adopted in this

study, is introduced. The three second-order partials of l] can be

obtained now, in principle, from Equation (12) and the two equa-

tions based on Equations (5):

_,_,_c + U_y = • -- 2N2,
(13)

_yx + _y = y+ 2N_.

The four third-order partials _, _=y, _, _yyy are determinable

from the three equations obtained by differentiation of Equations

(12) and (13) with respect to t, and from the differentiation of

(12) with respect to y. The procedure for finding yet higher deriva-

tives of _ is clear from this. The main disadvantage of the method

thus outlined probably lies in the many multiplications and divisions

by Fourier series containing cosine- and sine-terms, so that an

alternative method, disregarding the availability of the Fourier

expansions for x and y, may actually be preferable.

This second method takes advantage of the availability of the

special values of x and y, for a set of equidistant values of a, the

harmonic analysis of which had produced the Fourier coefficients

of x and y in the first place. All the partial derivatives of _ are

of course expressible as explicit functions of x and y, obtainable

by the necessary differentiations of Equation (7) with respect to

x and y. In this fashion one finds

_ = (1 -- A? 3) -{- 3Ai-S(X -- m_) 2 -}- _ [(1 -- A_ 3) -{- 3A_S(X + m)2],

(14)_ = (1 - A_-3) -_- 3A;-Sy2 + _ [(1 -- A_-3) -}- 3A_Sy2],

_ ----3A{-S(X -- mt_) y + tL3A_-S(X + m) y,

_ = 9als(X -- mu) - 15A17(x - m#) 3

+ _ [9A_S(x + m) - 15A_7(x + rn)3],

u._ = 9av_y - 15_1_y_+ _ [9a;_y - 15_y_],
(15)

a_y = 3A{-Sy -- 15A17(X -- m.)2y -}-. [3A_Sy -- 155_7(X -t- m)2y],

_ = 3Ai-5(X -- m_) -- 15AfT(X -- m_)y_

+ U [3A_S(X + m) -- 15A_(x -}- m) y_'], etc.
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From the harmonic analysis of the special values of the three second-

order partials of _, as computed with the corresponding values of

x and y by means of Equations (14), the coefficients A .... A .... etc.,

of Equations (11) can be determined on an electronic computer

with a routine program. Similarly the Fourier coefficients of _=_

etc., will be obtained from their special values computed according

to Equations (15), and those of any higher-order partials of t_ on

the basis of additional equations resulting from the continued

differentiation of Equations (15).
Rather well known are those constant values of the lower-order

partials of _ which are valid for a particle resting in one of the

triangular points, say Ls. For this case, with x _-- m + 0.5,

y -= 31/2/2, the Equations (5), (14), and (15) yield the results

(16) _x = 0, _y = 0,

3 9 3 31/2(1 _ #)
(17) fl_=+_(l+u), flyy=+_(l+u), fl_=-_

21 9 31/_(1
{_= -- 8 (1 - u), nyyy = - _ + u),

(18)
3 33

= - - 31/"(1 + _), _y = + _- (1 - tt)._ 8

For periodic solutions with small libration amplitudes, the constant

terms At,0, Be,0, C¢.0 of Equations (11) should approximate the values

listed on the right sides in (17). For large amplitudes, however,

as in the case of the periodic orbit represented in Table I, the con-

stant terms may differ substantially from the values at Ls.

It will be convenient to assume the solution of the differential

equations (10) in the form of an exponential series. To this end,

let the various partials of _ be expressed in the same form,

(19) _ = _arexp(ira), flyy= Z _rexp(ir_), _= _ 3,rexp(iro),

etc., where i = (- 1) 1/2, by putting for r < 0:

(20) ar = A_.r + iA .... /3r = B_.r + iB .... "r_ = C_.r + iC,.r,

and for r>0:

a_ = Ac.r- iA .... 5r = Bc.r- iB .... _ = C_.r- iC ....
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etc. As far as the constant terms of the Equations (19) are con-

cerned, one has so = At,0, _0 = Be,o, _0 = C_,o.

As long as approaches to the sun and close approaches to Jupiter

are excluded, as in all the periodic reference orbits considered here,

all the partials of _ involved in the right-hand sides of Equations

(10) are periodic functions of the general order of unity. Conse-

quently, the expansions in powers of u and v may be expected to

converge as long as Ju I < 1, IvJ < 1. For luJ <<1, Jv I <<1, the con-

vergence should be rapid, and a good approximation to the complete

solution should be obtainable from the consideration of only the

linear terms in u and v. In this case, the problem is still distinctly

different from that of the infinitesimally small oscillations about

Ls, in so far as the coefficients _,_ etc., are not constants, but

periodic functions of perhaps considerable amplitudes. Thus even

the reduced differential equations

t_ - 2Nv = _t=u + _v,
(21)

i) + 2Nu = _t_u -4- _t_v,

encompass, at least for very small variations u, v, all. the essential

aspects of the dynamical problem at hand.

For the integration of the reduced Equations (21), the conver-

gence of the series for _=, _t_, and _ will be of primary significance.

To investigate this convergence, the Fourier coefficients of the

relevant Equations (11) have been determined for the selected

large reference orbit of §III. For this purpose, the harmonic analysis

has been based on only 12 special values of a, and the results,

rounded to five decimals, are listed in Table II. Since all the co-

efficients are multiplied by the small displacements u, v on the right-

hand sides of Equations (21), a considerably reduced numerical

accuracy is justified anyway, compared to the seven-decimal pre-
cision for the reference orbit in Table I.

The corresponding expansion coefficients of _=_, _y_, _,_, _,

which may be denoted by a .... a,.r; be.,, bs, r; c .... Cs.r'_de,,, ds,r, have also

been computed with those of the second-order partials of ft. They

are given in Table III, rounded to three decimals because of their

multiplication with u 2, v2, or uv in the rigorous Equations (10).

The coefficients of the sine-terms involving 6a remained undeter-

mined in Tables II and III because only twelve points were used

in the harmonic analysis.
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TABLE II. Fourier Coefficients of _2=, flyy, l_y
forthe Reference Orbit ofTable I

Ac,r

-{-.65263

+ 14004

- 8376

-- 74

+ 96

-- 22

- 4

As,r

--.37980

-- 4827

+ 759

- 99

-- 21

Bc, r

-{-2.35084

-- 16742

+ 8114

+ 139

- 73

+ 19

+ 3

Bs, r

-{-.37015

+ 5229

-- 683

+ 87

+ 15

Cc,r

-.98331

- 7556

- 3083

- 1505

+ 123

+ 40

0

C$,r

-{-.31672

- 4483

+ 923

+ 255

- 13

TABLE III. Fourier Coefficients of_=, fiyyy, l}_y, _yy

for the Reference Orbit of Table I

w
m

r ac.r

0 -- 1.645

1

2

3

4

5

6

Z

a,,r bc.r b,,r cc._ C,,r dc, r ds, r

-2.750 .{..112 -{-2.857

+ 62 -{-.056 + 713 -1.771 - 540 .{.1.581 + 51 --.53

- 385 --315 -- 292 - 134 + 242 + 88 + 353

- 74 + 77 + 60 - 8 - 67 + 15 + 79

+ I0 + 3 -- 4 - 21 + 5 + 22 -- 9

- 1 - 2 - 3 + 1 + 4 - 1 + 1

0 0 0 0

[+ 32

- 7

- 4

+ 2

It can be seen that the general convergence of the Fourier series

for these second- and third-order derivatives of fl closely parallels

that of the series representing the periodic reference orbit itself,

as exhibited in Table I. This might have been anticipated on the

basis of the equations obtainable from the differentiation of Equa-

tions (5), as relations connecting the _= etc., with the various time

derivatives of x and y. In view of the quite rapid convergence of
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the _, _2yy, and _ even for a reference orbit of such rather large
dimensions, a good convergence may be expected also for the solu-

tions of the reduced differential equations (21).

V. The principal characteristics of the solution. A particular solution

of the reduced Equations (21) may be assumed to have the form

(22) u = _ urexp[i(r + c)a], v= _ vrexp[i(r + c)a],

where the unknown coefficients Ur, Vr and the characteristic

exponent or stability constant c have to be determined from

the identities resulting from the substitution of these u, v into

the two Equations {21). This leads to the following pairs of equa-
tions, for r = 0, =i=1, -+- 2, ... :

[a0 + n2(r + c) 2] u_ + [_0 + 2iNn(r + c)] Vr

= - Z (..Ur,,+ ._,,U,+8)-- +
(23) .=1 s=,

[Vo -- 2 iNn (r + e) ] Ur + [/30 + n2(r + c)2] Vr

= - + -- +
s_l s_l

If Equations (23) are compared with those arising from Hill's

equation for the determination of c (see [l l), then it is seen that

twice as many conditions have to be satisfied here in consequence

of the simultaneous involvement of both coordinates, u and v. On

the other hand, the coefficients ar, /_r, _ appearing in Equations

(23) converge rapidly with increasing absolute values of r, in con-

trast to the very poor convergence of the coefficients Or previously

used in Hill's equation for the transversal displacement _. This

more satisfactory feature of the present approach is closely related

to the fact, as revealed by the many nonperiodic trajectories ob-

tained by numerical integration, that the sharp curvature of the

periodic orbits in the region of the two turning points does not

affect the shape and orientation of the superposed fluctuations to

any comparable extent. Since the geometrical parameters of the

principal "loops" of short period fail to synchronize themselves

with the sudden changes in the direction of the normal to "_'_USI_

periodic orbit, it is clear now that the sharp and deep dips of the
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[(u) function at the turning points noted in Ill are due entirely

to the unsuitability of Hill's equation for such strongly curved

orbits, but not to any intrinsic stability anomalies.

If the periodic reference orbit is one of small amplitude, the

first approximation to the solution of Equations (21) may be found

by neglecting in the system (23) of linear equations all ar, /3r, 7r

except do,/_0, 70, and all ur, vr except Uo, vo. This reduces the Equa-

tions (23) to

(ao -k n2c 2) Uo -k (7o q- 2iNnc) Vo = 0,
(24)

(70 - 2iNnc) Uo -k (1_onu n2c 2) Vo = O.

Either one of these two equations determines the ratio Uo/Vo, pro-

vided the determinant of the coefficients vanishes, or

(25) (n2c2)2-k (do-k Bo- 4N 2) (n2c 2) -k (aaSo- 73) = O.

In the case of an infinitesimally small periodic reference orbit, the

ao, t_0, 70 reduce to the values of _, _, _ valid at Ls, as listed

on the right sides in (17), and Equation (25) becomes identical

with the well-known equation for the two frequencies of such very

small oscillations about Ls. For noninfinitesimal amplitudes, how-

ever, Equation (25) determines the first approximation to c as a

function of a0, /3o, 70, and of the libration period T = 27r/n.

For d0, _0, 70 not too different from the values listed on the right

sides in (17), i.e., for small libration amplitudes, Equation (25)

will be satisfied by two real roots (nc) in the vicinity of ± 1, or

by c-values of the order of ± 12. Such values of c are indeed repre-

sentative of a short-period fluctuation, with a period of the order

of Jupiter's orbital period of revolution. If the solution of Equation

(25) is attempted for the a0,/_o, 70 listed (as At.0, B_,o, Cc.o) in Table

II, however, no real root (nc) will be obtained. This finding does

not indicate instability, but simply reveals the inadequacy of the

approximating Equations (24) and (25) in the case of such a large

libration. Table II shows that the neglected Fourier coefficients

2A_.1, ..., 2Cs.1 are indeed of the order of ± 1, so that the a_, _, 71

should be considered, together with the d0, /_0, 70, already in the

first approximation to the solution of Equations (21). This more

reasonable approach requires the consideration of u0, Vo in the six

Equations (23) for r-values of - 1,0,-k 1, and consequently the
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simultaneous determination of the coefficients u_l, v_l, ul, vl, in

addition to Uo, vo. For this selected reference orbit of Tables I-- III,

the c-value causing the determinant of these six equations to vanish
is found to be

c = ± 12.056:

With either one of the two roots for c, the six equations under

consideration can now be solved for five of the Ur, V,. involved

in terms of the sixth one, say v0. A second approximation may

be based next on the ten equations (23) for the r-values -2,

-1, 0, A-l, A-2, leading to an improved value of c and to a

new solution for the u,., Vr, including now those with the subscripts

- 2, + 2. The convergence of these successive approximations, in-

volving the addition of four equations and four unknowns in each

subsequent step, should be rather good, thanks to that of the ar,

If V0 serves as the arbitrary constant of integration, two particular

solutions with different and independent constants v0 will satisfy

the Equations (21) in consequence of the existence of two real

roots c, as illustrated by the approximation (26) for the selected

reference orbit. The two Vo may be chosen conjugately complex, so

that the sum of the two particular solutions represents real displace-

ments u, v, depending on two real constants of integration. While

two integration constants have thus been identified, the general solu-

tion of the Equations (21) should involve four such constants. This

raises the question of the existence of additional particular solutions.

It is obvious, now, that

(27) u = kx, v = ky (k = const.)

represents another particular solution of the Equations (21), be-

cause the substitution of these expressions results in two equations

which are identical with those obtained by differentiation with

respect to time and subsequent multiplication by k of the Equa-

tions (5) valid for the periodic orbit. Since x and y, as the derivatives

with respect to t of the Equations (1), are of the order of n, the

solution (27) may be interpreted as a small displacement in the

periodic reference orbit. Actually, the displacement represented

)-,, r_q_l_t_an_ (9_71 lies in the direction of the tangent to the periodic
tJy _ ........ ,_ ,
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orbit, but this degree of approximation is consistent with the

linearized nature of the differential equations (21) themselves.

Evidently any periodic Trojan moving in the same given reference

orbit, even at a more substantial distance from the adopted

"reference Trojan," describes an orbit relative to the reference

body which must be representable as a specific periodic solution

of the differential equations for u and v. To find the rigorous solution

valid for such Trojans moving in, in the reference orbit, one has to

go back to the complete Equations (10). It is easily verified that

they will be satisfied by

1 1

u = kx _- _ k22¢ + _ k3_ "+ -..,

(28)
1 1

v = ky + _ k2_ -}- _ k3y _- .-.,

as expressions representing that arc in the periodic orbit through

which the reference Trojan moves in the time at = k. If the solu-

tions (27) and (28) are compared with the assumed form (22) of

the particular solutions of Equations (21), it is seen that any

periodic solution of period T must be associated with an integral
value of c. In the case of the selected reference orbit, where the

approximation c = ± 12.056 was found for the nonperiodic fluctua-

tions, the six equations involved at this approximation can indeed

be found to be satisfied also when evaluated with the principal

coefficients of solution (27), and with c --- 0. These periodic solutions

in the reference orbit, with u0 = Vo = 0, are of no interest, however,

for the present study of the nonperiodic fluctuations about x, y.
Once the determination of c and of the necessary number of

coefficients ur, vr has been achieved to the required degree of

numerical accuracy, the solution representing the nonperiodic

fluctuations has been completed as far as the reduced differential

equations (21) are concerned. This solution can be applied to any

initial displacements (u)0, (V)o at the zero-epoch to, by means of

the relevant relations with the original two constants of integration.

The same value of c is valid in combination with all possible

amplitudes or starting values (U)o, (V)o, as indicated already by

the fact that the solution of the linear equations (23) will not be

affected by the application of any common factor [ to all the u_, v_
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involved. It will be seen that this noninterference between c and

the integration constants ceases to exist when the linearized

Equations (21) are replaced by the complete Equations (10) for

the motion of nonperiodic Trojans.

As long as the second- and higher-order terms of the rigorous

Equations (10) are small compared to the hneal: ones considcrcd

in the reduced Equations (21), the solution (22) of the latter

system can serve as the first approximation to the solution of the

complete equations. The second approximation has to consider

the presence of the terms involving u 2, v 2, and uv on the right-

hand sides of Equations (10). If these previously neglected terms

are simply evaluated with the u, v represented by the first-order

solution (22), exponential terms with exponents of the forms

(29) E, = i (j A- 2c) a, Et = ij a (j = integer),

but with known coefficients, appear. The terms with exponents

E, have short periods, except possibly for those where (j+ 2c)

is a small quantity, while the periods associated with the exponents

Et are long, at least for small integers j. The occurrence of j = 0 is

not excluded, and will give rise to small constant terms in the

Et category. Since all the exponents are different from those ap-

pearing in the first approximation as represented by Equations

(22), the second approximation to the solution of Equations (10)

can be achieved by simply adding to the first solution the necessary

second-order increments uH, vn, to be determined from the equations

/2ii - 2N0n - _=uii -- _xyVII = P,
(30)

UII -3I- 2N/2II -- _xyUII -- _yyVII = Q,

where P and Q represent the sums of all the exponential terms

created by the substitution of the first approximation for u, v into

the second-order terms of Equations (10). The Equations (30)

can be solved by substituting an assumed solution, in the form

of series of exponential terms involving all the exponents listed

in (29), but with unknown coefficients, and by determining these

coefficients from the resulting system of identities.

The sums of terms with exponents of the type El can be con-

sidered, of course, as periodic functions of period T. The corre-

sponding parts of the solution um vn may be added, therefore,
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to the basic reference orbit, so that all the remaining fluctuations

are again of short periods, but are referred to a modified reference

orbit which is not a periodic solution of the differential equations.

Furthermore, since the first-order part of the solution is proportional

to the arbitrary v0 and the conjugate _ of Equations (22), all these

second-order increments are consequently proportional to V0Vo so

that such a modified reference orbit depends on the constants of

integration.

The emergence of certain constant parts, from the Erterms

with j = 0, is not endangering the stability of the solution. They

will be absorbed by correspondingly small constant terms u0o, Voo

in the increments um vu as obtained from Equations (30). If the

constant terms in P, Q are denoted by _, _, respectively, the first

approximation to the constant members of u and v will be obtained

from the relevant parts of Equations (30):

aoUo_ _- "YOVOO_-- -- K,
(31)

_0u0o +_0v00 = -- _.

If terms of the order of the cubes of the principal terms in the

original solution (22) have to be considered, the necessary third-

order additions urn, vlli to the present solution u + un, v + vu have

to be determined on the basis of the third-order terms created on

the right-hand sides of the Equations (10) by the substitution of

u + uu and v + vii into the terms of second and third order. The

third-order terms created by this substitution will have exponents

of the forms i (j + 3c) a and i (j + c) a. The latter type of exponents

is identical with those occurring in the first-order solution (22),

so that it becomes necessary to readjust the earlier determination

ofc and of the coefficients u, Vr for the effect of the corresponding

third-order increments to the Equations (23). This can be done

differentially, considering only sensitive terms and neglecting the

higher-order effects of any resulting coefficient-corrections Au, AVr

on the third-order terms in Equations (10) which are the basis

of this readjustment. It is clear that the changes produced in c

and in the u,, Vr associated with the exponents i (r -}- c) a will depend

on the value of the integration constant v0, which as the only one

of the Ur, Vr should be considered as fixed in the adjustment pro-

cedures. Since the modifications are functions of v0, the inter-



OUTLINE OF A THEORY OF NONPERIODIC MOTIONS 97

dependence of c and v0 has been established. The c-value originally

established on the basis of the Equations (23) is rigorously valid

only for infinitesimally small displacements from the reference orbit.

From the preceding considerations it is evident that no principal

obstacle stands in the way of an extension of the solution of the

complete Equations (i0) to the incorporation of any desired powers
of u and v. A considerable variety of smaller and smaller periodic

and constant terms enters the results for u and v as the refinement

of the solution progresses by means of the procedures just described

in connection with the second- and third-order parts of Equations

(10), but convergence should be expected as long as the first-order

solution (22) consists of terms whose amplitudes add up to amounts

well below the order of unity. If the integration constant v0 is

assumed to be so large, however, that the total displacement may

from time to time approach this order of unity, then the convergence

of the expansions on the right-hand sides of Equations (10) may

obviously be endangered. It is intended to establish the actual

limits of stability from a third-order determination of c.

Except for the possibility of instability caused by excessively

large initial displacements or velocity deviations, the general form
of the solution is such that it actually provides proof of the non-

existence of secular terms of any order, and of orbital stability

beyond the so-called first-order stability ordinarily established

on the basis of Hill's equation. While the actual proof of convergence
of the solution will be more numerical in nature than analytical

in any given case, such proof would not appear to be less satisfactory
than the somewhat similar one of the existence of the periodic

reference orbits in the first place.

VI. The relationship between C and Vo. For nonvanishing integra-

tion constants v0, or nonvanishing solutions u, v, the Jacobi constant

C associated with the solution is always smaller than that of the

reference orbit, and increasingly so with increasing values of v0.
This statement is true at least for the first-order solution (22),

and can be proved as follows.

In this section, let u, v represent the solution in terms of real

quantities, as obtained by an appropriate choice of the two complex

constants of integration. Neglecting all but the principal terms

__.._L_ ,k^ • • l_.q,,_t_,n_ (22) fnr the first-order solution,w_u i - 0 in _,,_ 6rlgma! .........
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the resulting oscillation takes the form

u = 2uc cos(ca) + 2u8 sin(ca),
(32)

v = 2vccos(ca) q- 2vssin(ca),

where now the real coefficients vc, v, may be considered as con-

stants of integration. The other two coefficients, u_, u,, depend on

vc, v_ through relations which are the equivalent of the earlier

Equations (24) and (25) for the complex u0, v0.

Since the Jacobi integral

(33) V 2 = 2_ - C,

with

(34) V 2 = x2+ y2,

is valid for the nonperiodic Trojan as well as for the periodic

reference planet, the difference of the two integrals may be written

in the form

(35) C - Co = 2(fl - rio) - ( V 2 - V_o),

where the subscript zero indicates the quantities representing

the periodic Trojan. When the right-hand side of Equation (35)

is expressed in terms of the relevant trigonometric series, all periodic

terms can be disregarded, because C- Co must be equal to the
sum of all constant terms involved. As far as the last term of

Equation (35) is concerned, one has

(36) V 2 - V¢0= 2(xa + yv) -_- a 2+ 02.

With the x, y and u, V resulting from the differentiation of Equations

(1) and (32), respectively, the part 2(xu +y0) of Equation (36)

is found to consist of periodic terms only, while the remaining

terms produce a constant contribution

(37) V 2 - V_ = 2(nc)2(u_-4 - uY -+- v2 -4- vy).

It remains to find the constant part of _t - 9¢, which function

can be expanded in the form

1 1 2
(38) _ - fro = flxu + _yv + -_ ft_,u 2 + -_ flyyV + U_uv + ...,
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where the second-order partials of _t are those previously used in

the expansions of fix and _ty. Again, all these partials of _ have to

be evaluated as periodic functions of the coordinates x, y of the

reference-Trojan. Since the fix etc., in turn have the form of Fourier

series involving only integral multiples of a, including zero, the

first two terms of Equation (38) produce no constant parts. This

is true even when the constant terms Uoo, v00 of the second-order

parts of the solution u, v are considered, because the coefficients

_tx and fly have no constant terms, according to the Equations (5)

for these derivatives of _. The second-order terms of Equation (38),

however, contribute constant terms. When the constant terms of

the second-order partials of _ are approximated by their values

at Ls, as listed in (17), and terms of the order of u are neglected,

the constant part of _ - _o takes the form

3 (u_ -+- u_) + 9 3 31/2(ucvc _._ usv,).
(39) _-9_--_ _(v_+v_)-

Since the approximation (32) represents an elliptic fluctuation,

uc and us may be expressed in terms of vc and v,, taking advantage

of the relevant relations based on Equations (24) and (25). If

this is done in Equations (37) and (39), approximating again

ao, t_0, _0 by their values valid at Ls and omitting terms of the

order of u, substitution into Equation (35) leads to

3
(n2c2 + _)(C-Co)

(40) _____--E (2n2c2_3)(n2c2+9)

+ (2n2c2-_) (n2c2+ 3) --F_] (V_+V_).

In this expression, (nc) 2 differs from 1 by a quantity of the order

of _, which may be neglected in line with the previous approxi-

mations. Then the difference between the two Jacobi constants

is reduced to

16
(41) C - Co - (v_ + vy),

7
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so that indeed C is always smaller than Co by an amount of the

order of the square of the amplitude of the principal short-periodic

oscillation.

Equation (41) represents the first approximation to the rigorous

expression for the Jacobi constant C of a nonperiodic orbit as a

function of the constants of integration. The result can be refined,

on the basis of the appropriate higher-order terms in u and v.

According to the numerical evidence as discussed in §II, and in

agreement with the theory outlined in this investigation, the non-

periodic Trojan with a Jacobi constant C exhibits a librational

behavior equal to that of a periodic Trojan with the larger Jacobi

constant Co(C, vc, v,), as approximated by Equation (41). Since

two periodic orbits with only slightly different Jacobi constants

may have substantially different libration amplitudes, the result

(41) explains the sometimes very large displacements of a given

nonperiodic trajectory from the periodic orbit with the same

Jacobi constant C.

According to the Tisserand criterion,

(42) C=(I_-_)[ 1 +2al/2(1-e2)l/21,

as an approximate equivalent of the Jacobi integral, any bounded

periodic fluctuation of the osculating semi-major axis a about

Jupiter's a = 1 has a very slight effect on the value of the right-

hand side of this equation. This explains the fact that indeed the

periodic Trojans are able to reconcile their substantial periodic

variations of a with the condition (42), even in connection with

an eccentricity e which remains close to zero at all times. On the

other hand, for any nonperiodic Trojan synchronizing its behavior

of a with that of a certain periodic orbit (as suggested by all the

numerical integrations of such trajectories), a certain only slightly

variable eccentricity e will be required (again in complete agree-

ment with the numerical evidence), in order to satisfy Equation

(42). Since the eccentricities of the periodic Trojans of the restricted

problem differ from zero only by amounts of the order of u, com-

parison of Equations (41) and (42) finally confirms the empirical

finding that the oscillation amplitude is roughly proportional to

the mean value of the nearly constant eccentricity e.

|
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Elements of a Theory

of Librational Motions

in the Elliptical Restricted Problem

N 67-17326

I. Summary. The author's earlier treatment of the nonperiodic

librational motions in the restricted problem of three bodies given

in [3], as oscillations about a given periodic reference orbit, is ex-

tended here to the case where the relative motion of the two finite

masses is elliptic.* The new reference orbit combines a periodic

solution of the restricted problem with a periodic scale factor as

determined by the periodically changing linear dimensions of the

equilateral triangles. These "pulsating" reference or intermediate

orbits are nonperiodic, except for the special cases of commensura-

bility between the two periods involved, but they are suitable be-

cause of their representation of the two most predominant features

of such librational motions in the elliptical problem. The equations

of motion are referred to a nonuniformly rotating coordinate system,

the x-axis of which coincides permanently with the straight line

connecting the two finite masses, but the integrations are facili-

tated by expansions in powers of the eccentricity e of the funda-

mental elliptic orbit. While the chosen reference orbit as such is

not a particular solution of the differential equations, the remaining

superposed oscillations are found to consist of a forced and a free

This work was supported by a grant from the National Aeronautics and
Space Administration.
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part, where only the latter one can be reduced to zero by an ap-

propriate choice of the constants of integration. _ _)7/ _/'_.
II. Introduction. A theory of all the nonperiodic librational motions

about the equilateral points of the restricted problem of three bodies

has been outlined in [3]. The periodic solutions, as previously es-

t_hli,_h_d........ hy numerical ..._..v.,o'_h^_°for ,k^_,,_Sun-Jupiter or "Trojan"

case in [1] and [2] as well as for the earth-moon case in [4], are

the basis of this theory and thus are the equivalent of Hill's so-

called variation orbit in the lunar theory.

Since a particle located in one of the two equilateral points can

remain there forever even in the case of elliptic relative motion of

the two finite masses, it seems logical to suspect that any periodic

libration of the restricted problem, transposed into the elliptic sys-

tem simply by multiplication with the proper variable scale factor,

would produce a reference orbit not too different from an actual

(particular) solution of the differential equations. The present study

is concerned with the derivation of the relevant equations of motion,

referred to the nonuniformly rotating coordinate system associated

with the elliptic motion of the two finite masses about their center

of mass, and with an outline of the theory resulting from their

integration.

III. The nonperiodic reference orbits. As in the preceding study

of the nonperiodic trajectories in the restricted problem given in

[3], only motions in the plane determined by the motion of the
two finite masses will be considered. For the sake of a simplified

terminology, these two nonzero masses will be identified again with

the sun and with Jupiter, and the vanishingly small mass will be

referred to as a "Trojan" planet, even though the theory will be

applicable to a wide range of values for the ratio _ between the

smaller and the larger one of the finite masses.

Let x, y denote the rectangular coordinates, in the uniformly

rotating frame, of a Trojan moving in one of the periodic libration

orbits which exist in the restricted problem of three bodies. The

relevant periodic series

x = Xc.o+ _-_xcjcos(ja)+£ x,jsin(ja),
1=1 J=l

(1)

Y -- Y_,o ÷ z..,_,_,i cost gaJ + 2.,y,,_sin(ja),
j=l j=l
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with

2_
(2) a = -_ (t - to) = n (t - to),

represent a particular solution of the differential equations

(3)
y+ 2N:_= _y.

In these equations, T denotes the period and n the related fre-

quency of the solution, to the arbitrarily chosen epoch at which

this periodic Trojan intersects the straight line connecting the sun

and the equilateral point Ls on the outside of Jupiter's heliocentric

orbit, and N the constant angular motion of Jupiter as given by

(4) N = (1 -4- #)1/2.

[tx and _y are the partials with respect to x and y of the function

1 # 1

(5) _ = -_ + _ + _ (_ + _).

depends on x and y through the Trojan's distances _1 and A2

from sun and Jupiter, respectively, as determined by

A2=(x-m_)2+y2,
(6)

_2 = (x + rn) 2+ y2,

where m is the auxiliary quantity

(7) m = 1/(1 A- g).

All units, definitions etc. are identical with those of [3].
The coordinates

(8) x* = x A- u, y* = y-4- v

of any nonperiodic Trojan, with a motion representable in the form

of such oscillations u, v about the periodic reference orbit given

by Equations (1), have to satisfy the differential equations (3),

too. In this case, the _tx(x*,y*), fty(X*,y*) may be expanded in
the form

1 1

_(x*,y*) = _,, + ft,_,u + _v + -_ _=u 2 + -_ t2_.zv 2+ _=yUV + ...,

(9)
1 1

_y(x*,y*) = fry + t2_u + _,v + _ t2,__u 2 + -_ _v 2 + _uv + ...,

!
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where the f_, _=, _, etc., are the corresponding first, second, and

higher order partials of a with respect to the x and y of the periodic

orbit, and thus are periodic functions of a and of the time t. The

differential equations for the oscillations u, v of such nonperiodic

restricted problem Trojans take the form

U - 2No = _(x_,y _) - f_x,
(10)

V + 2Nu = 12y(x*,y*) - _y,

and their integration has been treated in [3].

To proceed to the more general case of the ellipticalrestricted

problem, lete denote the eccentricityof the orbit of Jupiter around

the sun. If f denotes the true anomaly of Jupiter in this orbit,

1 - e 2
(11) r

1 + ecos[

represents the radius vector r as a function of f and thus of the

time t. Jupiter's semi-major axis a is equal to unity. The well-

known elliptic relations connecting [ with the mean anomaly

(12) M = Mo -{- N(t - to)

involve the mean angular motion N as given by Equation (4),

while the true angular rate of motion [, as the nonuniform rate

of rotation of the _, 7 coordinate frame to be used in the elliptical

problem, is determined by

(13) r2/= N(1 - e2) 1/2.

The new rectangular system _, 7 may be chosen so that its origin

coincides with that of the x, y-system, while the _-axis coincides

with the straight line connecting sun and Jupiter. Consequently,

the coordinates _1, 71 and _2, 72 of the sun and of Jupiter, respec-

tively, shall be given by

r, 71 - 0,
_1= 1 _1_ #

(14)
1

-- --r, 72 = 0.
_2= i+_

For e = 0, of course, the Equations (11), (13), and (14) reduce

to r= I, f= N, _i =.u/(l +.u), _2= - 1/(lq- u), or to the appro-

priate constant values of the restricted problem.
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If the periodic solution (1) of the restricted Trojan problem is

transposed into the _, _-reference frame of the elliptical problem

as proposed in §II, the resulting intermediate orbit is represented

by the expressions

(15) (_) = rx, 07) = ry.

In general, any point in the x,y-frame will be transformed into

its "image" in the _, r-system by the multiplication of both co-

ordinates with r, so that any nonperiodic solution x*, y* of the

restricted problem, as represented by Equations (8), will be trans-

posed into a certain curve in the _, _ plane, given by

(16) _ = rx* = r(x-J- u), _7= ry* = r(y-F- v).

If the u, v appearing in Equations (8) and (16) are solutions of

the differential equations (10) of the restricted problem, they can-

not be expected to satisfy the differential equations of the elliptical

problem, as considered in the following section. On the other hand,

the as yet unknown solution of the elliptical problem may be as-

sumed in the form of the Equations {16), with unknowns u, v instead

of _, _, and the differential equations for _ and _ may then be trans-

formed into equations for the determination of u and v. The u, v

resulting from the integration of these new equations can be sub-

stituted into Equations {16), so that now indeed the true motion

in the _, _-plane will be obtained in the form

(17) _ = (_) -F- ru, _ = (_) + rv,

where ru and rv represent the components of the total displacement

of the actual Trojan planet from the position of the fictitious or

reference Trojan of Equations (15).

IV. The differential equations for u,v. Since the _,n-system is

rotating about its origin at the center of mass with the variable

angular velocity [i the differential equations of motion for the Trojan

of negligible mass take the form

_'- 2fi/- ['2,t- [_ = R_,
(18)

+ 2 f.2 + = R,,

where R_ and R, are the partials with respect to _ and _ of
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(19) R = 1

with A1 and _2 now determined by

(20) A2 ____ (_ -- _1) 2 _]_ 72, A22 = (_ -- _2) 2.31_ _/2

The _1, _2 involved in Equations (20) are functions of r and thus

of [ and of the time through the Equations (14).

On the basis of Jupiter's elliptic motion, one has

(21) t = Ne(1 - e 2) -1/2sin/,

while f is obtained from Equation (1 3). The second derivatives

with respect to time, as needed in Equations (18), are easily obtained:

(22) ? = N2er-2cos[,

(23) y= - 2N2er-3sinf.

For the first and second derivatives of _ and 7, the following

expressions follow immediately from the Equations (16):

= l'x* A- rx*,
(24)

# = _y* + ry*,

_'= _'x* + 21'x* + r_*,
(25)

= J'y* + 21'y* + ry*.

Let R* denote the function to which R is reduced when the

variable r appearing in the expressions for _, 7, _, _2, and thus in

A1 and A2, is replaced by the constant value 1. It is easily verified that

(26) R_ = r-2R*(x*,y*), R, = r-2Ry(x* *,y*),

where the partials R* and R* are identical with the corresponding

partials with respect to x* and y*, respectively, in consequence

of the definitions (8) of x* and y*.

If all the relevant substitutions are made, the differential equa-

tions (18) will be transformed into the following two equations

for x* and y*:

r3Yc* -- 2N(1 - e2)l/2ry*-4 - 2N(1 - e 2) -1/2r2e sin/x* = _*,
(27)

r3y¢* A-2N(1 -e2)l/2r:£ * Jr- 2N(1 - e 2) -1/2r2e sin/y* = _*.
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Here the function fl*(x*,y*) is determined by the relation

(28) 2fl*(x*,y*) = 2R*(x*,y*) q- N2(x .2 q- y*_) + u/(1 + _),

and this 9*(x*,y*) is identical with the 9(x*,y*) resulting from

the earlier restricted-problem Equation (5) for ft when x is simply

replaced by x*, and y by y*.

To develop the left-hand sides of the Equations (27) into Fourier

series proceeding in powers of e, with arguments involving multiples

of the mean anomaly M of Jupiter's orbit, the elliptic expansions

1e2 ( 3) 1 3r=l-l-_ -- e--_e 3 cosM-_e2cos2M-_eZcos3M...,

3e2 ( 1 ) 1 5 1r2=l+_ -2 e-ge a cosM--_ecos2M--_eacos3M ...,

(29)

9 ea cosM + _ eacos aM...,ra = 1 + 3e _ - 3e + g

(1 - e 2) -1/2e sin/

= e - g ea sinM + e2sin2M + _ easin aM...,

together with the corresponding expansions of (1 - e2) 1/2, may be

substituted. For the right-hand sides of Equations (27), since

(30) ax* = a,(x*,y*), ft_ = fly(X*,y*),

the restricted-problem expansions (9) in powers of u and v are

immediately applicable.

After both sides of the Equations (27) have been expanded as

indicated, the principal terms of the two equations are identical

with those constituting the differential equations (3), as satisfied

by the periodic reference Trojan. Therefore, substraction of these

earlier equations finally results in the two equations which have

to be satisfied by the unknowns u, v of the assumed solution (16)

of the elliptical problem. With the aid of convenient auxiliary

quantities or definitions, these differential equations take the form

ft - 2No = R1 + e(E_ + F1),
(31)

u + 2Nu = R2 + e(E2 + F2),

where
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(32)

1 1

R_ = _=u + a_v+_ _=_u2 + _

1 1

R2 -=- _xyU -+- _yyV _- _ _.y u 2 -4-

(33)
E, = Au + By + C_t,

E2 = - Bu + AO + CV,

(34)
F_ = Ax + By+ C_,

F2= - Bx+Ay+ (22,

and

(35)

1
A = - 2N [ (1A- 3 e2 ) sin M - -8 e2sin 3M A- . . . l ,

B= - 2N 1--_ cosM +_ecos2M

+ _ e2cos3M+ ... ,

( 9e2) c°sM- 1C= -3eq- 3q-8 _e2cos3Mq-....

Except for the additional terms e(E_ q-F1) and e(E2 q--F2), the

differential equations (31) are identical with the equivalent Equa-

tions (10) of the restricted problem, and for e = 0 the Equations

(31) reduce to that earlier system. For e _ 0, of course, the u, v ap-

pearing in Equations (31) are different by definition from those

in Equations (10) and only for e = 0 do the two definitions become

identical. It is evident that, for e _ 0, the Equations (31) will not

be satisfied by u = 0, v = 0, because of the nonvanishing functions

F1, F2 which are independent of u, v and their derivatives. There-

fore, the reference orbit (0, (n) of Equations (15) is not a solution

of the elliptical problem. Apparently, then, any solution u, v satis-

fying the equations (31) must involve fluctuations of certain mini-

mum amplitudes, depending on the given value of e. It will be seen

that two of the four constants of integration of the general solution

of the Equations (31) are associated with this "forced" part of the

solution, while the remaining two constants are related to the "free"

part, or to the arbitrary initial deviations from the trajectory re-
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presented by the forced solution. In this respect, the forced solution

emerges as the equivalent of the periodic reference orbit in the

restricted problem.

V. The principal features of the solution. Since the terms eF, and

eF2 in Equations (31) are independent of u and v, they have to be

considered only in the determination of the forced part, say Uo, v0,

of the complete solution

(36) u = Uo + u l, v = vo q- vf,

which includes the free oscillation u t, vI. According to Equations

(34) and (35), the basic expansions for the periodic solution x, y,

as represented by Equations (1), as well as the elliptic expansions

for A, B, C, will affect the functions Fx and F2, and thus the forced

solution Uo, Vo. Consequently, arguments of the form jM -q- ka will

be characteristic for the resulting expansions of Uo, v0.

In the differential equations, all terms involving u, v and their

derivatives will affect the forced solution u0, Vo, aside from their

role in the free solution u1, vt. Therefore, the complete _quations

(31) have to be considered in the successive approximations for

Uo, Vo. However, since the partials _2_ etc., in the linear terms of

Rx and R2 are of zero order, while in eE_ and eE_ the coefficients

of a etc., are at least of the order of e, the first approximation for

Uo, Vo may be obtained from the reduced equations:

fz - 2NO = Rx q- eF1,
(37)

0 + 2Nu = R2 + eF2.

If complex variables u0, v0 are introduced, as was done in [3],

in the integration procedures for the restricted problem Trojans,

the solution of Equations (37), as well as of the complete Equations

(31), may be assumed in the form:

(38)

Uo = _ _ ui,kexp[i(jM-q- ka) ],

Vo= _ _ vj.kexp[i(jM + ha)].
j=-_ hffi-®

The unknown coefficients ui.k, vi.k will be obtained from the identities

resulting from the substitution of the assumed uo, v0, and of their
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first and second derivatives, into the Equations (37). For the first

approximation, only those terms irLvolving u and v linearly should

be considered in R1 and R2, and only the first power of e in eF1 and

eF2. As to the coefficients fi_, fiyy, and fi_ of u and v in R1 and R2,

their expansions may be taken from [3]. If the basic periodic

libration x, y is of small amplitude, the use of the constant terms

of fixx etc., may be sufficient for the integration of Equations (37).

If the amplitude of the periodic orbit is large, however, the principal

periodic terms of flu and of the other two partials of fi will have to

be considered, too, in the first approximation from Equations (37).

For the second approximation, terms of the order e2 will have

to be considered on the right-hand sides of the differential equa-

tions. Depending on the size of the amplitudes of the principal

Uo, vo-terms obtained from the first approximation, the previously

neglected parts eel and eE2 of the complete Equations (31) may

have to be included in this second approximation, and even the

terms involving u 2, v 2, uv, through R1 and R2, may become sig-

nificant now or later on. No principal difficulty stands in the way,

however, of the required successive determinations and refinements

of the coefficients ui, k, vi.k of the solution (38), until the solution

satisfies the rigorous Equations (31) to the desired degree of numeri-

cal precision, considering such powers of e, n, u, v, and such co-

efficients in the expansions for x, y, _lu etc., as may be required to

achieve this accuracy. It is evident, from the form of the Equations

(31) to (35), that all exponents or arguments created in these suc-

cessive approximations will be of the same general form jM A- ka.

The integers j and k may be positive or negative, and terms where

j or k or both are zero will be encountered in the higher approxi-

mations.

To illustrate this method of solution, and to indicate the nature

of the principal terms of the forced oscillations u0, Vo, the reduced

Equations (37) will be integrated, considering only the first power

of e and assuming a small libration amplitude. The latter assump-

tion will justify the consideration of only the principal terms of

and :y, and only the constant terms ao, /30, _0 of flu, t2yy, fixy, respec-

tively. Since _ and 2 contain n 2 as a factor, compared to the cor-

responding factor n in x and 2_, )_ and 2 may also be omitted in

.... • ;_ _A_ _, p_ _ntt b'o. ConseQuently, the Equations (37)
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are further reduced to

(39)

with

(40)

EUGENE RABE

r_ - 2Nv = aoU + "yoV- 2Ne(_sinM + ycosM),

U-¢- 2Nu = "yoU-4- _oV -t- 2Ne(xcosM - ysinM),

2 = -- nxc.lsin a-4- nXs.lCOS a,

y = -- nyc.lsin a + ny,,lcosa.

The differential equations (39), as well as the original system

(37}, have been given without the subscript zero for the variables

u, v. It is understood, however, as implied by the inclusion of the

eF, and eF2-terms, that these are the equations for the determina-

tion of the forced solution Uo, Vo. Instead of the exponential solu-

tion (38), the trigonometric form

u0 = alcos(M + a) + b,sin(M -4- a)

+ a2cos(M- a) _-b2sin(M- a),
(41)

v0 = ClCOS(M + a) -}- d, sin(M + a)

+ c2cos(M- a) +d2sin(M- a)

may be assumed at once in this simple case. It is easily seen that

indeed all terms involving the first power of e should be associated

with the two arguments considered in Equations (41), because 2M

for instance enters eF, and eF2 only in association with coefficients

involving e 2. Similarly, 2a can enter only in connection with the

supposedly second-order coefficients xc.2, x8.2, Y_.2, Y,.2 of the periodic

libration x, y.

Substitution of the assumed solution (41) into the two Equations

(39) produces eight identities, namely two for each cosine- and

sine-function of the two arguments involved. The following four

identities must be satisfied by the coefficients a_, b,, c,, d,:

[ao+ (N-t-n)2]al + -YOCl-_- 2N(N +n)d 1= enNP|,

[ao+ (N+n)2]bl - 2N(N+n)cl+ 3"odl= enNQl,
(42)

_oal- 2N(N+n)b, + [Bo+(N+n)2]cl = - enNQl,

2N(N+n)a1+ "robl + [Bo+(N+n)2]dl= enNP,,

with the P_ and Q, given below in Equations (44). The a2, b2, c_,

d2 have to be determined from the very similar equations
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[ao+ (N-n)2]a2 -4- 70c2+ 2N(N-n)d2= enNP2,

[ao+ (N-n)2]b2 - 2N(N-n)c2+ "¢0d2= enNQ2,
(43)

70a2 - 2N(N- n) b2T [/_oT (N- n)2]c2 = - enNQ2 ,

2N(N- n)-_2+ 70b2 A- [$0+ (N-n)2]d2 = enNP2.

In these two systems of linear equations, the P1, Q1, P2, Q2 in-

volved in the absolute terms are given by

P1 = xc,1 Jr- Y,,1, P2 = -- Xc,1 + Ys,1,

(44)
Q1 = xs,1 - yc,1, Q2 = x,,1 + yc,1.

The coefficients of the unknowns of Equations (43) differ from

the corresponding coefficients in Equations (42) only by the ap-

pearance of -n instead of -4-n, wherever n is involved.

To permit unique solutions, the determinants D1 and D2 of the

systems (42) and (43), or

(45) D1,2 =

aoA- (N+ n) 2 0 3"0 2N(N-+- n)

0 ao+ (N+ n) 2 - 2N(N+ n) 3"0

3'0 - 2N(N:t: n) _o+ (N+ n) 2 0

2N(N-4- n) 70 0 Bo+ (N+ n) 2

should not vanish. The symmetrical determinant (45) reduces to

the expression

(46) D_,2 = {[ao+ (N-4- n)2][_o+ (N_ n) _] - -¢o2 - 4N2(N + n)2} 2,

and each nonvanishing subdeterminant of order 3 is found to con-

tain the factor (D_,2)1/2. For small periodic librations x, y, the con-

stants ao, _0, *o may be approximated by the values of a=, ayy, _

at Ls, as listed in Equations (17) of [3]. In this case, D1,2 will be

found to be approximated by 4n 2, and all the nonvanishing minors

of D1,2 have values of the order of 2n. Consequently, when the

linear Equations (42) and (43) are solved for the coefficients

al,...,d2 of the solution (41), the absolute terms, enNP1 etc.,

will be divided by quantities of the order 2n. Therefore, the re-

suiting amplitudes al,...,d2 of the forced oscillation (41) will be

of the general order of eL, where L simply represents the amplitude

(expressed in units of the mean distance sun-Jupiter) of the basic

periodic libration.
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The preceding considerations and results show that the rigorous

Equations (31) will indeed be satisfied by such a specific solution

u0, v0, produced by the eccentricity of Jupiter's orbit. The principal

terms of this impressed solution are those of the first approxima-

tion (41), with coefficients of the order of eL, but this result is

based on the assumption of a small libration amplitude L. For

L-values exceeding substantially Jupiter's orbital eccentricity e, the

principal periodic terms of _ etc., namely the terms depending on

sin a and cos a, will also have to be considered as factors of u and

v in Equations (39), in addition to the constant parts a0 etc., of

these partials of _. This in turn will necessitate the consideration

of the additional arguments M - 2a, M, M _ 2a, and of the re-

sulting additional identities for the determination of an increased

number of unknowns. There is no real difficulty, however, which

would prevent the gradual refinement of the initial solution Uo,

v0 until it satisfies the complete Equations (31) to the desired degree

of perfection. Constant terms as well as terms of long period will

appear in the higher approximations, because j and k may be zero

simultaneously or separately in the general form (38) of the solu-

tion. No secular terms, however, enter the picture. Small divisors

are possible and should be given special attention in any detailed

application of this theory, but normally these may be expected to

occur in connection with higher powers of e, and with higher-order

coefficients xcj etc.
The solution (38) will become periodic in the case of a com-

mensurability between N and n, or between the two fundamental

periods. In the sun-Jupiter case, the only j/1 type commensurability

within the period range of the actual Trojan planets is represented

by the ratio

(47) T/P = N/n = 13/1.

Additional "simple" solutions, of the type j� 1, exist for the similar

commensurabilities

(48) T/P = 14/1, 15/1, 16/1,...,

but the corresponding periods T are longer than those of all the

known real Trojan planets. Since the sequence (48) of commen-

surability ratios represents an infinite number of orbits still" inside

of the so-called limiting orbit with T = co, the "density" of these
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periodic solutions apparently increases with T--Go. In the re-

stricted problem, periodic solutions exist for all T-values exceeding

the minimum value associated with the librations of infinitesimally

small dimensions. In the elliptic problem, simple periodic solutions

exist only for the T/P ratios 13/1, 14/1, ..., and solid coverage of

the x, y plane is approached only as these orbits converge towards

the limiting orbit with T = oo.

If the commensurability is of the more general type

(49) T/P = j/k, k _ 1, j > k,

periodic solutions of the elliptic problem exist for periods T* = 2 T,

3T,4T, ..., but again only for specific values of T* or T. Such

periodic orbits are different from the simple librations of period

T, in so far as such Trojans would return to their starting position

and velocity components only after 2, 3,... revolutions about the

equilateral point.

According to Equations (16), the Trojan's coordinates _, _ are

functions not only of u, v, but also of x, y, and r. Only integral

multiples of M and of a are involved in all these quantities, however,

and therefore all arguments appearing in the resulting expansions

of _ and _ will again be of the form jM -+- ks. Consequently, if the

forced solution u0, v0 is periodic because of a commensurability

between N and n, the related coordinates _0, _o are periodic, too.

The forced solution u0, Vo of the Equations (31) is unique in so

far as, for given values of the constants e and M0 associated with

Jupiter's orbit, one and only one such solution (38) exists. This

solution is an intrinsic part of the real equivalent of the related

periodic orbit in the restricted problem, because the "elliptic equa-

tions" (18) can not be satisfied without it, and it may now serve

as a reference solution for the superposed free oscillation u t, v t.

It is evident that the separation of u, v into the forced part

Uo, vo and the free part u t, vI leads immediately to a corresponding

separation of the left-hand sides of the differential equations (31),

as a reference solution for the superposed free oscillation u/, vi.

v and their derivatives are linearly involved. The only complica-

tion comes from those parts of R1 and R2 which involve u 2, v2, uv,

u 3, etc. All these higher-order powers and products can be expanded,

however, into polynomials proceeding in powers of u I and vl, with
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coefficients depending on u0 and v0. The simple example

(50) u 2 = u_o+ 2UoUt + u_

is representative of the essential features of all these polynomials.

One term is independent of u t and vt, while the others involve their

various powers (and products of such powers, in the more general

case), with coefficients which are known functions of the forced

oscillation u0, Vo.

If the forced oscillation u0, v0 is considered as a given reference

solution, then the differential equations (31) as satisfied by uo, Vo

may be subtracted from the same equations for u = u0 -4- ut, v = v0

-4- vt. The resulting differential equations for ut, vI are of the same

form as the original Equations (31) for u, v, except for the addi-

tional terms originating from the second and higher order involve-

ment of u and v through the parts RI and R2, and except for those

terms canceled out because of their independence of u t and vt. It

is easily verified that consequently ut and vI must satisfy the

equations

a t - 2NO t = SI -4- eEl,
(51)

Vt + 2N?zf = $2 + eE2,

where E1 and E2 are still given by the earlier Equations (33), but

for u =-u I, v- vf, while $1 and $2 stand for

S, = (_= + _=Uo + a_Vo) ut + (_ + _Vo + _=yUo) vt

+-21 fl_._u_ + 21 fl_yV_ + _.yutv r + ...,

(52)
$2 = (t_ + _Uo + t_yVo) ut + (_yy + _y_Vo + t_uo) vr

1 1 _v_ + ft_yyUtVt + ....
+ -__ u_+

Any third and higher order terms of Equations (52) are easily

established, too, if required, on the basis of the corresponding

Taylor expansions (32) of R1 and R2.

Since no terms independent of u t and vt are involved in Equa-

tions (51), the particular solution u t = 0, vt ==-0 exists, as it should.

For ut, vt of any amplitude, the terms eEl, eE2 will be smaller by

one order of e than the linear parts of $1 and $2, so that the first
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approximation to the solution can be obtained from the equations

ftt -- 2NV t = ft=uf + _2_vr,
(53)

Of+ eNu t = fl,:yuf+ flyyvf,

with appropriately reduced expansions for _= etc. These Equations

(53) are identical with the corresponding approximation in the re-

stricted problem, so that the first order result for the free oscilla-

tions in the elliptical problem is also expressible in the same ex-

ponential form,

(54) uf= _ ukexpti(k-q- c)a], vf= _ vkexp[i(k-q- c)a].

Here c is the characteristic exponent, to be determined from the

condition that the determinant of the system of identities resulting

from the substitution into Equations (53) should vanish. In terms

of real variables, two of the coefficients of the solution, or the

amplitude and initial phase of the most significant term, may be

considered as constants of integration. With e and Mo as the con-

stants determining the elliptic motion of Jupiter in relation to the

periodic reference orbit x, y of Equations (1), four arbitrary con-

stants are thus involved in the complete solution u, v. The forced

part Uo, v0 depends on e and M0 alone, but beginning with the

second approximation, u t, vr involve all four constants, because of

the appearance of u0 and v0 in the second and higher order terms

of Sx and $2 in Equations (51).

The second and higher approximations for u t, vr will have only

certain terms in common with the corresponding solution of the

restricted problem, but many additional terms arise in consequence

of the eccentricity of Jupiter's orbit, through the eEl and eE2 terms

of Equations (51) as well as through the appearance of Uo and Vo

in the higher order parts of $1 and $2. For e = 0, of course, the

u l, vl solution reduces to the comparable solution of the restricted

problem.

When the first-order solution for u t, vt, with arguments of the

form (k q- c) a, is substituted into the parts eEl and eE2 of Equations

(51), new terms with arguments of the type jM-4-(k q-c)a are

created. Since the combination j = 1, k = 0 is admissible, the second

approximation to u t, vt wiii contain certain Lerms, _c-"*---_,._ by e
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and by the relevant coefficient from the first-order solution, with

arguments S of the form

(55) S = Mo + (N - cn) (t - to).

For small periodic librations, cn may be approximated by the

corresponding result for the short-period librations of infinitesimal

amplitude, namely

23
(56) cn _ 1 - --_ _.

Since N _ 1 + (1/2)_, Equation (55) takes the approximate form

(57) S _ M0 + _ u (t - to),

indicating that the period of such terms will be very long, of the

order of about 170 revolutions of Jupiter, or about 13 complete

libration periods. The amplitude of such terms may exceed that

of the causative principal term of the first approximation by a

factor of the order of 10, because a closer analysis discloses the

involvement of a small divisor of the order of 7_, together with a

multiplicator of the order of e. Nevertheless, all such terms are

part of the free solution, which may be reduced to zero by an

appropriate choice of the constants of integration. If the starting
conditions are such that the deviation from the forced solution is

not relatively small, the Trojan planet will have to compensate

for this departure with substantial terms of the long period as-

sociated with the argument S of Equation (55).
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John A. O'Keefe

The Equilibrium Shape of the Earth

in the Light of Recent Discoveries

in Space Science I_1_ 7 - 1 7 _ 2 T

I. The physical setting of geodesy. The study of the figure of the

earth has its historical roots in studies made by geodesists. These
studies came from two sources: One was the detached scientific
desire to know more about the figure of the earth which moved

Eratosthenes and Snell; the other was the practical urge to produce

adequate maps which moved the Cassinis (see [1] ) and Digges. The

scientific motivation for the study of the earth is relatively easy

to understand, but I should like to point out some of the practical
reasons which have powerfully reinforced scientific motivations.

The practical surveyor is attempting to construct a map which

will serve the ordinary purposes of daily life. For some of them,

such as hiking or automobile travel, an accuracy of 1 percent is

more than sufficient. For others, including the problem of artillery

firing, the laying out of pipe lines, the emplacement of micro-wave

antennae and the putting in of telephone lines an accuracy of a

tenth of 1 percent would be desirable so far as the paper stability
permits it. These accuracies would not by themselves justify the

precision which is lavished on first order triangulation. It might

appear possible to make relatively crude surveys and patch them

together. In practice, however, it is found that this policy is ex-

119
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tremely expensive and that it is far more satisfactory to have an

underpinning of precise survey. What happens when you have a

set of inaccurate maps is that in the compilation room the con-

flicts between the maps appear. For example, suppose that the

maps are in error by 1 percent; then along the junction between

two individual sheets you may have an error of a few tenths of

an inch, which might be tolerable; but when you have joined to-

gether 20 or 30 such maps to form a loop or an area, then you find

that there are discrepancies of many times this amount where the

loops close. Since the mapping of even so small an area as France

involves several hundred map sheets, this procedure is evidently

very unsatisfactory.

Theoretically one could go into the compilation room and say

to the other compilers that they should distort their sheets in such

a way as to produce a unified whole and that you don't care how

they do it. If this is resorted to, then enormous waste and delays

will ensue. The compilers will want to work on the area a little at

a time. Left to themselves they will crowd all the errors into one

area where they become intolerable, or they will start in two dif-

ferent areas and when these two areas join an intolerable discrepancy

will be found. In the meantime endless discussions will rage among

the compilers as to how this problem is to be met. Since the com-

pilers are very numerous compared to the first order triangulators,

the net loss is very large indeed.

Just prior to the German invasion of France in 1940 there was

a conference among the allies about the problem of the adjustment

of the Dutch, Belgian and German map and survey data to agree-

ment with the French. The plan called for the recalculation of the

Belgian and Dutch triangulation starting from French triangles.

German triangulation was adjusted by applying blanket corrections

to the latitudes and longitudes. Since these corrections left a dis-

crepancy on the order of 11 meters between certain points of Holland

and Germany, a graph was prepared. This graph was intended to

adjust not the map data but only the lists of surveyed points

which were supplied to the artillery for their purposes.

Using everything except the graph, the U. S. Army Map Service

prepared a series of maps of Holland. The maps were compared

with the coordinate lists. Since the Dutch maps were on the stereo-

graphic projection, there was felt to be some uncertainty about
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putting them into the framework of the Lambert projection used

by the French. These worries became acute when it was discovered

that the original Dutch stereographic coordinates could not be con-

verted to satisfactory agreement with the British coordinate lists

by the aid of information available to the U. S. In the meantime the

invasion of France by the "_ ........... 1,^a • +k _.... _; .... _°nt

portions of the records. For several months, efforts continued at

the Army Map Service and in the Corps of Engineers to discover

some mathematical discrepancy which would explain the difference

between the American coordinates lists and the British lists. During

this time the printing of the maps was delayed. The discrepancy

was finally explained when the British produced the graph, but

the dislocation of the map production program had serious effects

on the later conduct of the war. Had there been an orderly and

well understood program, this delay would not have occurred.

It turns out that the only way of adjusting a whole series of

maps to agreement with one another is to provide a precise frame-

work for the area as a whole and to pin each map to that framework.

Of course the framework itself must suffer arbitrary adjustments

which are disguised as least-squares solutions, but the magnitude

of the discrepancies which are tolerated here can be kept below the

level which is detected by the compilers. As a result the inevitable

squabbling about how those discrepancies are to be adjusted can be

confined to a relatively small number of people. Here the sternest

practicality indicates the need for triangulation data.

When it is a matter of adjusting the triangulation between

several countries, it is an enormous advantage if there exists a

framework so precise that each of the several countries involved

will accept it as superior to its own. The reason is that when a

staff conference is held, each of the military officers in the confer-

ence is representing a group of civilian employees whom he cannot

easily consult. A few of them may be sitting back of the conference

table at his elbow, but the great majority are necessarily left at

home. He cannot easily make concessions. The question of national

pride is deeply involved. To adopt the proposal of another country

when it is obviously unscientifically constructed and to distort one's

native maps and surveys to fit it is felt as humiliating and is re-

sisted. If, on the other hand, the proposal for survey unification is

scientifically drawn and will represent an overall improvement in
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the survey situation even in the separate countries, then acceptance

is much more readily secured.

Thus we see that precision in survey is a tool of the high command.

In securing survey precision one obstacle is more serious than

any other and sets a limit to the precision that is reached. This

obstacle is the crookedness of the path of light through the atmos-

phere. Let us remember that at the moment when we see the sun's

lower limb touch the horizon, the whole of the sun is below the

horizon, and would so appear if there were no atmosphere. That

is to say the refraction amounts to one-half a degree on long rays

through the atmosphere. If we compare the curvature of some 1800

seconds of arc with the desired angular precision, which is less than

a single second of arc, we see the magnitude of the problem which

the geodesists must face.

It is characteristic of geodesy that the method by which this

problem is attacked is the use of the gravitational field of the

earth. In the determination of height above sea level, in the deter-

mination of position on sea level, and in the exploration of the sea

level surface itself, the geodesist takes advantage of the gravita-

tional field of the earth to correct the errors arising from atmos-

pheric refraction.

The first example is the measurement of height. When it is im-

possible to avoid it, vertical angles are sometimes measured between

points whose relative elevation is to be found. The inevitable effects

of the curvature of the ray are minimized so far as possible by

measuring reciprocally over the line; that is, measuring the angular
elevation of B as seen from A and the elevation of A as seen from

B simultaneously. It turns out that this procedure eliminates the

effect of the mean curvature over the line. It does not, however,

eliminate higher order difficulties, and the angular accuracy which

is attainable is on the order of one ten-thousandth or one twenty-

thousandth of the distance. Here it will be noted that by referring

the angles to the zenith at both ends of the line, some use was made

of the earth's gravitational field.
A far more effective use arises when the line is cut up into a

large number of small pieces and the relative elevations are deter-

mined section-by-section. The best instrument for this purpose is

the spirit level. In practice, the surveyor puts the spirit level at
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the center of the small section which he is measuring; he sets the

optical axis level and points first at the rod ahead and then at the

rod in back or vice versa. Through his telescope he can read the

height of the mark on the rod to which his telescope is pointing.

The differenceof the two rod readings isa very good approximation

to the differencebetween the heights of the feet of the rods. The

curvature of the ray is much less troublesome on a short section

since its effectsincrease with the square of the distance.Thus a

sectionone kilometer long cut into 100 meter bits will have only

one-tenth the total amount of curvature that the whole kilometer

piecewould have had. Moreover, by measuring both forward and

backward from the middle of the line,the surveyor isable to make

the effectsof curvature cancel on each separate line.The ray curves

downward from the instrument toward the mark by the same

amount in both cases.By thismethod of spiritlevelingitispossible,

forexample, to determine the heights of points in the center of the

United States with an accuracy of a few tenths of a meter referred

to tide gauges on the coast.At a distance of a few thousand kilo-

meters these tenths of a meter subtend angles of only a small

fractionof a second of arc. We see that the curvature of the ray

has in a certainsense been straightened out by continual reference

to the direction of the vertical.

In measurements of horizontal position,again we find that the

propertiesof the gravitationalfieldare used. It turns out that the

ray of lightis curved in a direction perpendicular to the stratifica-

tion of the atmosphere. This stratificationis in nearly horizontal

layers.If,therefore,the geodesistmeasures angles in the horizontal

plane his angles will be nearly free of the effectsof refraction.It

turns out that on a day when verticalangles are distortedby many

minutes of arc, the horizontal angles as measured will be accurate

within a fraction of a second of arc.

Since the days of Pierre Bouguer, in the middle of the 18th

century, it has been customary to represent the resultsof such

angle measurements as these by supposing them to have been

measured on an imaginary prolongation of the sea level surface

under the land (see [6]).This prolongation iscalled the geoid. In

order to bring the measured lengthsintothe same intellectualframe-

work, it has been customary since the time of Bouguer to reduce

the lengths to the values which they would have had if measured



124 J.A. O'KEEFE

at sea level between the points vertically below the actual ends

of the measured pieces. Thus the net result of an extensive triangu-

lation measurement is the fixing of angles and lengths as if they

had been measured on the geoid. They are accompanied at the

same time by spirit leveling measurements which give heights

above the geoid.

In all of the above the question of the exact form of the geoid

is systematically ignored. For local surveys it is possible to get by

with the assumption that the earth is fiat. No significant distortions

of horizontal angles will appear unless the triangle approaches an

area of 100 square kilometers. For more extensive surveys, up to

the size of a state of the U.S., it is often possible to get by with

the assumption that the earth is a sphere. Even in national surveys

it is possible to make a precise computation assuming that the

earth is an ellipsoid of revolution, but not troubling to get the

exact parameters of the ellipsoid. These methods are perfectly ade-

quate as long as the measurements are only those of horizontal

angles or lengths along the surface, and as long as the results which

are desired from the measurements are of the same kind. In particu-

lar, the heights which are wanted for the construction of dams or

the laying of pipes or other hydraulic problems are of just this

kind. The notion of the true form of the geoid is merely parasitic

in most ordinary engineering applications of geodesy.

The mathematicians have been confronted with a situation which

they thoroughly enjoy. The problem is to devise coordinate systems

and methods of thought in which it will be possible to move about

over the surface of the earth in the spirit of a two dimensional

being who does not know that there is such a thing as up and down.

The problem is one of great mathematical interest. Some of the

most beautiful of the papers of Gauss concerned themselves with

this problem, and the modern theory of relativity inherits its point

of view and many of its mathematical techniques from Gauss, his

pupil, Riemann, and his successors, the founders of tensor analysis.

The geophysicists never really liked this situation and were con-

stantly endeavoring to find out something about the form of the

geoid. They got very little support from the practical people until

the modern age of the intercontinental ballistic missiles, the earth

satellite and the space probe. For each of these, what is needed is

the true x, y, z coordinate of the tracking station referred to the
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center of the earth. To convert the measurements made on the

geoid to measurements referred to the center requires a knowledge

of the shape of the geoid, and it is with this we will concern our-

selves next.

The first approximation to the form of the geoid which is in

practical use today is the assumption that it is an ellipsoid of revolu-

tion with a semi-major axis a, and a semi-minor axis b. Instead of

giving b, it is more customary to give the quantity (a - b)/a which

is called _ the flattening. The measurement of these two quantities

was originally made by determining the radius of curvature at

various latitudes. The first determination was made in the 18th

century by the expeditions of the French academy to Peru and

Lapland. The method has remained in vogue with improvements

right up to the work of Chovitz and Fischer on the Hough spheroid

in 1956. In recent times, however, there has been a tendency to

rely on measurements of gravity for the determination of the flat-

tening. There has also been a tendency to obtain the flattening

from the relationship between the constant of precession and the

hydrostatic theory. It turns out, in fact, that measurements of

the radius of curvature do not give particularly reliable measures

of both quantities a and _. Instead, they give a relation between
the two.

Once an ellipsoid has been assumed, the geodesists concern them-

selves with the deviations between the actual shape of the geoid

and that of the assumed ellipsoid. Several methods of measuring

these undulations of the geoid are in use.

In the first place, it is possible to make astronomic measurements

of latitude and longitude along a triangulated arc. Each measure-

ment of latitude and longitude amounts to a determination of the

direction of the vertical at that point. When this is compared with

the calculated direction of the vertical, the so-called geodetic lati-

tude and longitude, the differences which appear are called the de-

flection of the vertical or perhaps the deflection of the plumb,

depending on whether we think of ourselves as looking upward

or downward along the vertical. Each deflection of the vertical

can be thought of as giving the slope of the geoid with respect

to the ellipsoid at a particular point. If we combine these deflec-

tiens, we can build up a picture of the height of the geoid above

the ellipsoid in much the same way as a picture is built up of the
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form of the topography by clinometric measurements, i.e., measure-

ments of the slope. The process is called astronomical leveling, and
it is found that with a reasonable distribution of the astronomical

stations, a precision of the order of a few meters can be reached.

The weakness of this method lies in the fact that only relative

heights are determined. An initial height above the ellipsoid must

be quite arbitrarily assumed. Hayford arbitrarily assumed a height

of + 10 meters at Calais, Maine. It was also necessary to make a

more or less arbitrary assumption about the place at which the

slope of the geoid matches that of the ellipsoid. For the United
States, the average slope of the geoid matches that of the ellipsoid

very closely; for France the two are made equal for five astronomic

stations near Paris; for England they are equated at the old

Greenwich Observatory; for Spain at the observatory in Madrid,
and so on.

Another method, having a different set of troubles, relies upon
gravity. If gravity data were available for the whole earth then

it would be possible, according to a theorem worked out by G. G.

Stokes, to determine the gravitational potential at every point.

The underlying idea can perhaps be put in the following way. The

intensity of gravity as it is measured at any point depends es-

sentially on the integrated mass in a unit column under the station.

In its effect on the gravity meter, a layer which is at a depth of
several kilometers has no less effect than one which is only a few

meters down. The reason is that while a single gram would be

much more effective when nearby than when far away, yet in terms

of its contribution to the vertical component of gravity it is only

the chunks which are within a reasonable angle from the vertical

that matter. The amount of any layer which is within a cone of,

say, 45 ° from the vertical will be proportional to the square of the
distance from the station, and this increase in the amount of material

balances the decrease in the effectiveness per gram, so that in a

horizontally stratified earth the intensity of gravity is a fair measure

of the column integral of the mass. As a consequence, it is possible

in many cases to formulate the application of Stokes' principle by
imagining the earth to consist of a shell with a surface distribution

of matter which is proportional to the intensity of gravity at the

point. The elaborate integrals which appear in Stokes' equation
are, in fact, not much more than the expression of this idea.
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It will be seen at once that the effectiveness of Stokes' theorem

depends on a reasonably complete knowledge of the intensity of

gravity over the earth. Any gaps in our knowledge will inevitably

falsify the potential, not only as far as the absolute value of the

slope is concerned, but even the shape of the geoid. On the whole,

the dimensions of the geoid from gravity are usually found to

be more accurate in local details but less accurate in overall

shape than the dimensions found by astronomical leveling.

The end result, therefore, of the geodetic surveys of the earth

is a set of x, y, z coordinates in which we have superposed the

measured heights and measured horizontal coordinates on a geoid

whose general shape was found by the methods of astronomy and

gravity (for sample heights see Figures 3 and 4). It is a long

detour to get a simple result, and many modern geodesists have

suggested that this detour is not really necessary. In particular,

Martin Hotine has suggested that surveyors should regard their

measured angles in the same way that a photogrammetrist regards

the angles which he can obtain from a single photograph. Hotine

suggests that triangulation nets should be built up by the step-

wise accumulation of sets of angles, a procedure which may be

called three-dimensional geodesy. The comparison is very instruc-

tive but, in fact, it is found that when Hotine's procedure is carried

out, the results are inferior to those produced by ordinary techniques
of calculation.

The reasons for the failure of three-dimensional geodesy are two-

fold. First, in an ordinary photogrammetric survey most of the

angles are nearly vertical, which means that the refraction of light
along the lines is relatively small. In the second place, the require-

ments for precision in photogrammetric surveys are much less than

the requirements in geodetic surveys. As a consequence of these

two facts, the photogrammetrist is justified in considering that any

direction which he measures is in error by a small solid angle whose

trace on the sphere is nearly circular. The geodesist, on the other

hand, considers that his angles are likely to have errors in the

vertical direction which are orders of magnitude larger than those

in the horizontal direction. It is for this reason that the techniques

of geodesy are so entirely alien to those of photogrammetry.

On _L_.__u_,_rA*L^.,--._,kn_Ait._is n conseauence_ of this thought that when

we observe targets which are very high above the earth, such as



128 J.A. O'KEEFE

satellites, instead of the conventional geodetic targets, which are

lights around the horizon, then the mathematical situation in geo-

desy becomes very much like that in photogrammetry. Since the

future is likely to bring us more high targets to observe on, and

since the mathematics required to deal with these problems is much

simpler than that required in the usual geodetic methods, it is

likely that this whole fragile web of thought which I have been

describing for you is one whose practical significance will become

less every year.

It is still, however, the best way to obtain precise positions.

Finally, its historic importance as the parent of differential geometry

and so of the theory of relativity will give it a place in the hearts

of mathematicians for years to come.

II. The physical significance of the flattening of the earth. It was

Newton who first pointed out that, as a consequence of the rota-

tion of the earth, it was necessary to conclude that the earth is

flattened. He showed that, if the earth were not flattened, then the

seas in the equatorial regions would be more than six miles deep,

and the land would protrude in a corresponding way in polar re-

gions. Newton calculated, on the basis of the assumption of a homo-

geneous earth, that the flattening _ should be about 1/230. A few

years later, Domenique Cassini announced that the remeasurement

of the meridian of France from Dunkirk south toward the Pyrenees

indicated that the length of a degree of latitude tended to increase

as one went southward. If the earth were really flattened, then the

length of a degree of latitude should have decreased going south-

ward, as may be seen from Figure i. (It is to be remembered that

geodetic latitudes and longitudes represent angles between the local

vertical and the reference planes respectively of the equator and the

meridian of Greenwich. If, on the other hand, they were geocentric

angles, then the length of a degree of latitude would be greatest

at the equator and least at the poles.) The discrepancy between

Newton's prediction and Cassini's observations led to a bitter

quarrel between the French and the English mathematicians.

The quarrel has been caricatured by Swift in Gulliver's Travels.

In the end, the measurements carried out by Maupertuis in Lapland

(1736) and by Bouguer and de la Condamine (1735) in Peru showed

that, in fact, Newton was right, and the earth was flattened rather

than football-shaped.
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FIGURE 1. Relation of Geocentric Latitude (_')

to Geodetic Latitude (_)

From the latter part of the 18th century on, it became clear

that the measured value of the flattening of the earth was incon-

sistent with the idea that the earth is homogeneous. The measured

values were much nearer to 1/300 than to the value of 1/230 which

would have been required if the earth had been homogeneous.

In the early stages of the measurements, it was enough to measure

the flattening without specific reference to the surface that was in-

volved; later on, after the introduction of the idea of the geoid,

it became clear that the best surface to discuss was the sea level

surface of the earth. Once the idea had been introduced, it was

possible to give a precise meaning to the idea of the flattening of

the earth, and to calculate the expected value on various assump-

tions about the interior.

A number of particular hypotheses were discussed: the possibility

that the earth was homogeneous, the possibility that it consisted

of a nucleus which contained nearly all of the mass plus a sort of

atmosphere, and the possibility of various smooth distributions of

density which would interpolate between these. A very important

result was shown by Radau about 1880, namely, that the predicted

value of the flattening of the earth depended on its moment of

inertia around the polar axis, and that all distributions of density

having the same moment of inertia would have almost the same
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flattening. The error of this assumption is in the fourth significant

figure, provided that the density always decreases outward. Thus

the kernel of the problem of predicting the flattening of the earth

is the problem of the calculation of the flattening of a body whose

polar moment of inertia C is given.

The theory of this calculation will be given below. For the mo-

ment it is important to view this problem as it was seen up to 1958.

During that time, the problem of determining the earth's flattening

was thought to be best treated by thinking of three unknowns.

These were the polar moment of inertia C, the difference between
C and the axial moment of inertia A, i.e., the quantity C- A,

and the hydrostatic value of the flattening _. From hydrostatic

theory, as mentioned, it was possible to find an equation between

C and t. From the theory of the luni-solar perturbations, it was

possible to determine the quantity H = (C- A)/C, which is called

the dynamical flattening. In addition, it was known that the

quantity (C - A)/Ma 2 = J2 was equal to 2/3(_ - ½m), where m is

the ratio of centrifugal force at the equator to gravity at the equator
and M is the mass of the earth. This relation is somewhat approxi-

mate, since there are small higher-order terms of the order of a

fraction of a percent, but it is also purely mathematical, and de-

pends in no way on assumptions about hydrostatic equilibrium.

This equation related C- A to _, but it should be noted that the

here is the real flattening of the earth and not necessarily the

one predicted by hydrostatic theory. Before 1958, it was customary

to make the assumption that the real _ equaled the hydrostatic t.

One then had three relations among the three unknowns, and the

solution was possible. In recent years, the determination of J2 directly

from satellite orbits has furnished a new relation in this problem. At the

same time, the recognition that the hydrostatic flattening is not neces-

sarily equal to the actual flattening means that we have a new un

known. However, with one more relation and one more unknown, the

solution is still possible. The point which is not clear from the older dis-

cussions is that the hydrostatic flattening of the earth depends

only on the assumed value of the polar moment of inertia. This

is directly determinable now, since we can measure (C - A)/Ma 2

and also (C-A)/C; the quotient of these is evidently C/Ma 2.

From this, the hydrostatic flattening is directly determinable. I
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repeat, formerly it was impossible to obtain C/Ma 2 with adequate

accuracy unless one made the auxiliary assumption that the hydro-

static and the actual flattening were equal. Thus it is the older

situation which is complicated and the newer one which is simple.

III. The hydrostatic flattening. I shall now give the theory of

the relation between C/Ma 2 and e, the flattening, as it would be

in a plastic or liquid body. I shall follow Jeffreys' theory as stated

in [2]. My excuse for giving a long commentary on section 4.03

of his book, which covers only 8 pages, is that I have found these

pages very difficult. Since there are 2 errors on these pages which

appear in the 1952 edition and were reprinted in the 1958 edition,

it is just possible that I am not the only person who has had

trouble reading these pages. (Since 1959, both errors have been

spotted by others beside myself.)

My equations will be numbered in accordance with his; those

with letters following are interpolated.

The theory of the interior of the earth starts from the assump-

tion that the earth is in hydrostatic equilibrium--that is to say,

that it is in equilibrium under the action of forces which cause no

motion and which produce pressures acting equally in all direc-

tions, as in a fluid. Under these circumstances, we will expect that

the density will be stratified in layers such that the surfaces of

constant density will also be surfaces of constant potential. The

result is intuitively obvious; it means only that a fluid seeks its

level. If there were a place where the density above an equipoten-

tial surface exceeded the density below it, then the heavier fluid

above would tend to displace the lighter fluid below the surface.

The point can be proved analytically, but it is one which is too

simple physically to be worth such a discussion. The fact that an

analytic proof can be given reinforces our confidence that the mathe-

matical model is a good description of the physical situation.

It is important to remember that the potential which is involved

here is not the true gravitational potential of the body, but rather

the geopotential. The difference is the centrifugal force which arises

from the rotation of the body. This force is included in the geo-

potential, on exactly the same footing as the true gravitational force.

Once again, this is a matter of ordinary experience; the force which

we call gravity in daily life is 99 percent the real gravitational
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attraction of the earth, but the remaining fraction is the centrifugal

force of the earth's rotation. The difference is quite perceptible in

ordinary life. The flow of the Mississippi requires a drop of about

one foot per mile, which is less than one minute of arc. The maxi-

mum inclination between surfaces of true gravitational potential

and geopotential is of the order of 5 or 10 minutes of arc, so that

without centrifugal force the flow of the Mississippi would be

reversed.

f
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FIGURE 2. Surfaces of Constant Density and

Constant Geopotential

We shall follow Jeffreys in this derivation and designate the

density by the symbol p, and the geopotential by the symbol ,I,.

The surfaces of constant _I, will be surfaces of constant p. We con-

sider a homogeneous, nearly spherical body whose surface is given

by the equation

r-a(l÷$.=.)
according to Jeffreys, where Sn is a surface harmonic, a is the

earth's mean radius, and _n is a small numerical coefficient

(Figure 2). Notice that Jeffreys has written this equation as a

single summation over n; this is merely a convenience to avoid
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the ugliness of a double summation. In fact, the Sn'S must be con-

sidered as functions not only of the degree n of the harmonic but

also of its order rn. Since we shall get rid of all these harmonics

except $2 at an early stage in the game, it is not important to dis-

ting-aish between tesseral and zonal harmonics, and hence m may
be omitted.

We now consider the gravitational potential due to this body.

In calculating the potential, Jeffreys makes the assumption that

all of the _'s are so small that we can neglect second order terms.

Under these circumstances, we can represent the attraction of the

body as that of a sphere combined with the attraction of an in-

finitely thin surface distribution of matter painted on the outside

of the sphere. What is neglected here is the fact that a real 3-

dimensional bulge would attract, not toward a point right on the

sphere, but toward a point half way up through the bulge. The

neglect of second order terms is fully justified for all harmonics

except the second. In the case of the second harmonic, quadratic

terms have been calculated by Darwin. They represent an enormous

increase in the difficulty of the computation without any real in-

crease in the accuracy with which the computation represents

physical reality. The effects of lack of fluidity in the earth are large

enough so that the use of second order terms is not justified even
for the second harmonic.

For the potential outside the body, Jeffreys gives

(3)
4 (1 _1 3 a" )Uo -- -_ 7rfpa 3 -_ = 2n + 1 _ _nSn

where f is the absolute constant of gravitation. This equation may

be derived from Equation 1 on p. 395 of [3], namely:

V= _ Sm(¢_o,Oo)
m=0

Here V is the potential; rn is Jeffreys' n; ¢0, 00 are the coordinates

of the point at which the potential is being evaluated; and Sm(¢o, 0o)

is a surface harmonic, multiplied by its coefficient, defined by the

__1,.... : ....... f_,_ enr the surface density a:



134 J.A. O'KEEFE

a = _-_ (2m Jr 1) Sm(4),O),

where _b, _ are the coordinates of any point. In this case, the mass

distribution corresponding to the ruth harmonic will be

2m -}- 1 Sm((h, 8).
am = 4,ra

For Jeffreys, this surface distribution of mass is produced by

additional thickness of the homogeneous body. It is thus

an _ paenSn.

Equating an to am,

4_a
pa_nSn. - Sm(4_,8).

2m_-i

Substituting in the equation above for V, and multiplying by

[ (which was taken equal to unity in the equation for V) we ob-

tain, for the nth term

4 ,rfpaS 3 a n
" 2n _- 1 r n+l _nSn,

as for Jeffreys. In (3), the first term is nothing but the Newtonian

attraction of a sphere.

For the interior attraction, Jeffreys gives the following equation:

(4) 4 (3a2--r2_-_ urn )U,= _ ,rfpa 3 _ -}- an+l _nSn •n=l 2n _- 1

This equation is obtainable from the equation,

,,  o  (0o,o) if r<a

(which is given in [3]) with the same substitutions for ¢ except

for the first term inside the parentheses. The first term represents

the potential at a point in the interior of a sphere. It consists of

two contributions. The first is that due to the portion of the sphere

interior to the point in question, which is clearly
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4 7rfpr3 '
3

where r is the radius from the center of the sphere to the point

in question. The potential due to the portion of the sphere outside

the point in question is given by t_,r_p. 3a]:_

2_pf (a 2 - r2),

and the combined effect is

4 _pfa 3 (3a 2 - r 2)
,

which is the first term inside the parentheses of Jeffreys' Equation

(4). We now consider a heterogeneous body. The density is con-

stant and equal to p' over a surface given by Jeffreys' Equation (5):

(5) r' -- a'(1 +_,_nSn),

where p' and _n are functions of a'. In order to keep straight the

varying meanings and kinds of radii which are involved in this

situation, let us look at Figure 2. First we have a, which is the

mean radius of the outer surface of the body. It is thus approxi-

mately the semi-major axis of the earth. Next we have a', which

is the mean radius of any interior surface. We can describe a point

of the equal density surface by giving r and S_, since S_ will con-

tain the angular variables. The mean radius of that surface which

passes through the interior point P(r,0,¢), where the potential is

to be found, is defined by Jeffreys as r_.

To calculate the potential, Jeffreys proceeds to take the difference

between two homogeneous bodies, one having the outer surface

corresponding to the density p, and the other having a surface

corresponding to

P' -l- Ap'.

The external potential is therefore clearly given by Equation (6):

4 _" 0 (_ 3 a '"+zr"+_ )(6) U0 = _f P' -- +_--_2n _,Sn da'.Oa' + 1

The quantity p' is not differentiated because while the gravita-

tional attraction of the thin spherical shell is proportional to the

difference in radius da' between its two sides, it is proportional
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to p' itself and not to dp'. The integration is extended over a' up

to a rather than to co, clearly because beyond a there is no density.

For an internal point, we calculate the potential U1 in two parts.

The first term is due to the matter which is interior to the point

under consideration. For this, an explanation exactly like Equation

(6) applies, except that the integral extends only up to the mean

radius r_ through the point in question. For matter external to

the point, we differentiate and integrate Equation (4) in an entirely

similar way:

4 foorlp, cg(_ 3 __,___n3 a 'n+3 )U1 = 5 _r[ cga_ -4- 1 r n+r c, Sn da'
(7)

4 _ 0 (_ _--:._n 3 r" )-4- 5 7v]: p' -- a '2 -4- _,Sn da'.Oa' + 1 a 'n-2

Note that in these differentiations and integrations, the only

variable is a'; r is the radius to the point P at which the potential

is being evaluated; r_ is the mean value of r on the equipotential

through P, i.e.,

r = rl(1 +__,_nS_).

To obtain ,I,, the geopotential, we must add the contribution

from the centrifugal force. Thus

1 lw2r2 1 2r2(1- sin2¢, ) "(8) • = U + -_ wZr2cos2¢ ' = U + _ + -_

Let us note that, after Equation (8), Jeffreys mentions that he

can ignore the difference between ¢ and ¢'. The next sentence,

which discusses the behavior of p and _I, over the equipotential

surfaces, contains the word "then", which appears to refer back

to the remark about ¢ and _'. I have been unable to make sense

out of this relation, and I believe that the sentence about _ and

_' is simply misplaced. In fact, Jeffreys continues to use ¢' until

after his Equation (12). The justification for ignoring the difference

is the fact that trigonometric functions of _' occur only with the

small coefficient w 2 or one of the ePSilons.

Jeffreys proceeds to point out that, in his Equations (7) and (8),

_,, can be a function only of r_. This is because the value of r_ is

constant over an equipotential surface. In particular, ,I, cannot be

a function of the S_'s, which are functions of the coordinates _b,
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X. Jeffreys next defines _, the mean density in the body, by means
of his Equation (9), namely

f(9) M = 4T p'a'2da ' 4

, ,- -.:,k:_ n su-fa_o whn_ mean radiusHe defines the mean aens, Ly p0 w,_,, ..............

is rl by Equation (10), namely

3 ( rl
(10) po=_-/ p_ _.

rl Jo

Jeffreys then proceeds to substitute for 1/r in his Equations (7)

and (8). It is important to notice that r has small coefficients except
in the first term. In this term, therefore, we must retain first order

of small quantities. Elsewhere we can replace r by rl. We notice

also that r can be taken out from under the integral sign and from

the differentiation, since both of these refer to the running variable
a' rather than to the point at which the potential is being evaluated.

The quantities _, and p' are to be regarded as functions of a'.
In obtaining Equation (11), namely

-- _f I |rl

4 1 -- _-]_.S. /" 3p ,a,2da ,
3 rl j0

(11) _-']_-n:{-

1 I
+__ o2r21+ _ ,r21(l _ sin2_b,) ]

= function of rl only,

Jeffreys has twice preferred to replace expressions of the form
(O[/Oa') da' by dr. The function of rl to be used on the right of

(11) is

xll -- 3 .Jr 1

Since the left-hand side of Equation (11) must be constant for

a given r_, the coefficients of all of the S.'s, where n is greater than

or equal to 1, must vanish because the S.'s contain the angle vari-
_t.,^_ T¢ 4-h,.,;. COOfl_oiont._ did not vanish, then the left-hand side

of the equation would depend on the angle variables. Moreover,
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because of the orthogonality properties of the S,'s, no combination

of the Sn's could have the same effect as one of them. Hence, it

is not possible to arrange the coefficients in such a way that the

variation of one Sn is covered up by the others. The only way to

make the whole left-hand side of (11) independent of the angle

variables is to make the coefficient of each S_ equal to zero. When

we do so, we get Equation (12) after dividing through by 4_/:

/" r 1
_n

] p'a "2 da"
rl jo

(12)

! n _ 07

"t- --2n -4- 1 jo p'd(a'_+3_,) -4- r_ p d

except in the case when Sn is (1/3 - sin2¢), when we get an extra

term, -_o2r_/87r[, on the right-hand side. The right side is there-

fore written (0,- _o2r2/87r[). We next multiply (12) through by

r_+_ and replace r_ by r:

-- rn_n p'a '2 da'
jo

(12a)

1 p'd(a'"+3_.) + r_"+_Jr o "k,a-7_--2 = O.+ 2n +----_

We now consider the variation of the potential with distance

from the center of the earth, so that we regard r as a variable.

In differentiating the integrals, it is important to remember that

the integral for a general function [(a') is to be determined by

d f r/(d--r a') da' = [(r).

With this in mind, Equation (12a) is differentiated as follows:

{ r_d_n_ frp,a,2da,_r_npr2-- nr"-l_ -- dr) .to

+ 2n A------1 p (n + 3)r_+2t_ + rn+3p

+ (2n A- 1)r z_ p'd *_ - r z_+l

• p-_--r .-fi-_2--pt_.{-n+2)-__l -
5to2r 4

87r[ "
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In writing this equation, we must keep in mind that p is the value

of p' when r = a. This equation simplifies to Jeffreys' Equation

(13) when we combine the two terms in the second bracket which

depend on d_./dr, and note that the sum of three terms in t.pr "+2

is zero.

Making _ ...... k_,:,..,; ....... _,_,,_ at Jeffreys' Equation (13),

which includes both integrals and derivatives:

(13)
)fo r fa ( )

(r "d_" p'a '2 de' + r _
-- \ dr + nr"-l_" p, d _.

We now divide by r _ and get Equation (13a):

). p a '2 f ( )
/ 1 d_. n _" a d

jo
(13a)

=(0, 8,# / "

We differentiate with respect to r and note, as before, the effect

of variable limits of integration. We further note that p is the value

of p' at a'= r. This gives Equation (13b):

( frn de. 1 d2e. n(n + 1) n d%_ p,a,2da,
r "+l dr _- r" dr 2 r "+2 _" + r "+1 dr ] do

(13b) n

/l d_, n , Ida, 1 (--n+2)]_-_-_r -4-_ -'_En) pr2-- P _r r_-:--2-[-_" r"-I =
O°

In constructing this equation, we did not differentiate under the

integral sign in the first term because all quantities there are re-

garded as functions of a'. We multiply through by - r", and this

gives (13c),

2e. n(n+ 1) ) frp,a,2da, [d,aA___)_r 2 r2 tn + pr 2jo \ dr
(13c)

[ r 2d_" r_,(n - 2)] = 0.+P L dr

which simplifies into Jeffreys' Equation (14):

5w2r4._
=(0, sVd-]
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);(14) \ dr2 r2 _ + 2 \-dr-r -r-}pr2-_O.

Now, from Equation (10), it is easy to see that

rp, a,2 da, _ -_ rapo.

Substituting for the integral and dividing through by r3/3, we

have Jeffreys' Equation (15), which is the famous equation of

Clairaut:

(15) po \ dr 2 r 2 _ + r- \ dr = O.

The equation of Clairaut was obtained in 1743. In the intervening

two centuries, a great deal has been found out about the possible

solutions of this equation subject to the restriction that the density

decreases steadily downward. There are two reasons to think that

this will happen: First, the denser materials would tend to sink in

fluid equilibrium; second, materials which are at a lower level are

under high pressure and, therefore, will be somewhat compressed.

It follows that the mean density p0 within a given surface will also

be greater than the local density p, except at the center where

p0 - p -_ zero.

We suppose that for small values of r, _ varies like r p. Then,

substituting in Clairaut's equation, we have

[p(p 1) r p-2 n(n + 1) 6p- r2 r p] +r(PrP-l+_ -) =0.(15a) po

Dividing by r p-2 and also by p, which equals p0 at the center of

the earth, we have a quadratic equation in p:

(16) p(p - 1) - n(n + 1) 8-6p + 6 -- 0.

This equation is solved by the usual processes, giving either

(17) p = n - 2 or p = - n - 3.

Of the two solutions, we can discard p -- - n - 3, since in this case

the solution would be proportional to r-_-2S,. As n goes from -}- 1

to ¢o, the exponent on r would be negative. Such a solution would

go to oo at the center of the earth, and is therefore impossible. If,

therefore, for p = n- 2, we take n = 1, then
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en ----kr -1,

d_n k
(17a) dr rT '

d2_n 2k

dr 2 r3

Substituting, we find that, for this case, Clairaut's Equation (15)

holds identically for arbitrary density functions p and p0. The radial

displacement is proportional to $1 regardless of the distance from

the center, and this, in turn, implies a rigid body displacement

which need not be further considered.

If n = 2, then _ is neither infinite nor zero near the center. For

this border line case, a special treatment is needed because n - 2

vanishes, and hence the previous treatment leads to constant ellip-

ticity. We let

hold for small r. In this equation, H must be positive so that the

density may increase as r increases, and k must be positive to

avoid an infinite value of the density at the center. We further

suppose

(18) _2= A + Br s.

We substitute in Equation (15), and find (18a):

oo[Bs(s-1)r s-2 6(A +r2Br_) 1

(18a) +r--6P(Bsr'-l+--_) = O.

In this equation, we note that

6A 6Apo( _o)(18b) -r_ (p - p0) = _-_ 1 - = - 6ApoHr h-2.

We also can transform the terms whose coefficient is 6pB:

(18c)

_(6Bs+6B)r _-2= !pn-po(l\ -po_p) l_j (6Bs+6B)r _-2

= oo(6Bs + 6B)r _-_ - ooHrk+_-2(6Bs + 6B).
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The second term in (18c) disappears because it is of an order higher

than r s-e. The remaining terms of (18a) are all multiplied by p0,

so that we find

(19) Bs(s + 5)r "-2 - 6AHr k-2 = O.

Equation (19) can be true only if s = k. In this case, (19a) will hold:

(19a) Bk(k + 5) = 6AH.

Since k is positive, B must have the sign of AH. H, however, is

positive, so that B has the sign of A. Therefore, _2 must increase

numerically with r.

Finally, if n is greater than 2, then _n behaves like rn-2 for a

small r. We thus say that c_ increases numerically with r in all

nontrivial cases for points near the center of the earth.

If the _'s should not continue to increase all the way to the

surface, then we would come to a place where

den
--0.

dr

Then the following would hold (Jeffreys' Equation (20)):

d2,, { 6p},,(20) _ = n(n-}-l)-_o r2--"

Since n(n + 1) is positive and is at least 6, it follows that the

right-hand side of (20) is at least 6(1- p/po), which is positive,

since p is always less than p0. Hence, the second derivative of _, will

have the sign of _ and, therefore, _, would immediately increase

again in absolute value.

Our next step is to show that the _'s should be zero except for

n = i and n = 2. In Equation (12), if we put r_ = a, then the integral

from r_ to a vanishes. We also substitute from Equation (9) for

(20a) o,a,2da, 1 a3 _
----_ p,

and Equation (12) becomes

1 a2p___ 1 1 fo"(21) -- _.. "5 2n -}-------1"a--_-Y p'd(a'n+3_n) -- (0, - _o2a2/8_[).

We denote the integral in Equation (21) by I. We assume that
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_ is positive; then, integrating by parts, we get

-- atn+3{ ndp'.(22) I = paa_,_a "÷'_ ,=o

Here the subscript "a" indicates values taken at the surface. Since

p' is a decreasing function of a', it follows that dp _ is negative, the

integral in Equation (22) is therefore negative:

(23) I > pa_,ma "+3.

On the other hand, since _. is a positive, increasing function of

a', it is always less than the boundary value c._ unless n = 1. Here

Jeffreys says that _. does not change. Actually, it has been pointed

out to me that it must increase without limit near the center, but
this case is trivial.

(23a) - a'"+3e.dp ' < - _,,,, a'"+3 dp '.
Ja'=O =0

Substituting (23a) in (22), we have

( f; )(23b) I < _ paa "+3 - a'n+3dp ' .
,,_ _ 0

The right-hand side of (23b) represents the result of integrating

by parts the expression

aa pt da_.+3

We replace p' by p+ (p' -p):

I I ]a p' da '"+3 = _._ ,+3 q_ (p, _ _) da,.+3
(23c) _ ,=o ,=o "

To evaluate the integral, note that

(23d) d(a '"+3) = (n -4- 3)a 'n+2da' = n +___._3a,nd(a,3).
3

Therefore,

I [ ; ]n -4- 3 (p, _ -_)a,,da, 3
(24) _ '=° p' da 'n+3 = _na pn+3_4_ _ '=0

For n ----0, the last integral vanishes because the differential d(a _3)
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weights the integral in proportion to the volume. In this case, the

integral of p'-p-must vanish by the definition of mean density.

In general, because of the fact that p is a volume average of p', it

will be true that the integral of (p' - p) multiplied by any constant

and taken from 0 to a will be 0. In particular, if we choose a0

for the level where p' = p_ then, since p' is a decreasing function

(p'-_)>0 under this level, i.e., for a'<ao, and (p'-p)>0

above this level. Then the product

( p' - p) (a'" - a_)

will be negative for any power of n greater than 0, since, for all

such powers, the power of the greater number is greater. Hence,

f f(p' -- p)a'"da '3 = (p' - p)(a '_ - a_)) da '3 < O.
' =0 ' =0

Therefore, the integral in (24) is negative. Since the remaining

term is necessarily positive, the integral can only decrease the

whole expression, so that

I < _p-a "+3.

Using (23), we see that the quantity I can, in fact, be bracketed

between the limits

_napaa "+3 < I < _naP--an+3.

All the above assumes that _ is positive. If it is negative, the

inequalities are reversed, and hence, whether _ is positive or negative,

I - n+3= O_pa ,

where 0 < 0 < 1. Going back to (21), therefore,

1 0______) = (0, °_2aS_(25) _"_a2P ( -- 5 -t- 2n -t- 8--_) "

If the right-hand side is 0, this equation cannot be satisfied for

n > 1, since, in that case, the parenthesis on the left must be less

than 0. Its coefficient is composed of quantities which also cannot

vanish except at the center of the earth. Hence, for all n except

n = 2, the _, must be 0 (to the first order) throughout the earth.

No harmonics except the second degree zonal harmonics will exist.

With respect to the second degree zonal harmonic, for which the
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right-hand side is negative, the value of _ must be positive. This,

however, implies that _ is positive everywhere, since we have found

that the _n's must increase steadily from the center. Jeffreys sum-
marizes these results as follows:

"On the hydrostatic theory the radius of a surface of constant density

contains no harmonics other than that representing the ellipticity; the

ellipticities increase all the way from the centre to the surface, and the

surface is oblate."

Returning to Clairaut's Equation (15), for n = 2, we set

(26) _2 --- _ = r3_,.

Its derivatives are:

de r3dX
d-r = 3r2X _- drr'

d2e 6r2d_ + 3d2k_r 2 = 6rk + r dr 2 .

and we would also have

d2k _ 24p ),,
dr 2 por2

and thus the second derivative would necessarily have the opposite

sign from ;_. But k is positive. Hence,

Substituting these in Clairaut's Equation (15),

po(6rk+6r 2dk 3 d2k )6P(3r2_wr3dk )-_r A-r _- 6r_ -}- r dr + r2_ = O.

Dividing through by por3, we get

(27) d2_ (p + ) ld_ 24p _dr 2 +6 _o 1 r-_r +----- O.por2-

We note that for small r, e, behaves like r p, where p = n - 2.

For n -- 2, this means that _ behaves like a constant and hence,

from (26), _, must behave like r -3. It follows that _ initially de-

creases. It cannot afterwards increase, since at the minimum,

dX

dr - O,
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d2x

dr 2

would necessarily be negative, and thus X must decrease all the

way from the center to the surface.

In (13), we put n=2; then $2= 1/3-sin2_ '. We consider

conditions at the surface where r = a; then the second term dis-

appears because of the coincidence of the limits of integration, and

the integral in the first term is, from Equation (9), replaced by

(1/3) pa _. Then

1
[a 2 -4-(_)r--a 2a_a] -- 5w2a4(28) 3 P-a3 8_r[

To the first order, we can say that

w2a 3 w 2
m --

[M (4/3) 7r[_'

i.e., very roughly, the centrifugal force at the equator divided by

the intensity of gravity, and then the right-hand side of (28)
becomes

5__ma4_ "
6

We multiply through by - 3/a3p, and get

(30) a drr +2_"=_m"

At this point, it is advantageous to introduce a new dependent

variable _, which is defined by

d log e _ r d_
(31) _ - d log r _ dr"

The derivatives of _ are

d_ .__. d2e (ld_ 2__(32) dr = r' d-_= drr + r 2 ] '"

When these are substituted in Equation (15), we get

(_d_ _2-_ 6) (_ 1)(32a) p0_ drr A- r 2 r2 A- 6p_ -4- = 0.
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We multiply this through by r2/_po, and obtain

d_ 2 _ -- -- O.(33) r_+ 7--6+(7+1) 6p
po

In order to eliminate p in Equation (33), we start from Equation (10):

3 _oorpPap2da ,,(33a) po = 7

which, yields

ld

3 dr (p°r3) = pr2

and

(33b) 1 d (por3) 1 dpo
3 dr 3 dr

• r3-}-por2=pr 2.

Dividing by por2, we find

1 r dpo p
(34) _- 1 =--.

3 po dr po

When this is substituted in (33), we get

d7 , 2r dpo ..
(35) r drr + 72 + 57 -_ _0 -d-r-r(l + 7) = 0.

Now it turns out that the expression por 5 • 4(1 -{- 7) is of great

importance in this theory. We shall transform the equation so as

to put it in these terms. Our first step is to differentiate this ex-

pression logarithmically, which gives

d

dr {p°r5 4(1 + 7) } 1 dpo 5 1 d7
(36)

por54(1+7) po dr _-r+2(1-}-7)dr"

In terms of this logarithmic derivative, we evaluate dT/dr and get

(36a)

d

d7 d--r{ p°r54(1 + 7) }

d--r = 2(1 -}- 7) {por5 (1 _}_7) }

1 dpo
-- --. +"Igl _ --

po _1 + rl) dr "

10(1 + _)
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When this is substituted in (35),

J. A. O'KEEFE

d
d-_ { p°r5 _(1 + 7) }

2r(1 + 7)
(36b) por 5_(1 -}- 7)

- 10(1 _- 7) - 2r(1 -}- 7) dp___o
po dr

+ 72 + 57 -}- 2r dpo
po--_-(z + 7)

--0.

When this equation is simplified, it gives

(37) 24(1-}-7) d { por5 4 (1_b T) } __10 1+7__7_T 6
po r4 dr

or

(37a) d {p0rS_(1+7)} =
( 1 1 )10 1 -_- _ 17 -- _ 172 por4

_(1 + 7) 2

If we set

(39) ¢(7) =

1 1 2

_(1 + 7) '

then

(38)
d

d--r { P°rs_(1 -}- 7) } ----5p0r'¢(_).

Jeffreys notes that this equation is due to Radau (1885). The point

of introducing ¢ is that it is effectively a constant within the earth.

By logarithmic differentiation, we can obtain from ¢ the expression

1 de

(40)

1 2

2 - 1--0_ 1 1

1 1 72 2 1+71+57-i- d

1 7(1 -- 37)

i /20 1 _{_ _ 7 _ __._ 72 (1+7)

Clearly, ¢ has a maximum or minimum at 7 -- 0 and at 7 = 1/3.

Near 7 = 0, the logarithmic derivative of ¢ is increasing with 7,

since the numerator is nearly 7 and the denominator is nearly 1.

Hence, at this point, we have a minimum of ¢. At 7 -- 1/3, on



THE SHAPE OF THE EARTH 149

the other hand, we must have a maximum, since this point is a

simple 0 of d_/d_, and since there is no discontinuity of the function
or its derivative is this interval.

If we return for a moment to the quantity e, we find that, since

e/r 3 is a decreasing function, its logarithmic derivative (l/e)(de�dr)

-3/r will be less than 0. Therefore, _ > 3. If we substitute the

conventional values at the surface of the earth, namely M = 1/288

and ea = 1/297, we find that _a = 0.58. (Jeffreys incorrectly gives

0.57.) Values of _ are as in the following table due to Jeffreys,

with slight modifications:

= 0 1/3 0.57 3

(_) = 1.00000 1.00074 0.99961 0.8.

Note that Jeffreys has 0.99928 for _ = 0.57; this is another mistake.

For r = 0, _ -- 0. We see that ¢_is very nearly constant. Its maximum

value exceeds unity by less than 1 part in 1,000 and, at the surface,

it is sunk below unity by less than 1 part in 1,000. We have not

entirely excluded the possibility that _ may make a wide excursion

beyond the values that it reaches at the center and the surface

of the earth. This is, however, very improbable and, unless this

happens, we can say to an accuracy of about 1 part in 1,000 that

d

(42) d-r { p°r5 _(1 -t- n) } = 5por 4,

which is clearly an enormous simplification of Equation (37). Now

we would like to express these results in terms of the moment of

inertia. For a homogeneous sphere, the moment of inertia is known

to be (2/5) Ma 2, or

8

1--57rpaS"

Differentiating, the moment of inertia of a thin spherical shell is

8

-_ lrpr4Ar,

and that for a nonhomogeneous sphere is therefore

(43) C -- -_ Ir pr4dr.

To bring this in terms of p0 and its derivative, we first note that
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the derivative of p0 in (33a) is

dpo _ 9r_4 (roa,2 da, + ___pr2 = _ __
dr .io

Then, multiplying by r 5, we find

r5dp° = _ 3r4po-}- 3r4p.
dr

We can now replace p by saying

(43a) _ lr pr4dr --- -9 _ 3r4pdr = -9

J. A. O'KEEFE

3p0 3p

r r

•";(3r4po+rS_r) dr,

which follows Jeffreys' Equation (43).

We now integrate the second term of (43a) by parts:

_'_rsdP°dr= Ji_5;r4podr=aS__5;r4podr.(43b) J0 dr rSP°

We combine the second term of (43b) with the first term in the

bracket of (43a) to get Jeffreys' Equation (44):

(44) C= _ {paS- 2;r4oodr }.

But, integrating (42), we have (45):

1 _a 5_](1 + _).(45) _r 4dr = -5

And when (45) is substituted into (44), we get (46):

8 _P-a5 { 1-2 }(46) C = _ _ _(1 + _a) ,

or, in terms of the mass,

}(47) ._2 =g 1-g4(1+_o) .

In view of (30), the Equation (31) can be rewritten in the form

5m
(50) _o - 2.

2_a

When (50) is substituted into (47), we get a direct relation re-

tween the moment of inertia of the earth and the hydrostatic value
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of the flattening:
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lOre

(3c .4+25 1 2/_2

Numerical evaluation of this equation, or the equivalent pair

of equations from Jeffreys, yields approximately 1/300 for the

hydrostatic value of the flattening of the earth. If account is

taken of some second order corrections whose theory has been dis-

cussed by George Darwin, and which are summarized in the chapter

by H. S. Jones in Chapter 1 of [4], it is found that the hydro-

static value of the flattening is near 1/299.8. Figure 5A and Figure

5B show gravity anomalies referred to this flattening.

It is worthwhile to insist on the subtleties which are involved

here, because they mean that the hydrostatic flattening is less than

the actual flattening. The value which has previously been spoken

of as the hydrostatic flattening, namely, 1/297.3, is greater than

the actual flattening. If it were really true that the hydrostatic

flattening were greater than the actual flattening, it would be very

difficult to furnish an explanation. In the actual case when it is

less, there is an equally embarrassing superfluity of explanations.

Conceivably, the difference is due to the melting of the polar ice

caps and some lag in the restoration of isostasy especially, perhaps,

in Antarctica. Again, it is conceivable that the discrepancy is a

consequence, in some way, of the fact that the polar caps are colder

than the equator. It turns out that the temperature difference con-

tinues to exist for a surprisingly great distance into the earth. Since

we are dealing with quantities of the order of 1 part in 100,000,

it is clear that even a very moderate temperature difference may

seriously affect the earth's flattening. Again, because of the fact

that the laws of heat transport by conduction are irreconcilable

with the kind of thermal stratification which is implied by the

theory of hydrostatic equilibrium, there will be some necessary

distortions of hydrostatic equilibrium in a rotating body, as was

first pointed out by von Zeipel (details are given in [5]). Finally,

and in my opinion most plausible, there is the explanation of

G. J. F. MacDonald (personal communication, 1960) to the effect

that _he excess bulge around the equator is the result of a re-

tardation in the earth's rotation over the past millions of years.
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I do not think that any of these explanations can be excluded in

a satisfactory way, with the possible exception of the melting of

the polar ice caps. Kaula has made some computations along this
line which indicate that it is numerically inadequate. I am inclined

to think that the most plausible explanation, if we must choose

one, is the retardation of the earth's rotation, for which there

exists independent evidence.

In any case, it is important to notice that the flattening is a

direct function of the polar moment of inertia. If we are given

another functional relationship between these two quantities,

such as that provided by the luni-solar precession which yields

the quantity (C- A)/C, then we are able to solve for the hydro-

static flattening. The solution does not depend in any way on what

the actual value of the flattening is. If we know C within 1 part in

10,000, then we can calculate the value of the hydrostatic flattening

to approximately the same accuracy. On the other hand, an error

of 1 part in 10,000 in the actual value of C would upset the ob-

served value of the flattening by the totally unacceptable amount

of 10 units in the reciprocal of the flattening. Thus, the presently

observed values of the actual flattening are better than are needed

to make a satisfactory calculation of the hydrostatic flattening.

References

1. Cassini de Thury, La meridienne de l 'ObservatoireRoyale de Paris, H. L. Guerin
and J. Guerin, Paris, 1744.

2. H. Jeffreys, The Earth, Cambridge Univ. Press, Cambridge, England, 1952.
3. W. D. MacMillan, Theory of the potential, Dover, New York, 1958.
4. G. P. Kuiper (ed.), The earth as a planet of the solar system, Vol. 2, Univ.

Chicago Press, Chicago, Ill., 1954.
5. A. S. Eddington, Internal constitution o[ the stars, Cambridge Univ. Press,

Cambridge, England, 1928.
6. Pierre Bouger, Mere. Acad. R. Sci. Paris, 1744, 249-297.

GODDARD SPACE FLIGHT CENTER



John A. O'Keefe

The Stability
N 67-17328

of a Rotating Liquid Mass

The problem of the fission of a rotating liquid mass is one which

draws on investigations going back some 200 years. The problem has

been most extensively treated on the basis of the assumption that

the mass is a homogeneous fluid. It is quite clear that the earth is not

now a homogeneous fluid; it is even conceivable that the earth never

was a homogeneous fluid. Even if it never was, it is worthwhile to

discuss the case of the homogeneous fluid because it gives us the

best-explored road into the problem. Starting from this road we can

make such changes as are required to account for the actual hetero-

geneity of the earth. We follow the treatment of Jeans 1919, and our

equations are numbered like his, in his Chapter III. New equations

which we have inserted are followed by small letters.

We begin by asking about the forms which would be taken by a

rotating fluid body which is constrained to be an ellipsoid. We shall

show that certain ellipsoids are in fact equilibrium configurations.

Here again we have simplified the problem and we must later justify

the choice of an ellipsoid by showing that it is, in fact, the stable

configuration for certain velocity ranges. Note that we are here inter-

ested in an exact solution to the approximate problem, rather than,

as heretofore, in an approximate solution of the real problem.

155
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In preparation for our problem we note that the equation of the

boundary of an ellipsoid is

x 2 y2 z2
-- ---- 1,(51) a2 -t- _--f- c2 -

where the semiaxes of the ellipsoid are a, b, c. If we wish to consider

a range of possible ellipsoids then it is useful in many cases, and in

particular in the present problem, to consider the family of confocal

ellipsoids given by the equation

x 2 22 z2

(52) a 2 -k----_-k b2 -k---_ + c 2 -k _, - 1,

where _ ranges from 0 to co. Following Jeans, we put

a_-t - _ = A; b_-k X = B;c2-k _ = C
(53)

V/((a2_k h)(b2-t- h)(c2 T _)) = (ABC)I/2= 5.

We take the quantity abc = r_)and the mass of the ellipsoid as given

by

4 4 _rpr_).
M = -_ 7rpabc = 5

Now the potential of this mass at an internal point with coordinates

x, y, z is given by ([5])

(55) Vi = - 7rpabc -k -_-k -_- 1 -_

if we take the units such that the absolute constant of gravitation

F is 1. For practical use, we should multiply p by F wherever it

appears. Notice that the integration is over _,; thus the potential can

be considered as composed of a part which increases proportionally

to x _, another which increases with y_' and a third which increases

with z_ as we move about in the interior of the ellipsoid.

For an exterior point the famous theorem of Ivory asserts that the

potential is the same as that which would have been obtained for an

ellipsoid whose surface passed through this exterior point and which

had the same mass. This result is summed up in Jeans' equation

(54) V0 = - 7rpabc -k -_ + _-- 1 -_,
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where X is the parameter of the ellipsoid which passes through the

given external point. Fuller discussions of this problem are to be

found in [3] and in standard treatises on potential theory.

Now Jeans introduces a set of abbreviated notations. He writes

f00 _dx -jA

and also

foo _ dx jAmBncP .(56) AmBnCP _

With these notations the equation for the interior potential assumes
the form

(57) Vi = - 7rpabc(X2 J A -4- yZ Jls -k z'SJc - J) .

In this form it is easy to see that the potential is the sum of a con-

stant term and terms dependent on x", y2, and z z as previously

mentioned. In addition, we find that J,_ -k Js --I-Jc = 2/abc because

(63a) V "_Vi = - 4_rp.

We can also verify by a fairly simple manipulation the tormula
that

(59) J,- JA = (a _ -- b "_)JAs

and similarly his equation

(60) JAmBn+lcp -- JArn+11jnCp= (a _ - b'_)JAm+_sn+lcp.

With these preliminaries we remark that on a rotating body the

potential referred to the rotating axes is given by

(62) V_ + _ _' (x" + j).

On a figure of equilibrium the above potential must be constant

over a whole boundary. If we also require that the boundary shall

be an ellipsoid then we have an equation of the ibrm (51). The

normal way of combining these two equations is to multiply one of

them by undetermined multiplier, say 0, and add to ibrm a new func-

tion, M, as follows:

.....( ,z1 ..... y.,) x'_ _ 2
M = Vi+-_,,'_x-+ - +oTrp,u_ -_n- b_-r-c_- •
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When this is done we can regard x and y, for example, as inde-

pendent variables on the surface, so that we can legitimately ask

that the partial derivative of M with respect to x and y following

the surface shall be 0. When we perform the necessary differenti-

ations we must include z as a function of x and y. We shall have,

therefore,

OM(x,y) OM(x,y,z) OM(x,y,z) Oz

Ox Ox Oz Ox'

oM(x,y) OM(x,y,z) OM(x,y,z) Oz

Oy Oy Oz Oy"

The second terms on the right are rather ugly, and since we have

not yet decided what we are going to do with _ it is permitted,

since the equations are linear, to say that we will choose _ in such

a way that

aM(x, y, z)
--0.

Oz

When we do so we have three similar equations in x, y, and z, since

the ugly terms on the right-hand side have now been disposed of:

2

(65) JA -- -- __ .

2_-pabc a '_'

2
(66) Js - -- -- .

2_rpabc b2'

(67) Jc = _.

Two of them simply express the condition that M is constant over

the surface; but the third equation in effect defines _. Naturally

it makes no difference which of the equations we consider to be the

one which defines _. If' we add all three equations we obtain:

2_ _ (1 1 1)J A + J _ + J c 2_rpa bc - 0 -_ + -_ + -_
_641

/ ,2 \

(2 2/1-xo 
_+_+_ abc -_+-_+_
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Jeans gets the same result by taking advantage of a special

property of the combined equation. He obtains the divergence of M

and notes that if the divergence vanishes the function is a spherical

harmonic. He can find a value for 0 which will make the divergence

vanish. The function is now a spherical harmonic and constant over

the boundary of the ellipsoid, hence it must also be constant

throughout the mass of the ellipsoid. Under these circumstances he

can obtain the three important equations simply by equating to zero

the coefficients of x 2, yZ and z 2since the function must be independent
of the coordinates.

From these equations Jeans proceeds to obtain the conditions for

the existence of rotating homogeneous ellipsoids. He first subtracts

corresponding sides of {65) and (66} and obtains:

2 0
O _0_(a 2_b)a_ 2.(67a) JB -- JA = (a 2 -- b2)JAs = -_.- a 2 --

Theta is then eliminated between this equation and (67}) which gives
us

(68) (a 2 -- b'_ [a2b2JAB- c"Jc] = O.

Now it will be clear that it is possible to satisfy the three funda-

mental equations either by taking

(69) a 2= b2

or

(70) a2b2JaB = c'2Jc.

These two cases correspond respectively to the Maclaurin ellipsoids

and the Jacobi ellipsoids. The Maclaurin ellipsoids, it will be shown

later on, are stable for small values of the angular velocity of rotation.

All known planets are in the region of stability of the Maclaurin

ellipsoids. They are oblate ellipsoids of revolution. The Jacobi ellip-

soids are produced only, it turns out, when the velocity of rotation

is such that a breakup is being approached. We, therefore, begin by

discussing the Maclaurin ellipsoids. Clearly these include the case of

the sphere for which a = b = c and the angular velocity of rotation

is 0. It is important to see that we have shown that these ellipsoids

are equilibrium figures, whether or not they are figures of stable

equilibrium.

For the Maclaurin ellipsoids we can omit equation (66) which is
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identical to (65) and we can eliminate 8 between equation (65) and

equation (67) which gives at once

Ja _
(70a) a_dA -- c_dc

2,rpabc"

We next substitute in equation (70a) for JA and Jc and get

a_ fo _ dx C2fo_ dX _ _'_a 2(a "_+ h)A (c "_+ )_)A 2,rpabc'
(70b)

f0 _ dx _a _{a'_(c'_--F h) - c_(a2--t- k) } (a2._ F X)(c._ + h)A -- 2_pabc

which is easily transformed into

(71) (a_- c_) _ _d}, _ 2
a t flo ACA 2_pabc"

The integration of (71) offers some difficulties. See [5, Vol. II, p. 71].

According to [3, p. 131], we have that X', the force component in the

x-direction, is, in Jeans' notation,

-- = 2_pabc
x

Now Moulton tells us [3, p. 134] that when the lower limit of integra-

tion, which he calls _, is 0, then in the case of an oblate spheroid we
have

X' V'(1 - e")
- - 2_p

x e _
[--ev/(1 -- e _) A- sin-le]

which must equal

--2rpa2Cfo®_--A -

and from this it follows that

2Tpa2cJA

a_CJA = %/(1 -- e_) [--e%/(1 -- e 2) + sin-'e].
e_

In the same way we can use the z coordinate data of Moulton

Z' fw d_- 2,pabc --
z CA"
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For n = 0

Z' 4_p[ e 1z - e_ e- _/(1-e "_)tan-_/(l_-ez) •

so that

2
ca2Jc = _[e - V_(1 - e_)sin-le].

Combining these two we form the equation

Jac CJCa_ _ _1 { _1 _/(le_- e_) [- ev_(1 - e"_)A- sin-_e ]

2 %/(1 -- e_)[ - e- sin-'e]}e_ Lv"(1 - e_)

which reduces, after some trouble, using (70a), to the result

2 __(3_2e._)(l_eZ)_j._sin__e_3(__l )(72) _p

161

where e is the eccentricity defined by e"_= (a "_- c Z)/a "_.From this

equation it is possible to calculate values of the quantity ofz/2_-p as

a function of e. These values are tabulated on page 39 of Jeans. The

critical value is 0.81267 for e which is the value at which the

Maclaurin spheroids cease to be stable and make the transition to

the Jacobi ellipsoids.

A calculation of the Jacobi ellipsoids is considerably more difficult.

Numerical values have been obtained by the use of elliptic integrals

by Darwin. Although the Jacobi ellipsoids and the Maclaurin ellip-

soids can be calculated past the point of junction the Maclaurin

spheroids will be unstable if they are more oblate than this critical

value. The situation with the Jacobi ellipsoids is different. They form

a continuous sequence which goes from ellipsoids with a large value

of a through those where a = b, to ellipsoids with large value of b

relative to a. The Jacobi ellipsoid for which a = b coincides with one

of the Maclaurin ellipsoids and represents the junction between the

Maclaurin ellipsoid and the Jacobi ellipsoids. The series is entirely

symmetrical so that those with increasing a and those with increas-

ing b are effectually identical.

The situation which has arisen here is typical of that in the study
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of rotating liquid mases. A sequence of configurations, in this case

the Maclaurin ellipsoids, can be traced up to its intersection with

another series. Beyond this point the first series becomes unstable

and the stability is transferred to the second series.

When we pursue these studies by considering a further addition

of angular momentum we find that the Jacobi ellipsoid becomes

elongated. When the long axis comes to be something like 1.9 × r0

a new deiormation begins. In place of the Jacobi ellipsoid we have

an asymmetrical figure which is generally called the pear-shaped

figure of equilibrium because one end is narrower than the other. The

calculated forms of the pear-shaped figure show, however, that it is

more like the shape of a tenpin, that is to say relatively long as

compared with a pear.

A series of pear-shaped configurations can be calculated going to

higher and higher values of the angular momentum. These configura-

tions, however, unlike the Jacobi ellipsoids, cannot represent the

actual path of evolution of a rotating liquid mass. It turns out that

the pear-shaped configurations are unstable. They are unstable not

only in the sense that the effects of tidal friction will gradually tend

to modify the body but in the more drastic sense that as soon as the

Jacobi ellipsoid has received enough angular momentum to begin

the formation of the pear-shaped body then it must continue catas-

trophically to change in some way which it has not yet been possible

to follow mathematically. Although the pear-shaped configurations

do not give us the actual path over which the body moves as it

breaks up yet we may be sure that the breakup begins at the point

where the pear-shaped configurations begin to be possible and we can

further be sure that the path of evolution is tangent to the path

of the series of pear-shaped bodies at the moment when breakup

begins. This can probably be interpreted as meaning that the

breakup begins with the formation of a neck around one end of the

body. It is reasonable to suppose that further evolution proceeds by

the deepening of this constriction until one end of the body is

separated. In order to validate the above chain of reasoning for

actual application to the problem of the earth it is necessary first

of all to show that the ellipsoidal configurations are stable not only

if we introduce the constraint that only ellipsoid configurations will

be possible but also if this constraint is removed. This point has been
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discussed by Poincar6.

The fact that we are able with a single value of 0 to satisfy these

equations means that the ellipsoid is actually an equilibrium figure

in the problem of a self gravitating liquid. We notice that O is not a

function of the coordinates but only of the an_lar velocity _0. Trac-

ing this fortunate fact backwards we see that it is a consequence of

the fact that the potential can be expressed in the very simple form

shown in Equation (57) or perhaps we might equally well say that it

is a consequence of the fact that the Laplacian V 2 takes a very

simple form shown in Equation (63a). Suppose for instance that the

equilibrium figure had not been an exact ellipsoid but something near
it. In this case, when we went to solve for 0 we would not have been

able to find a single numerical constant but instead some kind of a
function.

Poincar6 showed that there is a method of investigating the

stability of a series of bodies like the Maclaurin ellipsoids which

greatly diminishes the effort involved. Poincar6 begins by consider-

ing the general problem of equilibrium. Stability in a static system

implies that the potential energy W is a minimum for a particular

configuration as compared to all adjacent configurations. In a rotat-

ing system it can be shown that the same is true if we add a term as

in (62).* We might think of a space of many dimensions, each dimen-

sion representing one of the parameters 01, 02, etc. which describe the

configuration. We think of one of these, the angular momentum #,

as increasing vertically upward. In this space of many dimensions,

we consider a set of surfaces of constant potential energy. Each of

these surfaces must form a hill whose top is at the stable configura-

tion. We can plot u against one of these variables which describes the

configuration, say 0. We draw the curve W = constant; this curve

must be concave downward. The value of 0 which corresponds to

equilibrium will be the value at the top of the bulge since W increases
as _ increases.

*We must note, however, that the convention is to take the potential energy W as
increasing outward from a gravitating body, while the potential V increases inward.
If the volume is l_, and an element of It is d_,
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Now if we consider a series of configurations of equilibrium

then we are in effect considering the series of points which are at

the peaks of the curves W = constant. Let us suppose that one

of these values is stable. Then we cannot reach an unstable

configuration as we follow along this sequence of states unless in one

of the parameters, 0, these curves become concave upwards instead

of concave down. When this happens it may be true that the curves

when extended outwards continue to curl up. Or it may be true that

when extended outwards they turn down again after having gone a
sufficient distance. In the latter case it is clear that we can trace

out a new set of crests (or rather two new sets of crests) which start

out at the point where the first sequence becomes unstable and

spread out from it in both directions through the new set of peaks.

In the opposite case, when the curves beyond the point of stability

turn up then we shall ordinarily expect that for values of _ under the

last stable value there existed, in the curves W= constant, dips

on either side of the set of humps which formed our original linear

sequence. These configurations can also be represented by a line

which passes through the last stable value of our original linear

sequence. The third possibility is of course the limiting case where

the point of instability is represented by a flat surface extending in-

definitely in all directions and corresponding to neutral equilibrium.

Setting this case aside for the moment, as trivial and as included in

the other cases if minor changes of wording are made, we say that

a linear sequence of configurations can only pass from stable to un-

stable when it encounters another linear sequence. This is a result

of the continuity properties of W in these parameters. It is not in

any way a consequence of the special properties of rotating ellipsoids.

In our particular case the sequence of Maclaurin ellipsoids must

surely be considered stable at its initial point, where we are dealing

with a sphere and zero rotation. As the angular momentum of this

sphere increases we will be passing along a series of stable configura-

tions until this is intersected by another set. It has been shown, by

methods which I am not giving here, that the first sequence of forms

which intersects the sequence of Maclaurin spheroids is the sequence

of Jacobi ellipsoids. From this it follows that the Maclaurin spher-

oids will be stable up to the point where they encounter the series of

Jacobi ellipsoids.
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We can also see that the question whether the Jacobi ellipsoids are

stable or not in this sequence depends on whether the curve which

represents the sequence of Jacobi ellipsoids turns up or turns down in

these diagrams. That is to say it depends on whether the Jacobi ellip-

soids with higher values of the angular momentum are also ellipsoids

with higher values of energy or not. Numerical computations have

shown that in fact the Jacobi ellipsoids with higher energy are also

those with higher angular momentum so that the curve does in fact

turn upwards and the Jacobi ellipsoids are stable. From this it

follows that a sequence of bodies of progressively increasing angular

momentum will pass through a series of Maclaurin ellipsoids and

then through a series of Jacobi ellipsoids. The stability of the Jacobi

ellipsoids is terminated by a set of nonellipsoidal pear-shaped figures,

which has been found to be unstable. This second intersection takes

place not far beyond the point at which the Jacobi ellipsoids begin

to form. As a consequence in most discussions of stability, the

appearance of the Jacobi ellipsoids is taken as an indication of the

approaching catastrophe.

In this discussion we have spoken as if the angular momentum

could increase steadily. This is, of course, unrealistic; the angular

momentum is constant. It turns out, however, that the quotient of

the angular momentum divided by the density is the parameter

which enters this discussion. Hence we may treat problems which are

really those of increasing density as though they were problems of

increasing angular momentum. The problems of increasing density,

however, are exactly those which would be expected in a liquid mass

which has newly condensed and is in the process of cooling. We may

expect that in the early days of the earth the density increased as

the heat was lost. It is against this background that the above dis-

cussions of stability become relevant. Up to this point we have been

considering a mass of liquid of constant density. We have done so

because this is the only case in which it is possible to follow the

mathematics very well. We have chosen to make an exact treatment

of a problem which is something like the real problem rather than to

do the usual thing, which is to make a rough treatment of the actual

problem.

In order to apply our results to the actual case of the earth itself

we must consider inhomogcneeus mas._es. Jeans attacked the prob-
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lem in two ways. His first method was to consider a model which

consisted of a nucleus of finite density surrounded by an atmosphere

of zero density. Clearly this is the limiting case of the kind of a two-

fluid system which Wiechert worked with. The problem is quite

tractable mathematically once the study has been made on the

homogeneous mass. It is simply a matter of defining one of the geo-

potential surfaces above the nucleus as the true surface. The

volume enclosed between this surface and the nucleus is called the

atmosphere; it is referred to as Va, compared with Vn of the nucleus.

The results which have already been derived for the behavior of the

homogeneous mass can now be applied at once to this theoretical

inhomogeneous planet.

In particular, Jeans found that if the ratio of the volume of the

atmosphere to the volume of the nucleus exceeded about 1/3, then

it would turn out that the fission would not take place along the

sequence of the Jacobi ellipsoids. The rapidly rotating Maclaurin

spheroid would develop a fissure around its equatorial zone through

which matter would be ejected. This could also be expressed by

saying that the contours of the geopotential no longer close around

the earth.

He finds that there are two possible sequences of configurations:

fbr a body in which the nucleus is small and very dense compared to

the rest of its structure we have equatorial ejection of matter; on

the other hand, if the nucleus is sufficiently large compared to the

whole mass, then the behavior is qualitatively like that of a homo-

geneous mass, which we have been discussing.

It is true that the model does not really resemble the earth, but

let us do the best we can to fit the earth to it. The polar moment of

inertia C of the earth it is known to be given by:

C
- 0.3307.

Ma'_

If the earth were homogeneous, we would have 0.4 instead of 0.3307.

Thus, the earth has approximately 5/6 as much angular momentum

as a homogeneous sphere of the same size. The question is, how big a

homogeneous sphere would we need in order to have the same angu-

lar momentum as the earth, assuming that the total mass were the

same? The answer is that the ratio of the radii should be the square
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root of 5/6 or 0.91. The ratio of the volumes is then just about 3/4.

Hence, if we had an object consisting of the homogeneous sphere in

the interior and a weightless shell outside so arranged that the space

Va between the shells was about 1/3 the volume of the inner shell,

then this composite object would have approximately the same

angular momentum and approximately the same value of C/Ma 2

as the earth. Jeans shows that this configuration is just on the

borderline of the cases when fission takes place by the formation of a

Jacobi ellipsoid. For more homogeneous bodies, fission is sure to take

place by the development of the Jacobi ellipsoid; for less homo-

geneous bodies, that is bodies with a similar nucleus, breakup is

sure to take place by the spreading away of a portion of the

atmosphere around the equator. From this treatment it appears that

the earth is near the limiting case.

Jeans' second, and more realistic model, involves the assumption

of a polytropic distribution of density. Polytropic density distribu-

tions have been extensively studied in the theory of the internal

constitution of the stars, largely because Emden (1907) made a series

of numerical integrations of them. The terminology of these spheres

goes back to Emden's assumption that stars are in convective equili-

brium. For convective equilibrium, the ratio _ of the specific heat at

constant pressure to the specific heat at constant volume is of

decisive importance. Emden took as his parameter the quantity n

given by the equation

1
y=l+_.

The relation of n to any of the physically significant parameters of

the distribution can only be reached through some detailed numerical

integrations; as a consequence, n is for many purposes, and in

particular for this one, merely a parameter which defines the density

distribution. For n = 0, the density is uniform. For n = 1, it turns

out that it is proportional to the function (a/r)sin(r/a). For n = 3,

we have the kind of distributions with a strong concentration to the

center which are believed to be typical of stars like the sun. For

n = 5, the star lacks an outer boundary, and for n = oo we have

the distribution which would characterize an isothermal atmosphere

and would extend to infinity. Jeans has calculated the behavior
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of polytropic gas spheres rotating with sufficient rapidity to

break up. He finds that if the polytropic index is less than about

0.8 the star will be sufficiently homogeneous so that it will break

up via the formation of Jacobi ellipsoids. If, however, the polytropic

index exceeds this quantity, it will break up by the formation

of an equatorial ring somewhat like Saturn's rings. Recently Roberts

has restudied this problem; he finds that the critical value of the

polytropic index is near 1.0.

A numerical integration of the Emden table for the polytrope

n = 0.5 shows that the value of C/Ma 2will be 0.32. For the earth the

same ratio is 0.33; it follows that the earth is slightly more homo-

geneous than the Emden polytrope n = 0.5. On this model the earth

would break up through the formation of a Jacobi ellipsoid rather

than by the equatorial ejection of matter.

The actual situation inside the earth may well be intermediate

between these two extreme models. Hence the actual earth would

probably break up via the Jacobi ellipsoid.

A second point on which Jeans made important numerical investi-

gations is the question of the effect of the internal density distri-

bution on the limiting value of the angular momentum required for

break up. For the case of the homogeneous ellipsoid and the some-

what similar case of nearly homogeneous ellipsoids, Jeans has

sought the value of the angular velocity _ at which the transition

would take place from a Maclaurin spheroid to a Jacobi ellipsoid.

He finds the following general formula

2

- 0.18712 "r 0.06827 p0 - a
27rp p0

(499)

+ [0.01602-f-0.07098(_- 2) ](_0 a)'_

which is applicable really only to relatively small deviations from a

homogeneous mass. In (499), _ is the mean density, p0 is the density

at the center of the earth, and a is the density at the boundary.

When this series is applied to the earth, we find that the critical

period of rotation is lh58 m. For a homogeneous body of the earth's

mass, it is 2"40m; and if a homogeneous body rotating at this speed

is transformed, without change of' angular momentum, into an in-
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homogeneous body for which

C
- 0.33

Ma 2

the period of rotation is 2hll m.It would seem to follow that the earth

could not have broken up as a result of the formatiun of the core

since it would wtill be rotating too slowly.

The result is, however, very doubtful, as Jeans would have been

the first to say; the series does not converge well, and in fact the last

term is larger than the one which precedes it, in the case of the earth.

Jeans applied the series only to the case in which _ is near 2, which

improves the convergence.

I have made some calculations based on later work by Roberts,

which suggests that in fact the critical period for the earth is near
2h18 m,so that the earth can in fact be destabilized by the formation
of the core.
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Geodetic Problems

and Satellite Orbits

I. Introduction. Clearly, when tracking satellites, our only real

knowledge that certain problems exist in the area of geodesy is

through a study of the satellite tracking data, noting that present

knowledge of geodesy is inadequate to theoretically describe and / or

predict the detailed time dependence of the received tracking data.

For this reason, the principal topic to be discussed in this chapter

is the effect of geodetic errors on the time dependence of satellite

tracking data as received by a tracking station located on the surface

of the Earth from a near-earth satellite. These geodetic errors fall

into two categories, geodetic errors which effect the location of the

tracking station on the surface of the Earth and geodetic errors

which effect the motion of the satellite (and therefore its position

at some given value of the time). Consequently, subsidiary topics
which shall be discussed are:

1. Methods for specifying the motion of a tracking station in

inertial space, given the usual geodetic measurements available for

a point on the earth's surface,

2. The motion of a near-earth satellite when influenced by the

various harmonics of the earth's gravity field (geopotential), and

3. The functional dependence of various types of tracking data

upon the trajectories of the station and satellite in inertial space.

170
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These topics do not cover many problem areas relatirrg to satel-

lite motion and the accurate reception and tabulation of tracking

data. Such problem areas, while important from the standpoint of

achieving accurate prediction of the trajectories of satellites, can

reasonably well be divorced from the geodetic problem areas. Con-

:_qu_,_,y, _.,_ serms of ,_,._u,_.ol""+"'-ow;l!., assume a *_.._.'°*ho-narrow ,_6n;.__.....

tion of the word geodetic problems--namely problems associated

with the science of determining the shape and size of the Earth and

its gravity field.

Fundamentally, the procedure for determining the orbit of a

satellite can be considered as the process of assuming the satellite

to be under the influence of a known force field and then using the

tracking data to determine which solution to the equations of motion

one should choose. By this I mean the following. Assuming for the

moment that the forces acting on the satellite are known, an infinity

of solutions to the differential equations of motion exist until bound-

ary conditions are imposed-- such as values for the initial position

and velocity of the satellite at some chosen epoch. The tracking

data is used to determine as accurately as possible these initial

conditions. Consequently, errors in satellite orbits can arise from

errors in the forces that act on the satellite and errors in the com-

puted boundary conditions. Within the area of interest of these

lectures, the geopotential is considered as the sole source of error

in the satellite forces, and tracking station location errors the sole

source of error in obtaining errored boundary conditions.

In principle, errors in the location of tracking stations can be

discussed entirely separately from errors in the satellite forces. How-

ever, in practice, complete separation of the two sources of errors

cannot be made. The primary reason is that the accurate determina-

tion of the station location depends in practice upon a knowledge

of the geopotential (near the earth's surface) and consequently errors

in the geopotential introduce errors in both the station and satel-

lite trajectories in inertial space. Another important reason is be-

cause, to zeroth order, satellite tracking data provides information

on the position and/or velocity of the satellite relative to that of

the station. Consequently, it is frequently difficult to separate orbit

errors accurately into those directly related to the station position

and those directly related to the satellite motion.

It can be seen from the above discussion that central to the
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determination of station positions and satellite orbits is an accurate

specification of the earth's gravitational force field, and I shall now

briefly discuss a representation for the gravity field of the Earth.

We chose the sign convention such that the force is given by

+ grad U, where U is the gravitational potential of the Earth. It

is common to express this potential as an expansion in surface

harmonics so that:

U{R, ¢, _) = _- 1 -f- _ Pn(sin ¢)
rl_2

where

and where

+ m=l_ pm (sin ¢) (C_ cos rni_ + S_ sin reX)] }

K = gravity force constant (km_/sec2),

Ro = mean equatorial radius of Earth (kin),

R = geocentric radius (km),

= geocentric latitude (rad),

X = geocentric longitude (rad),

P_(Z) = (1 - Z2) m'2 dm P,(Z).

The geocentric coordinates R, ¢, and ), have their origin located

at the center of gravity of the Earth. The geocentric latitude is

measured from a plane which passes through the earth's C.G. and

is normal to the earth's spin axis. The geocentric longitude is

measured positive eastward from the plane containing the spin

axis and a special marker at the observatory in Greenwich,

England--the so called Greenwich meridian. Since the origin

of this coordinate system is at the center of gravity of the Earth,

it follows that J_ = C_ = S_ = 0. To the accuracy that we will con-

sider in these lectures we may assume that there is sufficient energy

dissipation that the earth's spin axis is the principal axis 'of the

largest moment of inertia of the Earth and therefore we may assume

that the spin axis passes through the earth's C.G. Consequently, in
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the above expansion for the geopotential we also may take C_ = S_

= 0. Finally, to the accuracy which we shall consider, we may as-

sume that the earth's gravitational field is time independent and

that the spin axis, equatorial plane, and Greenwich meridian are

fixed with respect to the crust or surface of the Earth. Except for

some relatively minor considerations when discussing the _uiu,----"J we

shall not be interested in the gravitational field below the physical
surface of the Earth.

z

Greenwich
Meridian Y

X

FIGURE 1. Right-handed coordinates.

Corresponding to the geocentric coordinates R, _, and _ there is

a natural right-handed cartesian coordinate system fixed with re-

spect to the Earth. This is shown in Figure 1. The Greenwich

meridian is the X- Z plane and the equatorial plane coincides

with the X- Y plane.
Because of the earth's rotation it is not convenient to describe

the satellite motion in a coordinate system which is fixed with re-

spect to the earth's crust. A very natural coordinate system for the

satellite motion is one which has its Z-axis coinciding with the

earth's spin axis and its X and Y axis approximately fixed relative

to inertial space (fixed relative to the celestial sphere). This inertial

coordinate system and its relationship with the earth fixed cartesian

system is shown in Figure 2. Very briefly, the inertial system is

defined in the following way (see [1]). The apparent motion of the
• - - _11- "l ,/,-'L. ^sun around the Earth approximately iies in a prone _aueu _,,_
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ecliptic plane. The intersection of this plane with the earth's

equatorial plane defines a line which is approximately fixed in

inertial space. We take the positive X-axis of the inertial system

as the direction of this line of intersection going from the C.G. of

the Earth in that direction where the sun crosses the equatorial

plane going from south to north. This direction is known to the

astronomer as the First Line of Aries. This coordinate system is

called the True Equatorial System of Date to denote that it is

defined by the direction of the instantaneous spin axis of the Earth

and the intersection of the instantaneous equatorial and ecliptic

planes. This system experiences small accelerations due to the fact

that the earth's spin axis precesses and nutates relative to inertial

space and the apparent motion of the sun around the Earth does

not lie exactly in a fixed plane. However, for our purposes this

coordinate system is a sufficient approximation to an inertial system

and for coordinate systems which are more accurately inertial one

may refer to [1].

z

,1 X
First Line
of Aries

fY
f

FIGURE 2. Inertial and Earth Fixed Coordinates.

It is inevitable that other coordinate systems must be intro-

duced when discussing the location of a tracking station on the
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surface of the Earth. This is because all surveying is done on the

surface of the Earth and it is most natural to define coordinate

systems which are surface coordinat_ systems. I shall now briefly

discuss the various geodetic coordinates required to locate a tracking

station (see [2] and [3] for details).

A surface from which a natural surface coordinate system can

be developed is one of the equipotential surfaces for the Earth. If

this equipotential surface is chosen to coincide with mean sea level

(average height of the sea surface when corrected for tides, weather

effects, etc.) the surface is known as the geoid. This surface, by

definition, is everywhere normal to the direction o$ the force of

gravity, and all measurements of relative height are most naturally

referenced to the geoid. When over land the geoid is not measurable

in as straightforward a manner as one might think. Clearly many

areas will have the geoid located below the physical surface of the

Earth. When this is the case it is necessary to correct for the

gravitating mass that is above the geoid when using gravity meas-

urements to determine the geoid. Correcting for this mass inevitably

involves assumptions as to the density, inhomogeneities, etc., of

the crustal mass, and for clarity one refers to the co-geoid (see [2]

and [3]) rather than the geoid when discussing the determination

of an equipotential surface over land masses. To the accuracy re-

quired for these lectures however we may assume that the geoid

and co-geoid are coincident and, consistent with the previous as-

sumptions, we may assume that the geoid is time independent.

The shape of the geoid is sufficiently complex that it is incon-

venient to use in computations. For this reason it is common to

use an oblate spheroid (ellipse of revolution) which approximately

follows the geoid in specifying the geodetic coordinates of a station.

Figure 3 shows a meridianal section of a spheroid with the pertinent

quantities used to define the spheroid and the coordinates of a point

on the surface of the spheroid. A spheroid, being an ellipse of revolu-

tion, has its surface defined when its semi-major axis and eccentri-

city are defined. In practice the flattening, [, is given instead of

the eccentricity and is related to the eccentricity by the formula:

[=1- x/(1 -2).The latitude and longitude of a station are always

referenced to the spheroid. The geodetic latitude, _G, is defined by

dropping a perpendicular to the surface of the spheroid and noting
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•
J!

I

I

i
I

t-- Semi-rnajor -----_t
Axis,a l

FIGURE 3. Ellipse Defining an Approximate Geoid.

the angle of intersection of this normal with the equatorial plane.

Consequently, the cartesian coordinates re,, Zo in the meridian con-

taining the station are (see Figure 3).

a _ v/(X_ + y_),
_'c = X/(1 H- (1 - /)'_tan2_c;)

Z0 = (1 - f)2f_;tan¢c;.

The longitude is, of course, related to the cartesian coordinates

Xo, Yo by _,c,= tan-lYo/Xo.

In specifying the orientation of a spheroid with respect to the

spin axis and center of gravity of the Earth the intent is normally

to have the semi-minor axis coincide with the spin axis and the

semi-major axis lying in the equatorial plane with the center of

the spheroid at the center of gravity of the Earth. In practice the

specification of this orientation is done at the surface of the Earth

at a point which is denoted as the datum point. This implies that

the spheroid is oriented to the geoid at a point on the surt_ace of

the Earth which does not coincide with either the spheroid or the

geoid. Such a connection is subject to measurement errors such
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that any given spheroid associated with a major surveyed area does

not in fact have its center at the center of gravity of the Earth or

on the earth's spin axis.

With the advent of satellites and their use for improving the

knowledge of the force field of the Earth it is becoming common

practice to define a world wide survey system or datum which has

its spheroid, by definition, oriented correctly with respect to the

center of gravity of the Earth and its spin axis. For example, the

current NASA World Datum has as its semi-major axis and flattening

R0 = 6378.166 kilometers,

[o = 1/298.24.

With such a definition for the orientation of the spheroid it then

becomes a straightforward procedure to state the coordinates of

the geoid and the various geodetic coordinates of the tracking sta-

tion relative to this spheroid and to give transformation formulas

for obtaining the geocentric coordinates of a station. Of course when

using such a world wide datum it is necessary to obtain trans-

formation formulas from the datum of a major surveyed network

such as the North American Datum to the World Datum. Such

transformations normally assume that the spheroid for the local

datum has its axes parallel to the axes of the world datum spheroid

so that a translation only is needed to transform from one spheroid

to the other.

Before proceeding further, I shall now briefly show that to first

order in the flattening, [, a spheroid approximates an equipotential

surface for the Earth. This proof depends upon the experimental

fact that

J2 = 0([),

Jn, C_, S_ = O( [2) , n>2.

The proof proceeds in the following manner. For any point on

the spheroid

X0, Y0, Z0, Ro -- v/(X_ q- Y_ -4- Z02),

let

zo v'(Xo +
sin ¢ = -- cos _ =

Ro' Ro
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Then

a = semi-major axis of spheriod,

f-- flattening.

we have

For any point rigidly connected to the Earth, the measured gravi-

tational potential will be the sum of the gravitational potential,

U, as measured in inertial space and a potential whose gradient

yields the centrifugal force arising from the earth's rotation.

Letting this earth-fixed potential be _b and noting that all coeffi-

cients in the expansion for U are 0([ 2) except J2:

-_I J2 < Z2 ) w_R{X2 + Y2) ]¢,= lq- _- 3_- 1 + 2K +O(/2) '

where WE = angular rotation rate of Earth (rad/sec). We consider

now the potential, ¢0, for any point X0, Y0, Zo on the spheroid.

From the above equations:

K{I_ J2 o0_a 3 [ 3 o_aa 1 }C0 = _- -_ + _ + sin", /+ _ J2 _ _] -_- O([2) ,

where it has been noted that:

w_a 3
- o(/).

2K

Thus, letting

--

3 w2a 3
-- -- _J2+ _ +O(J#,

{ }K 1 - J2 wEa 4-
c0 = a _- + _- °(f_)

which is a constant to O(f).

The above proof indicates that the geoid {more properly the

co-geoid) will not differ markedly from a properly defined spheroid.

Consequently, the spheroid provides a convenient base for speci-

fying quantitatively the geoid. This is done by specifying the geoidal

[ lc°s2¢ + (1 -/)2I = 1.
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height, H(_G, hG) for any given geodetic latitude, CG, and longitude,

ha, as defined on the spheroid. This relationship is shown in Figure

4A where it can be seen that any point Xa, YG, ZG on the geoid is

related to the geodetic latitude and longitude by the formulas:

XG = (.ta+ H cos ¢_) cos ha,

Ya = (_a + H cos Ca) sin ha,

Za= (1 - [)2 _atanCaq- Hsinca.

(X., Yr,,Zz)

FIGURE 4A.

!

Station I

I

FIGURE 4B.
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We are now ready to include the remaining geodetic quantities

needed to specify the geocentric location of a tracking station.

Those quantities which have not yet been discussed are (in order

of importance) •

h -- elevation of station above geoid (measured

normal to geoid),

= deflection of local vertical in meridian

(positive north),

= deflection of local vertical in prime

meridian (positive east),

5X, 5Y, 5Z = position of center of spheroid associated

with local survey relative to center of

world-wide (NASA) spheroid.

Figure 4B shows schematically the first of these three quantities

in relation to the geoid and spheroid. The last three are self ex-

planatory.

Without further discussion I shall now give the final computa-

tional procedure for determining a station's geocentric cartesian

coordinates given the geodetic quantities that I have just pre-

viously discussed. For further details see [2] and [3].

a

_'/. = _¢/(1 + (1 -- /)tan"_G)'

XR = [_L + (H+ h) COS CG] COS _,o

a, [ = semi-major axis

and flattening

for local spheroid.

- h [_ sin _bGCOS_e + '1COS_G sin Xe]

+ 5X W second order in _ and _,

YR -= [_L -_ (H + h)COS_bG]sinXG

-- h [_ sin _a sin ha -- 71COS_G COS_G]

+ 5Y + second order in _ and 7,

ZR -_ [(1 -- 1/[)2_L + (H + h)cos_a]tan_G + h_ cos_bo

+ _Z + second order in _ and _.

II. Discussion of orbits. In §I we briefly considered a suitable
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representation for the geopotential and its relation to methods for

locating a tracking station on the surface of the Earth. I now wish

to turn our attention to the motion of a satellite under the influence

of the geopotential and to present some working formulas relating

the geometry of the satellite relative to such a station, which will

be needed in the future sections when we consider in more detail

the effect of errors in the location of the tracking station and in
the satellite motion.

Generally when we speak of a satellite orbit we imply the ability

to compute (to some acceptable accuracy) the position of the

satellite as a function of time in inertial space (for example the

True Equatorial System of Date). The computation of such a

satellite ephemeris clearly implies that a well-defined force field

has been assumed to be acting on the satellite, and satellite tracking

data has been used to determine the orbit parameters (initial bound-

ary conditions) for the solution of the differential equations of

motion for the satellite.

Since we are primarily interested in the geodetic aspects of

satellites and their motion I shall make the following restrictive

assumptions to simplify the analysis which will be presented in

the following sections.

A. Assumptions concerning satellite orbits.

1. Satellite motion

a. nonrelativistic approximation to equations of motion,

b. near-earth satellites with small eccentricity (satellite alti-

tude not less than about 1000 km and eccentricity E < .05).

2. Satellite forces not considered (see discussion in [4])

a. nongravitational in origin,

(1) air drag,

(2) radiation pressure,

(3) electromagnetic,

b. nonstatic and extra-terrestrial gravitational forces,

(1) Sun, Moon, other planets, etc.

(2) earth's body and sea tides.

In addition to these assumptions we presume that we have at our

disposal a world-wide network of tracking stations together with

the necessary data links and computer programs to establish (or

track) the satellite to an accuracy limited by the accuracy of the

geopotential and station locations assumed and the accuracy of
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the experimental tracking data. To further simplify our considera-

tions I shall assume that there are negligible errors in the experi-

mental tracking data. In particular I assume:

B. Assumptions concerning experimental tracking data.

1. Signal propagation errors due to atmosphere are not considered,

a. ionospheric and tropospheric refraction (scintillation if

optical data),

b. ducting, skip propagation, etc.

2. Experimental instrumentation errors are negligible,

a. misalignment and poorly calibrated tracking instruments,

b. "front-end" receiver (detector) noise,

c. errors in transmission and formatting of data.

There are four fundamental measurements that are commonly

made during the time that a satellite is above the horizon of a

tracking station. These are:

1. Vector slant range

e(t) - r,(t) - rR(t).

2. Scalar slant range

p(t) = Ip(t) l.

3. Slant range unit vector

_(t) = p(t) /p(t).

4. Scalar slant range rate

p(t) = (d/dt) p(t) = _(t) • p(t),

where:

r_(t), rs(t) - satellite position and velocity in True

Equatorial System of Date,

rR(t), ER(t) = tracking station position and velocity

in True Equatorial System of Date.

The slant range vector is typically the type of data taken by a

tracking radar using the narrow beam pattern of the antenna to

measure the slant range unit vector and its range (time of flight)

instrumentation to measure the scalar slant range. Some radar

tracking systems measure only the scalar slant range recognizing
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that the operating frequency is too low to accurately define

angles. Optical tracking, of course, measures the slant range unit

vector, that is, right ascension and declination or azimuth and

elevation. Finally tracking systems exist which use the measure-

ment of the radio Doppler shift to make direct measurement of

the scalar slant range rate. Some installations measure the slant

range vector as well as the scalar slant range.

Clearly, the above types of data involve various combinations

of quantities directly related to the relative geometry between

the satellite and station during the time that the satellite is above

the station's horizon. The remainder of this section will be de-

voted to presenting notation, convenient coordinate systems, and

expressions relating the various quantities associated with the

relative geometry between the satellite and station.

Let

tc = time of closest approach of satellite to station,

tR _-- time of satellite rise above station's horizon,

ts = time of satellite set below station's horizon,

fl(t) = satellite argument of latitude,

A_o = fl(t,) -- fl(tc) "-__(t_) -- _(tR),

E_, Az = elevation and azimuth of satellite at to.

Figures 5, 6, and 7 show the geometry of the pass and present a

convenient coordinate system in which to consider the motion of

the satellite relative to the station. This coordinate system is fixed

in the satellite inertial space and has its coordinate axes defined

at the time of closest approach, t_. The Z-axis is defined to be the

direction of the instantaneous angular momentum vector of the

satellite at t_. In Figure 5, the X-axis is defined as that line of

intersection between the equatbrial plane and the plane normal

to the Z-axis and which contains the satellite position at t_. The

Y-axis is chosen such that the X, Y, Z coordinate system is a

right-handed system. Clearly, the X- Y plane is the osculating

plane of the orbit at the time of closest approach.

Figure 6 presents in more detail the pass geometry at the time

of closest approach where the H-axis passes through the position

of the satellite at to. Figure 7 presents the geometry of the pass
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FIGURE 5. Geometry During Satellite Pass

(x - y plane = Orbital Plane)

projected on the X- Y plane and where the new coordinate

axis, L, has been introduced to make the H, L, Z coordinate system

a right-handed system. In Figure 7, the satellite position relative

to its position at the time of closest approach is approximately

shown with the change in the argument of latitude being denoted

by AB. (For simplicity the motion of the station during the time

of the pass has been approximated as zero for clarity.} The co-

ordinate system which will be of primary interest to us in the

following sections is the H, L, Z coordinate system presented in

these three figures.
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AT tc

_s (tc)

FIGURE 6. Geometry at Time of Minimum Slant Range

(H - Z Plane, Satellite motion into page)

AT tc

L

FIGURE 7. Geometry of Pass (Orbital Plane)
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The usual definitions for the elevation, Et, and azimuth, Az,

are inconvenient when deriving general formulas valid for all

possible paths of satellites past a given tracking station. For ex-

ample, if a satellite passes through the zenith of the station the

azimuth makes a discontinuous change of 1800. Two quantities
directly related to the azimuth and elevation are much more con-

veniently used in such derivations. These have been denoted as

the "pseudo azimuth", az, and "pseudo elevation", e. Figures

8A, 8B, and 8C show the relationships between the normally de-

fined azimuth and elevation and the pseudo azimuth and elevation.

It can be seen that the pseudo azimuth and elevation are obtained

by altering the quadrants in which the azimuth and elevation lie

so that there is continuity in changing from one type of pass

geometry to another. For example, referring to Figure 6, the

pseudo elevation is indicated and (for the case shown) can be seen

to be identical with the normally defined elevation. This pseudo

elevation will remain continuous as the vector pz decreases through

zero and goes negative, at which time the pseudo elevation in-

creases beyond 90 °. From Figures 8A and 8B it can also be seen

that as p_ goes negative there is no discontinuity in the value for

the pseudo azimuth.

In the sections to follow the effects of the errors will be con-

sidered to first order. Consequently, the coefficients multiplying

these errors need be derived only to a crude accuracy. For example,

to sufficient accuracy the change in the station position during the

time of the pass can be neglected in the expression for the slant

range when it is involved in expressions which have been expanded
to first order in the errors. Those relations which will be needed

in the following lectures are now briefly summarized to the required.

accuracy. For details, see [5].
Let

rR = I rR(tc) l, r, = ]r,(tc) l,

rR,s = rR/rs, Ps = p(tc) /r,.

Then, from Figure 7,

r_., = 1 -_ p_ - 2ps cos 8,

and
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sin0 = rR.,sin(_/2 + e) = rR,,cose.

These two formulas may be rearranged to yield:

p, = COS0- _¢/(r2s- sin20),

1 -- r_.s

= X/(1 2 cos 2e) -4- rR,ssin e.
-- rR, s

Neglecting the station motion in inertial space, to zeroth order

the slant range vector in the H, L, Z coordinate system becomes

p.(t) /
p(t) = pdt)

pz(t)

p, cosO - 1 A- cosA5(t)

= r, [ sin _(t) + first order,
/

- p, sin 0

where,

A/_(t) = _(tc)(t -- to) -4- O(t).

quantities

as = 1 - p, cos0,

C(t) = 1 - COSA_(t),

p(t) = rs sinAj3(t) J
/

-- ps sin 0 ]

Finally, defining the

with

-4- first order,

p(t) = v/ (p(t) • p(t) ) = r,v/ (p2 -4- 2asC(t)) -4- first order.

III. Effects of geodetic errors. With this section we shall begin

the discussion of the effects of the geodetic errors. I begin by con-

sidering the station location errors. In the first section, we con-

sidered the Earth fixed cartesian coordinates of the tracking station.

Let its corresponding spherical coordinates be:
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_R = geocentric latitude,

= sin-l(ZR/rR) ;

_R = geocentric longitude,

= tan-l(YR/XR);

rR = geocentric radius,

= v/(X_ -4- y2 -4- Z2).

Let the errors in these coordinates be _¢_R, 5XR, 5rR respectively.

Then, a representation of these errors in distance units to first

order in the errors are:

ErR= 5rR,

ECR = rR 5gaR,

E_ R = rRCOS¢RS_R.

I now wish to rotate these errors into the H, L, Z coordinate system

defined in §II.

Rotating first about the station radius vector by the pseudo-

azimuth, az, (Figures 8A and 8B):

E, R is unchanged,

ELR = E, R sin as A- E_Rcos a_,

E'ZT = E, RCOSa _ -- E_Tsina_,

where E_ T is perpendicular to rR and lies in the H-Z plane and

is frequently referred to as the station cross-track error. Making

now a rotation about the L-axis by an angle _( (Figure 6),

EHR = Er R cos x -- E_ Rsin ×,

ELR is unchanged,

Ez_ = ErR sin X + E'z Rcos x.

From Figure 6, it can be seen that

sin× = pscose,

cos x = p, sin e -4- rR, s.
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Successive substitutions for sin x, COSx and then E_ yield:

EH R = rn._ Er R -t- ps [sin e ErR - cos e cos as E, R + cos e sin az EXR ],

ELR = sin as E, R + E_ R cos as,

EzR = re., [cosa_E, R - sina_E_R]

+ m [cos e ErR + sin e cos as E,R -- sin e sin az E_R].

These are the expressions for the station error which we shall

eventually use in computing the effect of station error on tracking
data residuals. From here on we shall assume that these errors

are scaled by the mean equatorial radius, Ro.

I now want to direct our attention to the more involved task of

obtaining similar expressions for errors in the satellite motion during
the time the satellite is above the station's horizon. We assume

that the satellite has been tracked so that satellite position errors

may be considered only to first order. We denote the coordinates

of the satellite by r,, _,, _,, in inertial space. These are related (see

[6] and [7]) to the osculating kepler elements by the relations:

a(1 - _)
r_ = (units of Ro)

1 + _ cos(/_ - _)

sin _ = sin i sin ¢_,

cos ¢, cos(X, - _) = cos i sin _,

cos¢,cos(X,- _) = cos_,

tan(h,- fl) = cosi tan/_,

where:

a

i=

_=

M=

M=

_=

semi-major axis (units of Ro),

eccentricity,

inclination,

argument of perigee

right ascension (longitude) of ascending node,

mean anomaly,

no = anomalistic mean motion,

argument of latitude,
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[ = _ - _ = true anomaly,

_=M+_.

When a change in the geopotential is made of the form:

193

Art= I,¢ [A___KK4- _ l[±,l.P.(sin_3
-_ Rors ( K ' .'U=2r2 L ........

+ m=12P2(sinCs)( ACmc°smxs + ASmsinmX,)1}'

the equations of motion for the changes in the osculating elements

to first order are:

20AU
_ti = + O(d,

noa 0¢3

61=-- sin(_--w) +-cos(_-_) +O(e),
no a -_ a

d_i 1 O/XU

= --cot¢_-- + 0(0,dt noa z

sini_t}= 10AU + O(D,
noa 2 Oi

t6do = --1 [ _ cos(/3 - w) OAU 2 sin(/3 -- _o) OAU-]+ J + o(a,

5¢ = 3 6a 20aU- - -- no cosi 6d + O(d.
2 a noa Oa

In the above formulas, quantities such as O_U/Orshavebeen

approximated by:

oAU o_U
- + 0(0,

Ors Oa

and 5q_= 5M+ 6z has been used to avoid terms O(1/D.

Integration of the above differential equations of motion with

the appropriate boundary conditions will provide one description

of the effect of errors in the geopotential on the satellite trajectory.

We shall transform these changes in the osculating elements into
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the time dependence of the tracking residuals. However, I first

want to give two examples of solutions to these equations to

provide a better intuitive feel for the kinds of effects that arise

from errors in the geopotential.

Let us first consider the effect of changing the boundary condi-

tions. The general solution of these equations of motion can always

be considered as being composed of a particular solution of the

inhomogeneous equations (including terms explicitly dependent

upon _U) and a general solution of the homogeneous part of the

equations (AU = 0). Considering the solution of the homogeneous

equations first, we set A U =- 0 and obtain the following constants.

_a 0

5_o =

_io =

690 =

_0 t_6OO

_Mo=

with

change in

change in

change m

change m

change m

semi-major axis,

eccentricity,

inclination,

right ascension of ascending node,

argument of perigee,

change in mean anomaly,

_0(t) = 5M0 - 3/2 5a°no(t - to) -4- higher orders,
a0

to = some epoch, conveniently chosen to be the

epoch of the original orbit.

It can be seen that when to is chosen as the time of the initial

orbit epoch the constants 5ao, _0, _i0, 5_o, _0, and _Mo can be

interpreted as changes to the orbit parameters at the orbit epoch.

The above constants, which arise mathematically from a solution

of the homogeneous perturbed equations of motion, are not trivial

additions to the perturbed satellite motion from a physical point

of view. When an orbit is determined from tracking data using

erroneous station locations and satellite forces, the resulting orbit

parameters will obviously be in error even if there is zero error in

the tracking data itself. Consequently, when considering the effect

of geodetic errors on the satellite motion, account must be taken

of the errors in the orbit parameters themselves. The resulting time
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dependence of the tracking data residuals due directly to errors

in the orbit parameters will be derived using the above solution

to the homogeneous equations--keeping in mind that they are not

arbitrary but a rather complicated implicit functional of the geodetic

errors and amount and distribution of tracking data along the

satellite trajectory.

I shall choose one other (relatively simple) example to aid in

understanding intuitively the effect of satellite force errors on the

satellite motion and eventually on the tracking data residuals. This

example allows only an error in the value of J3, the so-called pear-

shaped term. A particular solution of the above equations of motion

for A J3 _ 0 is to first order. (AJ3/J2 is always considered of first

order, AJa of second order.)

5a = second order,

A J3 sin/ sin + O?,
&--2J2-- a \ J2 ]'

_i=o \ --_ / ,

A_)3 sin/ [ 2AJ3_

- cos + o % ] ,_ 2 J2 a

\ d2/'

/ AJ3_

From these equations it can be seen that an error in J3 gives rise

to periodic errors in the eccentricity and argument of perigee, the

period being the time of one revolution of perigee.

The example of an erroneous d3 is directly generalizable to the

form of the errors in the satellite motion arising from errors in

the odd zonal harmonics (aJ,¢ 0, n odd). Without further re-

marks, the principal effect of geopotential errors are (see [4]):

1. Error in even zonal coefficients (aJ, ¢ 0, n even):

a. Secular errors in _, _, _ (increase approximately linear

with time),

b. Long period erro_ in _o, _b,
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c. Short (orbital) period errors in all osculating elements.

2. Error in odd zonal coefficients (AJn r e 0, n odd):

Long period errors in t and _.

3. Errors in the nonzonal coefficients (AC_, A S_' re 0)

Periodic errors of angular frequency,

wm=m(wE--(_), l<m<n.=

As a first step in obtaining the errors in the satellite motion in

the H, L, Z system, I shall transform the errors to a moving co-

ordinate system which will also display more clearly the nature of

the errors. This coordinate system is shown in Figure 9A, where:

_rs(t) = error in satellite radius

(satellite altitude error),

bls(t) = error in orbital plane normal to r8

(satellite along-track error),

5Zs(t) = error in direction of satellite

angular momentum vector

(satellite cross-track error).

From Figures 9A and 9B it can be seen that

_l_ = rs[cos_cosI _ + _/_} A- second order,

5Z_ = - rs[cos ¢8 sin 1 5_ - sin/_5i ] -4- second order.

Note from these figures that the local inclination, I, obeys the
relations:

cos_cos I = cos i,

cos_sin I = sin i sinS;

5ls = r,[5_ + cos i$_] + second order,

_Z, = rs[sin Z_i - cos_ sin i 5_] + second order.

Using now the relations between the various kepler elements:

_(t) = _[(t) + _o_(t)

= 5_(t) + 2[_ sin(_ - o_) - (c_00)cos(/_ -- o_)]+ O(D,

and
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_ l+_cos(3-_o)

-- _a - a [_ cos(3 - _o) - (_o)sin(3 - _o)] -t- O(D,

we have:

_r,(t) = _a - a [_ cos(3 - _o) -t- (_o) sin (3 - _o)]+ O(D,

6l,(t) = a [_1, + 2_ sin(3 - _o) - 2(_o)cos(3 - _o)] -t- O(D,

_Z,(t) = a [_i sint_ - _a sin i cos3] -t- O(D.

IV. Errors in satellite motion. We apply these results to two

examples.
1. Errors in the orbit parameters at epoch. The constant orbit

parameter errors can be directly substituted into the expressions

for the satellite altitude, along-track and cross-track errors. We
then have:

$r,(t) = Sao - a [$toCOS(3 - _0)+ (toS_o)sin(B - o_)]+ O(t),

_/,(t) = a [ _Mo + _oo + cos i _P-o
3 _ao

no ( t to)
2 a

+ 2(_eosin(3 -- _) -- (_o_o_o)COS(3-- o_))_ + O(d,

_Z,(t) = a [_iosin3 - sini_9oCOS3] + O(D.

Recognizing that the argument of perigee, _o, is a slowly varying
function of time, the above expressions can be rewritten in a

more transparent form by letting

Ao(t) = - a [_o cos _o(t) - (_o_Oo)sin _o(t) ],

Bo(t) = - a [_o sin _o(t) + (_o_Oo)cos _o(t) ],

6lo = a [_Mo + _oo + _flocos i],

3
_l_ = - _ _ao,

$1_-- 2_Bo(t),

_13= - 2$Ao(t),

_Z, = - a sin i _t_o,

Z2 = a _io,

so that when errors exist only in the orbit parameters,
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2 _13 _12
_r_(t) = - -_ _ll -- -_ cos_ + -_- sin_ + 0(_),

_ls(t) = _lo A- _ll(fl -- flo) -_- 5/2COS_ -4- _/3sin_ A- O(c),

_(t) = _Z1 cos_ A- _Z2sin_ A- O(t).

The above equations display the principal time dependence

of the errors in the satellite motion when errors exist only in the

orbit parameters at the orbit epoch. However, do not overlook

the slow time dependence occurring through the motion of perigee

and therefore _12 and _13, and the small time dependence occurring

due to the use of the osculating elements for a and i. As is to be

expected, if there is an error in the period of the satellite motion,

the satellite along-track error grows linearly with time and the

satellite altitude exhibits an altitude error 5ao which will not average

to zero. _lo is the position error in the along-track direction at the

epoch. It can be seen that the remaining terms in the error equa-

tions are oscillatory at the orbital period.

2. Error in the third zonal coefficient, J3. Substituting the errors

for the kepler elements corresponding to A J3 into the expressions

for 5rs, _l,, _Z, we have:

1 AJ3 [ AJ3_
_r_(t) =2--_2 sinisin_A- 0 _--J_2 / + O(AJ3)'

_/,(t) = AJ3sinicos_-4-O [ AJ3) + o(Aj ),

[AJ3_
_Z,(t) = O\ J2 / + 0(AJ3).

A very interesting point can be seen from these equations. We

had previously noted that the errors in the kepler elements due to

an error in J3 were long period to first order--that is order A J3/J2.

However, once transformed to a coordinate system that is closer

to giving a direct measure of the satellite position error, the effects

(to this same order) become short period. Because the dominant

effect is now short period the resulting satellite errors exhibit a

similar time dependence to the errors caused by orbit parameter

errors along Example 1. This means that over short intervals of

time, say a few days it is lsu_,u,_:k'^ to "_,,i_..... up" most of the error

due to this geopotential error by appropriate adjustment of the

satellite orbit parameters.
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To exhibit this effect clearly, we combine the two previous

examples assuming that no errors exist except in the value for

J3 and allow an error in the orbit parameters which will minimize

the effect of J3 being in error. From the previous results, we have:

_A (t) = _Ao(t)

= - a [_toCOSo_(t) - (_o_,_o)sinoo(t)],

Ad3 sini
_B(t) = _Bo(t) - a

2,]2 a

r J3 sin i
+ 5_0sino_(t) + Go S_o) COS_O(t) ]= -a 12J2 a

_lo = a [_M0 + 50_0+ cos i 590],

5ll = - (3/2) 5ao,

J3 sin i
_L2(t) = 25B(t) = $12(t) - a

and:

5L3(t) = - 2 _A (t) = _13(t),

5Z_ = - a sin i $_0,

_Z2 = a $i0,

J2 a

_13(t) _L_(t)
_r,(t) = - (2/3)/_ - -_- cosB + --f- sin_ + higher orders,

_/,(t) = 510+ 511(/_ - t_o) + 5L2(t)cos_ + 513(t) sin_ + higher orders,

_Zs(t) = 5Z_ cos_ + _Z2 sin/_ + higher orders.

These equations have intentionally been written to look formally

like those which represented only orbit parameter errors. The only

difference that occurs when A Js is not zero to the order considered
here is:

_J3
5L2(t) -- $/2(t) - sin i + higher orders.

J_

Since 5/2(t), and therefore 5L2(t), are varying with time very slowly,

it becomes difficult to separate an orbit parameter error from this

type of geodetic error. This tendency for orbit parameter adjustment
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to hide geodetic errors, exhibited in this example, is a general result

for many types of geodetic errors, particularly errors in the zonal

harmonic coefficients of the geopotential. It is for this reason that

long satellite trajectories are usually required to determine ac-

curately the zonal harmonic coefficients in the presence of other

errors such as station location errors and experimental data errors

(see [8], [9] and [10]).

We have considered the general character of the errors in the

satellite motion over long spans of time through two examples. I

will next consider in more detail the effect of these errors on

the tracking data for a specific pass of the satellite above a specific

station's horizon. To do this we transform the satellite motion errors

to the H, L, Z coordinate system. For some given pass, the H-axis,

passes through the satellite position at closest approach and is fixed

in inertial space. Figure 10 gives the geometry of the errors i_n the



202 W.H. GUIER

_r,, _l, moving coordinate system relative to the fixed coordinate

system of H and L. From Figure 10 it can he seen that:

_H, = _r, cos A/_ - _l, sin A_,

_L, = _r, sin A/_ A- _l, cos A_,

5Z, unchanged,

A_ = _(t) --/_(tc),

tc = time of closest approach.

Letting

C(A_) = 1 -- cos A_,

it can be seen that during the pass IC(t) l << 1 for near-earth satel-

lites. Rewriting the above equations:

_H, = _r,- _/,sinAt_ - _r,C(AB),

_L, = _l, + _r, sin AB -- _l, C(_),

SZ, unchanged.

The procedure from here on involves expanding 5r,(t), 5l,(t), and

5Z,(t) in the functions sinAB, C(At_)= 1- cosA/_, etc. and then

by substitution into the above equations for _H, and _L,, express

the time dependence of the satellite errors in the H, L, Z coordinate

system in functions of the form sin _/_, C(AB)sinA/_ C(A/_), etc. This

procedure can be done in general but is not too useful to the de-

velopement of a physical understanding of the effects of the errors.

Consequently, I shall make this transformation using the two ex-

amples discussed previously; one may consult [5] for consideration

of the general case.

I use a subscript c to denote a time dependent quantity evaluated

at t = to. The result then becomes:

_H,(/_c, A/_(t)) = _r_ -- [_lc + _A_sin_ -- _Bc cos/_]sin AB

-- [Sr_- 3$A_cos5_- 35Bcsint_] C(At_)

-- [SA_sin/_ - _B, cos_]sinA_ C(A_)

+ O(C 2) + higher orders,
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5L,(/_c, A/_(t)) = _Ic+ [_rc- 26Accos/3_- 2_Bcsin/3_]sin A/_

- _l_C(kt_) + [SA_cost_ + 5BCsinC/c]sin_ C(k8)

+ O(C 2) + higher orders,

6Zs(ti_, _xt_(t)) = 5Z¢ | [_P.osin i sinfl¢ + 6iocost_c]sin A¢_

-- SZ_ C(A¢_) + higher orders,

where:

_r_ = _ao + 5A_eos_ + 5B_sin_,

5l_ = a(tc) [SMo + _Oo+ _o cos ic] - (2/3)_ao(/_- ¢/o)

+ 2_B_cos¢_ - 2_A_sint_,

_Z_ = - _osin i(t_)cost_c + _iosint_c,

_A_ = - a(t_) [5_oCOsw(tc) - (_o_O_o)sin_o(tc)],

[ AJ3sini(t_) ]_B_ = - a(t_) 2J2 a(t_) + _tosino_(t_) + (¢o_o)cos_(t_) .

In developing these formulas we have used the relations:

cos (/_ + a/_) = cos Oc- sin/_ sin ±/_ - cos _ C(a/_),

sin(_c + A/_) = sinO_ + cos/_ sin A/_-- sin/_c C(_/_),

sin2 A/_= 1 -- cos2A/_ = 2C(A/_) -4- 0(C2),

and where - (2/3)_a0A/_ has been considered negligible by virtue

of our assumption that the orbit has been "tracked" to reasonable

accuracy so that _ao_(t_) is not large.

V. Data residuals. I shall use the previous results to consider the

effect of station and geopotential errors on tracking data residuals.

By data residuals I mean:

Data residual = Experimental data point - theory at time of data

point, where, as stated in §II, we neglect experimental noise and
instrumentation contributions to the residuals.

Clearly, the error in the slant range vector is:

_ = _r,(t) - _rR(t),

which, in the H, L, Z coordinate system is:
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5pL I

5pc I

H,(I_c, _/3) - EHT

L,(_c, A_) - EL T }-I-
Zs(_c, _/3) - EZT

W. H. GUIER

second order;

we discussed the station error EH T, ELT, EZT in §III and discussed

the nature of Hs, L,, Z, in §IV.

Corresponding to this error, the error in the scalar slant range,

i.e., the slant range data residuals are given by:

1
5p = Io -{- 5ol - a = - o" 5p + second order

P

= _ • 5o -{- second order,

where, from §II:

p, cos0- C(t)

p(t) = r, sinA/3(t) -k first order,

- p, sin 0

p(t) = r,[p 2,-{- 2a_ C(t) ]_/2 _{_first order,

as= 1 --psCOSg,

C(t) = 1 - cosA_(t).

The errors in the slant range unit vector, i.e., the angular data

residuals, are given by:

5_ = 5 = -
P

That is, the angular error scaled to distance error is

ps_ = 5p - _ (_. 5p).

Finally, the error in the scalar slant range rates, i.e., doppler data

residuals, are given by:

d d[1 (pSp)]

=1[ 1 dp2 2d (pSp)](PsP) _i- + P _-

Each of the above types of residuals can be computed by sub-

stituting in the appropriate expressions for the error in the vector

slant range.
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Using now the two examples in §IV as a guide, we can write

5p(t) = 5pc + 5pl sin a_(t) + _p2 C(t) + higher orders

where

OpC _ Ols_tc! -- valtkocp •

(The proof of this form for general geopotential errors is lengthy

and is given in [5].) Substituting this form into the above ex-

pressions for slant range residuals:

p (t) _p (t) = p, [cos 0_pHc -- sin 05pZc]
rs

+ [SPLc + ps(COS 05PIll -- sin 05PzI) ] sin _ (t)

q- [2 (_pL 1 -- 5pH C _- ps(COSO (_pH 2 -- sin 05Pz2) ] C(t)

+ 0 [sin A_ C(t) ] + higher orders.

For satellites whose altitude is of the order of 1000 km,

p_ < .25, C(t) < .15.

Therefore, to a fair approximation:

A. Scalar slant range residuals:

p(t)
-- 5p(t) = Ps [COS05PH C -- sinOSPZc] + [_pL C 4_, O(ps)]sinh_(t)

r_

q- [2 _)PL1-- 5PIle "_- O(ps) ] C(AB) "_- 0 [sin Aft. C(t) ]

Similarly, by substitution into the expressions for the other

types of data:

B. Angular residuals:

r_Sf; = 5_c + 5p_ sinAf(t) + 5p2 C(t) q- O[sinAf_ • C(t)],

_^
opl _ Ps

( _pH C -- COS 0 [COS 0 (_pH C -- sin 05pzc] \
(SPLc )
5pz C + sin 0 [cos 0 _pH C -- sin 05pzc]

- cosO(_PLc + O(O_) I
[COSta_p;,,c, -- sin fl5.Ozc] 4- O(ps) ,

/sin0 _OLc + O(p_) I
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2 5PHc 4- O(p,)

_& = O(p,) )2 _PZc + O(p,)

C. Range rate residuals:

1 (p(t)_3 d
no \-_-, / _p(t) = p,_[_pLc+ O(p_)]

-- p,[cosS_PXc - sinS$pzc + O(p,) ]sin A/_(t) + O(p2, C(t)),

where no =/}(to).

These results are summarized in Table 1 for purposes of compari-

son, where they have been scaled to like functions of time. It should

be noted that in the above expressions and Table 1 the angular

residuals have been written as a three-dimensional vector in the

H, L, Z coordinate system. However, in reality, the residuals are

only a two-dimensional vector since

p(t) • 5_(t) = 0.

This table summarizes the largest contributions to the expres-

sions for data residuals when experimental errors are neglected.

Clearly, the errors 6p_ C, t_PLc, and $PZc, can be expressed in terms

of the station location errors, orbit parameters errors, and geo-

potential errors following the procedure outlined in §III and §IV.

A rough sketch of the time dependence of the various terms are

given in Figures 11 so that for any given geodetic error its effect

on the time dependence of the data residuals can be found.

Several interesting conclusions can be drawn from Table 1.

First, it can be seen that for comparable signal-to-noise ratios,

range and range rate data yield roughly the same information.

This, at first glance, is surprising since one would suspect that

range data, being the time derivative of the range, would loose

some information (roughly analogous to the constant of integra-

tion if one attempted to integrate the range rate data to obtain

range). Clearly, this is not true except to note that it has been

assumed that the transmitter frequency of the satellite which

generates the doppler data is known exactly so that the incoming

signal can "zero-beat" out the satellite transmitter frequency.

(To the extent that this is not true, a term which is constant with
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time should be added which can easily be separated out from the

time dependence noted in the table.) The second conclusion is

that when range and/or range rate is measured, the following

measurements of the relative error between satellite and station

can be made from a single pass.

_ P L C,

_pH C COS 0 -- sin [_ {_pz C.

Considering now the parameters that can be determined with

angular residuals from a single pass, we have:

¢_P L C,

_)pHC -- COS 0 [COS0 _pH C -- sin 0 _PZc] = sin 0 [sin 0 _PHc + COS0 SPZc],

_PZc -4- sin 0 [cos 0_pHC -- sin 05PZc] = cos 0 [sin 0 _PHc -4- COS0 5PZc],

and

[cos # _PHc -- sin 0 5PZc],

so that more information is available in optical data than range

or range rate data for equivalent signal to noise ratios and data

rates.

Touching, for the moment on the relative merits of different

types of data, the following should be noted. Range and range rate

systems are usually radio tracking systems and consequently have

all weather capabilities and are designed to yield very high data

rates. I believe most people agree that no radio tracking system

significantly exceeds the data point accuracy of a good optical

(angle) tracking instrument. However, optical tracking systems

are not all weather and as a maximum can only take data at night.

Including the tedious job of reducing the optical photographs, we

can see that range and range rate systems yield high data rates in

all weather conditions but per satellite pass may yield less informa-

tion than a high quality set of optical data. Consequently, it would

appear that a high quality radio range or range rate system and a

high quality optical tracking system are complementary to each

other. For example, optical data provides an excellent means for

monitoring the accuracy of radio tracking systems. This fact has

been recognized in the ANNA geodetic satellite (see [11] and [12])
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in which was flown an active flashing light to aid in obtaining in-

creased optical data rates together with instrumentation for two

radio tracking systems.

So far we have been concerned only with the data residuals for

a single satellite pass. Clearly, when considering many such sets

of data residuals, one has the capability of measuring the time

dependence of the orbit error over long time spans to gain informa-

tion on geopotential terms which produce secular and long-period

effects. When using such data to make a significant improvement

in current values for station position parameters and coefficients

of the expansion of the geopotential, a sufficiently large number

of parameters must be inferred from the data that it is essential

to have very large amounts of tracking data. In fact experience

has shown that one really needs many satellites at differing inclina-

tions, to determine accurately the nonzonal coefficients of the

geopotential.

The techniques and associated computer programs which are

used to perform such determinations of geodetic parameters are

outside the scope of this set of notes. It is sufficient to note that

one must have available high quality tracking data from many

satellites and extensive computer programs before such an attempt

is capable of improving on current accuracies.
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Magnus R. Hestenes*

Elements

of Calculus of Variations

and Optimum Control Theory

N6 :i7 3o
I. Introduction. The calculus of variations and optimum control

theory, along with certain associated computational methods, will

be presented in parallel format to show the basic similarities in

spite of what may superficially seem to be glaring differences. The

two theories together form one theory, with separate vocabularies

arising from usage current to its era of development.

Consider the following problem in classical calculus of variations,

namely a bead on a frictionless wire falling under the influence of

gravity, commonly called the brachistochrone problem (see Figure 1).

Find the path of least time between points 1 and 2 for a bead of

mass m sliding along the wire under the influence of gravity alone.

The time required for descent is

f 2ds fx[2 (1 -_- (Y)2) 1/2(I.1) T = (2gy) lj2 - (2gy) _/2 dx,

where the last integral is written for a curve y = y(x), xl <- x < x2.

Restated: Of all arcs joining the points 1 and 2, find the arc for
which T = minimum.

*The manuscript was prepared by Richard H. Lance of CorneU University.
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FIGURE 1. The Brachistochrone Problem
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FIGURE 2. Rocket Trajectory of Minimum Time

The modern theory of the calculus of variations has its beginning

in the study of the brachistochrone by the Bernoulli brothers. If

they had been living today, they probably would have formulated

a modern brachistochrone problem as follows: to find the path of

least time between two points for a rocket under the influence of

gravity and a thrust force with variable direction but with

constant magnitude. An additional constraint is imposed: The

slope of the optimal path is to have fixed values at 1 and 2. This

is a problem in optimum control theory. Mathematically formu-

lated in terms of the variables shown in Figure 2 for a rocket of

mass unity, the differential equations are:
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J_ -----Fcosu,
(I.2)

y = Fsin u - g.

The end values x(0), y(0), 2(0), y(0), x(T), y(T), x(T), y(T) are

fixed, and the problem is to make T a minimum.

This control problem is, in fact, the classically formulated Prob-

lem of Mayer. One speaks of the variables x, 2,y,y as the state

variables, and of the function u (t) as the control variable. We wish

to choose u(t) so that we go from point 1 to point 2 in the least
time.

Let us rewrite the last problem in a more convenient form. Let

(1.3) x I = x, x 2 = y, x 3 = x, x 4 = y.

Then the problem is to solve the differential equations

(I.4) x_=x 3, 22=x 4, 2 3=Fcosu, 2 4=Fsinu-g,

with xi(0) fixed, xi(T) fixed (i = 1,2,3,4); T-- min.

This type of problem can also be written in the form of the

general Problem of Bolza: Given

2 _= f(t, x, u) (i = 1, ..., n),

a set of differential equations, find among the class of arcs satis-

fying some end point conditions--say xi(0) fixed, and perhaps

xi(T) on a line or surface in x i space--the functions xi(t) and the

control u (t), 0 < t -< T, for which

f(I.5) g(T) + [(t, x, u) dt = rain.

It is to be understood that the symbols x and u represent

vectors with, in the case of x, n components.

Among the topics we could consider are these:

1. Properties of solutions,

2. Construction of solutions,

3. Existence of solutions,

4. Sufficiency conditions.

In this chapter we will consider only Topic 1, which includes

discussions of the necessary conditions which must be satisfied by

solutions of the above-formulated problems.

II. Minimum of a function of n variables. Before studying the

problem of minimizing a functional such as (1.1), let us consider
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the problem of minimizing a function of n variables. As an example,

consider

[(x, y) = min.

The first order necessary conditions that must be satisfied are

(ii.1) /, = 0, [y = 0,

where [, = O[/Ox, etc.; and the second order test is

(II.2) [=h 2 + 2[_yhk + [yyk 2 > O.

Of course, these conditions with the equality excluded in (II.2)

when (h, k) _ (0, 0) guarantee only that a point is a local mimimum.

Since there is no global test for the absolute mimimura, we usually

must find all the points satisfying (II.1) and (II.2) and then test to
ascertain the absolute mimimum.

In the more general case of a function of n variables,

[(x_,x_,x3, .. .,x"),

we write the necessary conditions analogous to (II.1) and (II.2) as

(II.3_) [_ (x0) = 0; i = 1, 2,..., n,

(II.32) [xi,; (Xo) hihj >- 0 for all h,

which must be satisfied for all points Xo which are minima. In

(II.32) the usual summation convention has been adopted. The

equations (II.3_) can be interpreted as the condition that grad/= 0.

To see this, observe that for each h we have

¢(t) = [(Xo -4- th) >= [(Xo) = 6(0)

if x0 is a minimum point and t is near t = 0. Thus ¢'(0) = 0 and

_b"(0) > 0 for such a point. Thus it follows that

(II.4) 0 = el(O) = [' (xo, h) = [xi(Xo) h i,

which is identical to (II.3_). The function [' (Xo, h) in (II.4) is called

the differential of f at x0, the first variation of [ at Xo and the

directional derivative of [ at x0 in the direction h. Equation (II.32)

is obtained from the latter condition on ¢(t),

d2[" ' I0 =<_" (0) = [" (x0, h) = d-_tx0-t- th) = [_ixj (Xo)hih j.
j- -
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P(3, 4)

x2

FIGURE 3. Shortest Distance to Circle

As an example, let us find the shortest distance from a point P,

say (3, 4), to the circle centered at the origin, radius 1. Minimize

[(x _ - 3)2-} . (x 2- 4)2] _/2, or simply

1 [(x_ _ 3)2+ (x 2 _ 4)2]fo(X) = -_

subject to the constraint

fl(x) = _1[1 - (x_)'_- (x_)'_]=>0,

where the inequality constraint has been imposed for generality.

Computing the directional derivative, at Xo = (3/5,4/5), we have

4
f_(xo, h) = - _ (3h 1 + 4h 2) -= k0,

1

f_(xo, h) = - _ (3h 1 + 4h 2) --- k_;

we observe the relation

(II.5) k0 - 4kl = 0,

which is the "multiplier rule" for this very simple case.

We note in this example that inside the circle [1 > 0, while [_ < 0

outside the circle. Now (II.5) requires that ko and k_ are both

positive, both negative, or both zero. Thus if [o(Xo) is a minimum,

we have k0>0, k_>0, if the vector h at Xo points towards the

interior of the circle. Calling K the class of vectors of this
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vectors, i.e., all k-such that ko < 0, k_ > 0, the multiplier rule (II.5)

can be restated in a disguised form:

No k-in/_ is interior to K.

This is the form of the multiplier rule which forms the basis for

the results found in modern texts such as Pontrjagin [1].

One further example is the problem of finding the shortest

distance between the circle, Figure 3, and a point P which is con-

strained to lie on or above the line 3x3+ 4x 4- 25 = 0. The

mathematical formulation is

1 [(xl _ x3)2 + (x 2 _ x4)2 ] = minfo(X) =

subject to

1 [1 - (x') 2 (x2)2] > 0,fl(x) = _ - =

[2(x) = 3x 3+ 4x 4- 25 > 0.

To solve this problem, we look at the class K of all vectors

k = (ko, kl, k2), where k/= f[(x,h), with h an arbitrary vector.

Here x= (x _,x 2,x 3,x 4); x0=(3/5,4/5,3,4) is the known solu-

tion./_ is k-p such that _1 > 0, k-2> 0, and k-0< 0. This can be seen

by considering how the functions fl and f2 change as the point

P and the terminal point at the circle move, as in the previous

example. For this case,

4 [3(h 1 _ h3 ) + 4(h2 _ h4)] '
ko =/_(Xo, h) = -

1

kl = [_(Xo, h) = - _ (3h 1+ 4h2),

k2 = [6(xo, h) = (3h 3 + 4h4).

Thus the multiplier rule is simply

4

k0- 4kl - _ k2 = 0.

If we write F=-[o-4[1- (4/5)/2, then the multiplier rule is

4.
F'(xo, h) = ko - 4kl - _ _2 = 0,
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which is equivalent to

F_i = 0 at Xo.

Let us consider the theory of minima of functions of n variables

in more detail, now that we have an idea of what must be observed

in view of the simple examples given above. Because every prob-

lem that is to be solved numerically must be discretized, i.e.,

reduced to a problem given in terms of functions of n variables,

it is important to have a good grasp of the theory before pro-

ceeding to more advanced topics.

For the function [(x)= [(xl, x2, ...,x"), the level surfaces are

those for which [(x) = constant. As we know, the vector normal

to a level surface, i.e., the vector in the direction of greatest rate

of change of [, is gradf and has the components [xJ =- (0[/Ox_)

(j = 1,...,n). The rate of change in any other direction h

= (h I,h 2,...,h") is then

F(grad/) • h -= ['(x0, h) = _-[[(Xo + th) ,-o

Of _ohl Of I 0[[=--Ox-fx_ +-_-_x 2 kS+ "" + O_x" h",
xO xO

where Xo + th =- (x_ + th 1, X2o+ th 2, ..., x_ + th"). Thus we write

f(xo, h) = [xi(Xo) h i = (grad/) • h = (grad/, h),

as the directional derivative of [ in the direction h. If the level

curve is as shown in Figure 4, and assuming grad/_ O, then for

h pointing out (like hi in Figure 4), [' (Xo, h) > O; for h pointing

in (like h2 in Figure 4), ['(xo, h)<0; and for h tangent to the

curve (like ha in Figure 4), ['(xo, h)= O, since grad[ is normal

to the level surface.

hi _ 2 grad/

[(x) > o

/ _h3 (tangent)

[(x) < 0 h2 [(x) = C

FIGURE 4. Level Curve
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The directional derivative can be particularized by specifying

h to lie tangent to some curve x(t) that intersects the curve [(x) = c,

i.e., we require that x(O)= x0, 2(0)= h. Then

f (xo,h) = d /(x(t) )

= fxi(xo) xi(o),

where _i(0) has replaced h i.

The economy of the notation introduced here enables us to

write Taylor's Theorem as follows:

For one variable

1
f(x) = f(xo) + f'(xo) (x - Xo)+ _ f" (Xo)(x - xo)2+ .. ",

and

1

/(Xo + h) = [(Xo) +/'(Xo) h + _ f"(Xo) h2 + .-..

For n variables we write Taylor's Theorem as

+ h) = [(Xo) + [' (Xo, h) + 1 f,, (Xo, h) + ...,[(Xo

where

[' (xo, h) = [_ih i,

["(xo, h) = Lixihih j.

Suppose that xo is the solution of the problem [(x) = min. How

do the level surfaces look near xo? From the expansion

1
[(x) = [(xo) +_ ["(xo, x- xo) + .... constant,

since ['(Xo) = 0. In two dimensions,

[(x,y) = [(xo, Yo) + [=(x - Xo)2+ 2[,,y(x - Xo) (y - Yo)

+ [.(Y -- 31o)2 + ...

= const.

Tru_n_cation of the, series at the second order terms shows that near

the minimum point the level surfaces are approximate ellipses.
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For a problem with constraints, the classical procedure is to

introduce Lagrange multipliers; e.g., in the problem [(x)--min,

subject to g(x)= O, form the function F(x)--f(x)- Xg(x). We

will choose X such that

Fxi(Xo) = grad FI_ o = 0,

where Xo is the solution point. There is a unique X provided

gradg _ 0. To see this graphically, consider Figure 5. It is clear

that in order for a solution to exist, the curves f(x)= f(Xo) and

g(x) = 0 must not cross but must be tangent at the solution point.

Tangency is equivalent to the existence of a _ so that

grad/= _,gradg.

I gradg

f(x) _ grad/

Xo _.._,.xf(x ) > f(Xo)

\\ g(x) = 0

[(x) = [(Xo) a level surface

FIGURE 5. Minimum Subject to Constraint

In the above problem we can accept either ;_> 0 or _, < 0.

However, for a problem with an inequality constraint, say,

f(x) = min, g(x) >- O,

with solution :Co, it can be shown by similar graphical arguments

that in order for grad F = grad f-Xgradg---0, X must be non-
negative.

To generalize, we state the following without proof:

THEOREM. For the problem f(x)= min, with two constraints:

Case I: gl(x) = 0, g2(x) = 0;

Case II: gl(x) = 0, g2(x) > 0;

Case III: gl(x) > 0, g2(x) > 0;

i[ Xo is a solution, i.e., [(Xo) is a minimum of f(x) subject to the con-

straints, then there exist multipliers _1 and A2 such that, when we set

F = f- _1gl - _292,



ELEMENTS OF CALCULUS OF VARIATIONS 221

we have

Fxi = grad F = 0 at Xo;

for Case II: he > 0; for Case III: ;_2> 0; _3 > 0.

These ,wu.,_l..... ,_,,,;!1now _'o_ interpreted in terms of the vectors

K and K introduced earlier. If we write

k0 = f' (Xo, h),

(II.6) kl = g[ (xo, h),

k2 = g_(fo, h),

then for kl >0 and k2>0, we must have ko >0.

Equivalent to the above theorem is the following:

THEOREM. Let K be all vectors k = (ko, kl, k2) defined by (II.6)

and let K be all vectors k= (ko, kl, k2) such that k0<0, _> 0,

and E2 > O. Then no vector k in 1_, is in K.

More generally still, for the problem [(x) = min subject to the

constraints

g_(x) = 0 (a= 1,...,m'),

g_(x) > 0 ([3 = m' + 1,...,m),

if Xo is a solution, i.e.,

g_(xo) = 0 (_ = 1,...,m'),

g_.(Xo) = 0 (_' = m' + 1,...,m'),

g,. (Xo) > 0 (_" = m" A- 1, ..., m),

then we have the multiplier rule:

There exist multipliers Xo > 0, _l,''',Xm not all zero such that

(1) _,_,> O,

(2) X_. = 0;

(3) the function F = _,o[- X,g, (_, = 1,..., m) has the property

that grad F = 0 at Xo.

If the matrix

Ogo(xo) (_ = 1,...,m')

has the rank m', then _o>0 and can be chosen so that Xo=l.
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If so chosen, the multipliers are unique.

III. Classical calculus of variations. Let us now return to classical

theory and derive the necessary conditions for a minimum in a

general form. The equation for the brachistochrone problem can

be written

_ (1 + (y,).,)l/.,(III.1) J(Y) = yl_, dx = min

where we now write y=y(x) for xl < x < x2; [Xl, y(xl)], and

[x2,y(x2)] are held fast; and unessential constants have been

ignored. Another source of problems is that of the minimization

of the area of a surface of revolution, the generator of which passes

through any two points 1 and 2, as in Figure 6. The functional
to be minimized is

;2(III.2) J(y) = 27ryds = 2Try (1 + y,2)_/2

where the factor 27r may be dropped, since it is unimportant.

Some typical elementary problems are covered by the following
forms of functionals:

J(y) = y" (1 + (y')2)l/2dx = min (r is real),

j(y) -_ f_ ((y,)2 _ y2)d x = min,

£J (y) = (1 - (y')2)l/2dx = min.

In the general form, the fixed end point problem is written:

Determine y=y(x) for x_ < x <x2, with [x_,y(x_)], [x2,y(x2)]

held fast, such that

f:J(y) = [[x,y(x),y'(x)]dx = min.

If the minimizing arc is Yo = yo(x) for x_ < x < x2, then we have the

MAIN THEOREM. (1) [- y'[y, is continuous along 3'0 and

d

(III.3) d---x([ - Y'[Y) -- L on Yo;
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1

FmURE 6. Minimum Surface of Revolution

[y is continuous along Yo and

d

(III.4) d--x [y' = [y on yo;

(2) For (x, yo(x), Y') in the region R of definition of f(x,y,y')

(III.5) E(x, yo(x),y_(x), Y') > 0,

where

E(x,y,y', Y') = f(x,y, Y') - [(x,y,y') - (Y' - y') fy,(x,y,y').

Equations (III.3) and (III.4) are the Euler equations, and

Equation (III.5) is the Weierstrass condition.

Before proceeding with the proof of the above theorem, let

us consider a few examples.

If [= (y,)2 y2, then fy, = 2y', i.e., there can be no corners

on Y0. Since [_ = 0, we have the condition from (III.3) above

f _ y,fy, = _ (y)2 _ y2 = constant,

and since [y = -2y, the Euler equation is

y" +y= 0,

which has the solution

y = a cos x + b sin x.

If [ = yr(1 + (y,)2)ln, then

yry'

E,, = (1 + (y,)2)_;2,
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and

yr
[- y'fy, =

(1 + (y,)2)1/2"

The first Euler equation is then integrated once to give a con-

servation principle:

yr
-- constant.

(1 + (y,)2)1/2

In terms of the variables introduced in §II, the problem in

many dimensions is:

x=x(t) for t°_<t_<t 1,

[t°,x(t°)] and [P,x(tl)] are fixed,

tl

Jto [[t,x(t),2(t) ]dt = min.J (x)

If x0 = xo(t) for to< t < t _ is the minimizing arc, then the Main

Theorem is:

MAIN THEOREM. (1). [--2[_ is continuous along Xo and

(III.6)
d

d---i(f - 2£) = ft on Xo;

[_ is continuous along Xo and

d

(III.7) _i-f_ = fx on Xo;

(2)

(III.8) E(t, xo(t), 2o(t), X) > 0

for all (t, xo(t),X) in R, where

E(t, x, 2, X) = [(t, x, X) - [(t, x, x) - (X - x) [_(t, x, 2).

It is easy to give a graphical interpretation of the Weierstrass

condition. Let z = f(y'), holding x and y fixed. In the y'-x plane,

Figure 7, at the point y_, Zo--/(y_), draw the indicatrix z- Zo

=[y,(y_)(Y'-y_), i.e., the tangent to the curve at that point.

We see that f(Y') > [(y_)+ (Y'-y_)fy(y_). Thus the Weierstrass

condition is interpreted as the condition that the curve z = f(y')
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/

/

z - zo = [y(YO)(Y' -y_)

!

y6 Y'
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FIGURE 7. The Weierstrass Condition

lies everywhere above the indicatrix in the neighborhood of the

minimum yo.
Before giving the proof of the Main Theorem, we must make

some qualitative definitions.

Weak Neighborhood. For a given interval (Xl ___<x < x2), an arc

y = y(x) is said to lie in a weak neighborhood of another arc

y = yo(x) if y(x) and y'(x) respectively differ little from yo(x) and

y_(x) in the interval.

Strong Neighborhood. For a given interval (xl _-<x < x2), an arc

y = y(x) is said to lie in a strong neighborhood of another arc

y = yo(x) if y(x) differs little from yo(x).

The Euler equations are derived using the concept of a weak

neighborhood; the Weierstrass condition is based on the concept

of a strong neighborhood.

Let us prove the Main Theorem in terms of variables used in

the second statement of it.

Let the function

h=h(t) for t°-<t--<t 1

be an admissible (weak) variation, i.e., h(t °) = O, h(t 1) = O, so

that the function

Xo -4- _h = xo(t) -4- _h(t) for to < t < t _

has the same end points as Xo(t). If _ is an arbitrary, small number,
we write

(III.9) 4_(_) = or (Xo + _h) = [(t, xo(t) + _h (t), _Co(t) + _ li(t)) dt.

In order that Xo be a minimizing arc,

q_'(O) = 0 and e.......tuj _ O.
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Hence,

(III.10) 0 = ¢' (0) = J' (Xo, h) = ([_h + [_ti) dt,

and
tl

(III.11) 0 < ¢"(0) = J"(xo, h) = I.o 2o_(t,h,h) dt,

where
2to =- f,_ hh A- 2f,_ hh + [_, i_ti.

Equation (III.10) is analogous to the directional derivative intro-

duced in §II. Let us rewrite (III.10) as

tl

_t0 [M(t) h(t) -4- N(t) h(t) ]dt.(III.12) J'(xo, h)

FUNDAMENTAL LEMMA. I[ M (t) and N (t) are piecewise continuous,

then ftd_(Mh -4- Nii) dt = 0 for all admissible h, if and only if N(t)

= frOM(s) ds A- constant.

PROOF. Let q(t)= ft_M(s)ds, so that _(t)= M(t), and put

h(t) = ft0 t[N(r) - q(r)]dr - C(t - to). We clearly have h(t °) = 0,

and if we choose C such that h(t 1) = 0, then h(t) is admissible.

Let p(s) = q(s) -4- C, so that

foh(t) = [N(s) - p(s)]ds.

Then P(0 = t_(t) = M(t), and /_(t) = N(t) - p(t).

Case 1. Assume that fttl(Mh+ Nl_)dt = 0 for all admissible

h. Using the h just defined, we have

0 = (Mh+Nli)dt = (ph+ (li+p)ii)dt

f tl fO 1
= ti2dt + [phlI:I_ = ti'_dt

Jto

since h(t °) = h(t _) = 0. However, if h is ever different from zero

for t°< t < t_, then h "2 is sometimes positive and never negative,

and we would have

fl _ ti2dt O.>
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So h'= 0, and we have N = p; that is
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N(t) = M(s) ds + C.

Case 2. Assume the relation above. Let h(t) be admissible. As

M(t) = _I(t) from our assumption as to the form of N, we get

ft0 tl  Mh÷Nh  t;;1(Nh + Nl_) dt = [Nh ]'t==ttlo = O.

The proof of (III.7) follows directly from the lemma. To prove

(III.6), we have by (III.7)

d

d

=/,+f,x + f_ - _- (xf_)

d

= _ (f- xf_).

To prove the Weierstrass condition (III.8) we refer to Figure 8

La which _ > 0. We will admit strong modifications of the form

shown, calling the modification Y(t) for to < t < to + e and Y(t, _)

for to + _ < t < t1. Note that the modification is continuous but

has corners:

Y(t,t)

xo(t)

t

t1t o to to +

FIGURE 8. Arc with Corners
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Specifically, let X(t) be a function with X(to) = x(to) and (to, x(to),

X(to)) in R. Then take

Y(t) = x(t) + (t- to)(J(,(toq- _) - So(to+ D),

Y(t,_) = x(t) + _(J((t) - 2(0).

Then

_'(t) = x(t) + X(to, + ,) - x(to + _)

Y(t,,) = x(t) +, (_:(t) - _(t)).

For the arc with corners,

J(xo) - ¢(0) __<¢(_) = [(t, xo(t), _o(t)) dt

+ /(t, Y(t), Y(t)) dt

2+ [(t, Y(t, _), _'(t,D) dt.

Hence,

o __¢;(o) =/(to, Xo(to),X(to)) -/(t, xo(t), xo(t))

t 11.,

J_ (f_x, + fxx,) dt,
+

where x,-= X - 2. By (Ill.7), the integral becomes [xx, Itl_. Note

that x,(tl,0)= 0. Thus we have the Weierstrass condition

0 < 4S(0) = f(to, xo(to),)_/(to)) - f(to, xo(to), xo(to))

-- (X(t0) - xo(to)) [_(t, xo(to), x0(t0)).

Transversality conditions arise in variational problems in which

one or both end points are not fixed. For example, in finding the

shortest distance between a point P in a plane and a curve y_(x)

in the same plane, one end point is fixed at P and the other is

variable. It is clear that the minimal curve 3Io will be a straight

line which is normal to the curve and passes through P, Figure 9.

The tangent will have the direction (1,y_), and the end point
condition is

(III.13) (1,y_) _L (dx, dyl).
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The relation (III.13) is called the transversality condition.

Y

o
z

Y_) l ,y_
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FICURE 9. Transversality Condition

For the general problem

fx0 :l
J = [(x,y,y') dx = min

with xl constrained to be on some curve y(x), the transversality

condition to be satisfied at the variable end point xl is the line

with the direction (f-y'fy,,fy,) must be perpendicular to (dx, dy).
Hence

(III.14) (f - y' fy,) dx -+- [y,dy = O.

Let us prove (III.14) in complete generality in terms of the

variables used in the proof of the Weierstrass condition

x=xi(t) for t °_<t<T,

[t°,xi(t°)] held fast; T, xi(T) are constrained to lie on a surface

S. The general problem is

f0(III.15) J(x)=g[T,x_(r)]+ [(t,x(t),x.(t))dt=min.

Let xo=xo(t) for t°_<t_< To be the solution, and choose a one-

parameter family of curves x(t, _), to <- t <_ T(_) joining the initial

point to a point (T(D, X(D) on S, where X(e)= x(T(D,D.

The family of curves should contain xo for _ = 0; that is, x(t,O)

= xo(t), with T(0) = To. We form the function

[" rio

J(D =g[T(e),X(e)]+j|to [(t,x(t,_),x(t,_))dt.
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Then

(III.16)
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f_ T°dJ = dg +/(T) dT -t- ([,_x -_ [_:t) dt,

where 5x = x, dc, and we have put _ = 0, d_--_ 1. The right side

of (III.16) must vanish if x0 is the minimal arc. Holding To fixed,

but letting x(t) vary subject to x(t °) and x(T) being held fast, we

conclude that the Euler equations (III.6) and (III.7) must hold.

Hence, integrating by parts and observing that dx i = xidt-t- 5x i gives

dg -t- [(/- xihi) dT-k f_idXi] '-To --- O.

Ifg is absent from (III.15), then we have the transversality condi-

tion given above. If not, then the expression in square brackets

must be equal to -rig.

Before we leave the classical theory we will discuss briefly the

theory of multiple integrals. Consider

(III.17) J= f f [(x,y,z,p,q)dxdy,
A

where p = Oz/Ox and q = Oz/Oy. The first variation of the func-
tional J is

(III.18) _J = f f (fz_z -t- [p_zx -t- fq$zy) dxdy,

A

where 5z = 0 on the boundary C of A. If we define the inner product
of the two functions u and v to be

(u,v)=ff(u_v_-q-UyVy)dxdy,
A

then _J is expressible in the form

_J= (u,_z).

Take the function u to be the solution of the system

0 0

u=o on C.

The function u(x,y) is the gradient of J along the surface z(x,y).

If z minimizes J on the class of surfaces having the same boundary
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(III.19)

Finally, let us

derivatives:

0 0

au = o.

discuss briefly functionals containing higher

x=x(t) for t°<t<t 1,

t 1

J (x) = fo f(t, x, x, 2) dt = min,

and let x(t°), x(t°), x(tl), x(t 1) be held fast. The Euler equation,

which can again be derived by means of the directional deriva-

tive concept, is

d d _

(III.20) £ - _//_ + _2 h = 0,

and the Weierstrass condition is as before with

E(t,x,k,_,X) = f(t,x,x,X) - [(t,x,_,2) - (X - D f_(t,x,x, Yc).

It is interesting to note how the above problem can be cast into

the form of a control problem, as introduced earlier or discussed

in more detail in §V. Write

X I _ X, X 2 _ :_, U _ X.

Then the differential equations of the process arc

I I
i

C

FIGURE 10. Minimum Problem for a Double Integral

values, then the gradient of J is zero and the condition for J to
be a minimum is
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Xl = X 2, X2 _ U,

with xi(t°), xi(t I) given. Then we wish to find x, u for which

t 1f.

J = Jto f(t, x 1, x 2, u) dt = min,

which is a "control problem."

IV. Theory of cones. The theory of cones in n-dimensional ge-

ometry is useful for discussing advanced theories of the calculus of

variations. The following is a brief introduction to the theory.

If we have a vector k = (k0, kl, k2,.-.,k_), we define the following:

DEFINITION. A hyperplane is the plane L(k)= 0 where

L(k) = aoko + alkl + ... + amkm

or

L(k) = Xoko - _lkl ..... )_mkm

= Xoko- _,k, (_ = 1,2,...,m),

where Xo,X_,...,_,_ are not all zero. For example, in two dimen-

sions, a hyperplane is any line through the origin. A hyperplane

divides the m ÷ 1 dimensional space into two half spaces L(k) > 0
and L(k) <=O.

DEFINITION. A ray is a vector k _ 0 and all ak (a > 0), i.e., all

nonnegative multiples of a vector.

DEFINITION. A cone K is a collection of rays. If k is in K, so also
isak, a > 0.

DEFINITION. A convex cone K is a cone such that if k and k' are

in K, so also is k-C-k'.

LEMMA I. If K and I_ are convex cones such that no k in K is

interior to K, there exists a hyperplane L(k) = 0 which separates them
in the sense that

L(k) >0 if k is in K,

L(]_) <0 i[ E isin

DEFINITION. If K, K are convex cones, the set K-/_ consists

of all vectors of the form k - k-, where k is in K and k- is in /_

The set K-/_ is a convex cone.

Lemma I is not sufficiently general to cover all cases that arise.
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However, it is useful in nondegenerate cases. To take care of de-

generate cases, Lemma I should be replaced by Lemma I*, given

below. However, because the results are more intuitive when

Lemma I is applicable, we shall limit ourselves to this case.

LEMMA I*. If _ K .... ,,,,_,_" enn_,s and K* K K does not

contain all vectors, there exists a hyperplane L(k) = 0 such that L(k*)

> 0 for all k* in K*. The hyperplane L(k) = 0 separates K and K

in the sense that

L(k) >0 ilk is in K,

L(k) <0 if k isin K_

DEFINITION. By the tangent cone _ of R at a point x0 in R will be

meant a collection of rays, each of which is the limit of a sequence

{Lq } of rays eminating from x0, the ray Lq containing a point Xq rs xo

in R at a distance of at most 1/q from x0. For example, for a smooth

closed region R, the cone tangent to R at a point Xo on the boundary

is the half space containing R. If x0 is interior to R, the tangent cone

is the whole space. At the boundary point of a region R with corners,

the tangent cone may be less or more than a half space, depending

on whether the corner is re-entrant.

THEOREM. Let X be a closed, well-behaved set in x-space,

x = (x", x_-,. • "xm), let Xo be a boundary point of X, and let _ be

the cone tangent to X at Xo. Assume that _ is convex and has an interior

point. Let [o(X), fl(X), "-',fro(X) be functions on X having derivatives

f_(Xo, h),f_(xo, h), ...,f;,(Xo, h) at Xo, and let K be all vectors k defined

by the formula

kp = f_ (Xo, h), where h is in __, (p = 0, 1,..., m).

Then K is a closed convex cone.

A proof of this theorem will not be given here.

LElVlMA II. If k is interior to K, there is an K interior to _ such

that kp =/_(Xo,]_-), and there exists a curve x(t) in X such that

[_(x(t)) - [_(Xo) = tk_ (0 < t < _),

and

x(O) =Xo, x(O) =h.
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Let us now apply some of these results to one of the problems

we considered earlier. Suppose that Xo minimizes fo(x) in X subject

to the constraints

L(x) = o

h(x) _>-o

Suppose further that

(a = 1,2,...,m'),

(B = m' + 1,...,m).

L(Xo) = O,

fe,(Xo) = 0 (_' = m' + 1,..., m'),

fe.(Xo) > 0 (_" = m" + 1,..., m).

Let/_ be all vectors k-= (_o, ..., k-=), where _o < 0, k-, = 0, _a' > 0,

_. arbitrary. Then no k-in/_ is interior to K, where K is defined

by the previous theorem. Intuitively K represents the directional

derivatives that fp can have at xo and K is a class of vectors that

cannot be directional derivatives of fp at Xo.

To see these results, we suppose the last statement is untrue and

show a contradiction. If it is untrue, then by Lemma II, there is

a curve x(t) (0 <- t <- _) in X such that x(O) = Xo and

and

fo(x(t)) = fo(Xo)+ tl_o

f_(x(t)) =/_(Xo) + tk-.,

h,(x(t)) = h,(Xo) + t_,,

O<_t<t,

h.(x(t)) = h.(Xo) + tke..

But the first equation leads to the conclusion that fo(x(t)) < fo(Xo),

because t > 0, _o < 0, a clear contradiction.

THEOaEM. If Xo is a solution of the above problem, there exist

multipliers _o > 0, _, ...,_= such that

(1) he. > O,

(2) he- = O,

(3) The function F= },ofo- h,[, has the property that F'(xo, h)

>--0 for all h in J_.
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PROOF OF (3).

F' (xo, h) = _o/6(xo, h) - _,f_(xo, h)

= _o ko - X, k,

=L(k) >_0 for k in K.

PROOF OF (1) AND (2). Choose k-= (- 1,0,0,...,0) in K_ Then

L(k-)=-_o<0 so that _o_->0.

Now choose k-= (- 1, 0, ..., 0, k-_,0,..., 0) such that there are

at least m'+ 1 zeros before k-,. Then

L(k) = - Xo - _]_. < O, m' + l < _ <_ rn",

where if k-. is any positive number, X¢ > O, and if k-o (a > m") is

any nonpositive number, },¢ = O.

V. Control theory. In control problems it is customary to think

of the states of the systems being controlled as being represented

by the vector

x(t) = (xl(t), x2(t), .. ., xq(t))

and the control by another vector

u(t) = (ul(t), u2(t), ..., u"(t)).

The process, as it takes place in time, is governed by differential

equations

xi = [i(t ' x, u),

and usually starts at some initial point

xi(t °) = b i.

A given choice of u(t) gives an initial value problem for the state

yci = fi(t, x(t), u(t)) = gi(t, x),

xi(t °) = bi.

The problem in control theory is to determine u(t) so that we

hit some target while minimizing something, say time, fuel con-

sumption or cost.

An example of a simple control problem is to choose u (t) so that

at a fixed time T you reach x'(T} = c i in such a way that
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£(V.1) J = g(t, x(t), u(t)) dt = min.

It can be seen that this problem is contained in the classical vari-

ational problem discussed in §I, when T is replaced by t1 and

yci _-- fi ---- U i.

The problem can be modified in several ways to make it more

meaningful, but more complicated. We

of the form

lu'(t) I <=c

or, say inequality constraints

¢_(t,u(t)) > 0,

¢_(t, u(t)) = 0,

or

could add constraints

¢,(t,x(t),u(t)) > O, etc.

Let us translate the results for the classical fixed end point prob-

lems into the language and notation of optimal control theory. Let

(V.2) pi(t) = [xi(t, xo(t), x0(t))

and let

ui= yci, Uio(t) = YCio(t).

We now define a new function

(V.3) H(t, x, u,p) = piu i - [(t, x, u).

The minimizing arc Xo determined by Uo has the property that

(V.4) H (t, xo(t), u, p (t)) -< H (t, Xo(t), uo(t), p (t)),

i.e., -H is minimized over all admissible elements (t, xo(t),u),

which means that + H is maximized. Hence we must have

Hui -- Pi - [_i (t, x, u) = 0.

By (V.2) this verifies the Euler condition

dt

The classical Weierstrass condition comes directly from (V.4):
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0 <=H(t, xo, uo, p) - H(t, xo, u,p)

= Pi (t) u_ - f(t, Xo, Uo) - [Pi u i -- f(t, x0, u) ]

=/(t, Xo,u) - f(t, Xo,Uo)- (ui - u_o)Li(t, Xo,Uo)

At this point one can make an analogy to the theory of Hamilton°

Jacobi dynamics. If H were the Hamiltonian, then the Hamilton-

Jacobi equations would be

Xi _ Hpi -_ u _,

(V.5a)
Pi = - H,i = Li.

The Hamiltonian would be defined by the definition of H(t,x, u,p)

and the equation

(V.5b) Hui = 0.

In the classical calculus of variations theory, (V.5) are the Euler

equations.

Recall the modern brachistochrone problem discussed earlier:

xl = x 3, 22= x 4, 2a= Fcosu, 24= Fsinu -g,

withxi(0) and xi(T) given, choose u such that T = min. This problem

also fits very easily into the general context of Leitman [2]7 who

discusses problems of the form

Yc= X(t,x,y) + c_ cos¢,
m

y¢= Y(t,x,y) + c_ sine,
m

m= -_, 0 < _ <_=,

G(T, x(T),y(T), x(T),2_(T), m (T)) = min,

with an initial point given. Such a problem is called a Problem

of Mayer in classical texts.

Let us now state the necessary conditions for the solution to

the following general control problem:

x = state variable xi(t) (i = 1,...,q),

u = control variable u_(t) (k = 1,..., n),
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where to < t < T. The governing differential equations are

_ci = [i(t, x, u).

We are given [t°,xi(t°)]fixed and xi(T) fixed, and we wish to make

fo(V.6) J(x) =g(T) + [(t,x,u)ds = rain.

Assume that x_(t), u_(t) for to -< t _< To is the solution, and define

as before the function

(V.7) H(t, x, u,p) = pi[i - _o[.

Then there exist multipliers Xo > 0 and pi(t), not all zero, such that

(V.8) xi = Hp i = [i, Pi = - H,i,

and

(V.9) H(t, Xo(t), u, p (t)) < H(t, xo(t), uo(t), p (t))

for all (t, xo(t), u) that are admissible. Admissibility may be defined

by constraints of the following general form:

O <_uk <_C, lukl <=C, ¢.(u)_-__0.

Equations (V.8) and (V.9) combined constitute the Euler equa-

tions and the Weierstrass condition for this problem.

The transversality condition takes the form

(V.10) X0g'(T) - H(T, xo(T), uo(T),p(T)) = O.

The analogous form of the transversality condition for the classical

approach is given in §III. In nondegenerate problems the constant

_,0 is positive and can be chosen to be unity.

Let us solve the rocket problem (modern brachistochrone):

H = plx 3 + p2x 4 -3t- F(p3cosu + p4sin u) - P4g.

But (d/dt) H = H, = 0; therefore H = constant = Xog'(T); g(T) = T;

hence H = Xo _-__0 along the minimal curve. Now

p_ = - H,, = 0,

P2 = - Hx2 = 0,

P3= -Hx3= -p,,

P4= -- H,4- -p2,

.'. pt = constant,

•". P2 = constant,

•". P3 is linear in t,

•". P4 is linear in t.
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Let _=p3, ,=P4, and we see that _'=0, and ;/=0; hence the

point (_, 7) moves at a constant rate. Since we have no constraints

of the form _,(u) >_-0, we must choose u such that H = max on

the minimal curve, Ha = 0 on the curve,

0 = Ha = F( - P3 sin u _- P4 cos u) = 0.

Hence, tan u -- P4/P3 = ,7/?;.

The properties of the solution have been obtained without

finding an explicit solution. The solution says that the thrust

force F is always directed to a point that moves on a straight

line at a constant rate as shown in Figure 11.

FIGURE 11. Minimum Time Path for a Rocket

Not all problems in control theory have solutions, i.e., not all

systems are controllable. To illustrate the concept of controllability,

let us suppose a problem is governed by a set of differential equations

xi = fi(t" x, u).

We now ask whether there are functions u which can get us from

P0 to P1. Moreover (see Figure 12), if we can get to P1, can we

PI

Po ¢_'__ P2

FIGURE 12. A Question of Controllability

get to P2, a neighboring point, also? It might not be possible. To

be explicit, consider the geodesic problem
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y=y(x) for xl< x<x2,

y(xl) = O, y(x2) = b,

f [2J(y) = (1 -t- (y')2)l/2dx = min.

Let us introduce the function

z(x) = f_ (1 + (y')2)l/2dx,

and put y' = tanu, z' = seeu, Xl = 0, x2 = 1. The problem is now

to determine u(x) such that subject to the constraints y' = tan u, Z'

= secu,y(xl) = O,Z(xl) = O,y(x2) = b we have

f x2z(x2) = (1 + (y')2)l/2dx = min,

which is a Problem of Mayer. The solution n = 6 is known a priori.

The properties of the solution can be most easily shown in a figure.

2

jP

(1 qt- b2)l/2

x

Y

Fiauaz 13. Locus for Solution Curve

The line OP represents the locus of points of z for the solution curve

yo(x). For any variation from the true solution, the corresponding

value ofz must be larger than the value ofz on OP for the same set of

values of (x,y). We see that there is a hyperbolic cone of reachable

points. The line OP is on the boundary of the cone. If we draw

the intersection of the cone with the plane x2 = 1, we obtain Figure

14. Even for the simple problem discussed here, there are points

z(x2) that cannot be reached, regardless of the control available.
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This lack of complete controllability is typical of Problems of Mayer.

z I
,1_, Reachable , Ill' z = x/(1 -k y_)

N,,] I I ,, Points , I|V

3'

FmURE 14. Reachable Points

Finally, let us discuss a particular case of the control problem

where we have constraints of the form lul < 1.

Let the problem be to approach the origin in x, x phase space in

minimum time, subject to a control u and differential equations

_1= x 2, _2= u.

The function H--plx2+p2u. We must choose u to maximize H

subject to lu I < 1. Carrying out the steps

pl = 0, hence pl -- c_ -- constant,

P2 = - P_, hence P2 is linear in t,

i.e., P2 = c2 - clt. For fixed time, we will maximize H by selecting

u. It is straightforward to show that if p2(t)> 0, u = 1, and if

p2(t) > 0, u = - 1. The solution can be written

u = sign(c_ - cd)

in phase space. Starting at, say point P1 in phase space, the trajec-

tory follows the curve shown in Figure 15. First u -- - 1 up to point

A; then u -- 1 to the origin. Similar remarks hold for point /°2.

'u-=l
\

P2

P1

,u= -I
e Xw

U --1

FIGURE 15. Control with Constraints
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VI. Problem transformations. By means of simple transformations,

we can show that all of the problems are, in principle, the same.

The general control problem is given in terms of x = xi(t) state

variables, to < t < t_, i -- l, ...,q; u = uk(t) control variables, to < t

< t 1, k = 1,...,n, subject to differential equations

Yci = [i(t, x, u),

and the formulation may depend on other parameters

w ° a= 1,...,r,

and may be constrained by conditions such as

¢.(u) = 0,

¢_(u) > O,

¢_(t, u) = O,

Ca(t, x, u) > 0, etc.

As Case (i), consider the constraint

(VI.1) _a(t, x, u) = 0

with end points expressed parametrically as

t°= T°(w), xi(t °) = Xi°(w),
(VI.2)

t I = Tl(w), xi(t 1) = Xil(w).

We impose isoperimetric conditions

t1

(VI.3) d(x) = g_(w) + J,o [_(t, x(t), u(t)) dt
0,

and we wish to make

t 1

(VI.4) d(x) =g(w) + Jto [(t,x(t),u(t))dt = min.

If we have a problem with constraints of the form

¢,a,(t, x, u) = O, a' = 1, ..., m'

¢_.(t, x, u) > O, a" = m' + 1, ..., m,

then to get the formulation, Case (i), we can introduce more func-

tions u by writing
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Cm,+j(t, x, u) = (u"+J) 2

or

_m,+i(t,x,u) - (un+S) 2= O, j = 1, .-.,m -- m',

which are just m - m' more constraints of the desired form _(t,x, u)
= O. This method, however, does introduce singularities, so caution

is in order. Isoperimetrie inequalities can be similarly transformed.
In principle, Case (i) contains all problems which include inequality
constraints.

Let us discuss now the Isoperimetric Problem of Bolza:

x=x_(t) for t °-<t-<t 1 i=l,...,q

with constraints _(t, x, X) = O, a = 1, ..., m

J,(x) = g,(t °, x(t°), t l, x(tZ) )

(VI.5) t1

q- fo f_(t, x(t), 5c(t)) dt = O, 3' = 1,...,p.

do(x) = go(t °, x(t°), t1, x(t') )

(VI.6) t1

-4- Jto fo(t, x(t), x(t) ) dt = rain.

above hold here for inequalityRemarks similar to those made

constraints.

Consider, as special cases

Case (i)

(VI.7) [, = 0, the Problem of Bolza,

Case (ii)

(VI.8) f_ - O, [o - O,

Case (iii)

(VI.9)

the Problem of Mayer,

f, = O, g -= O, the Problem of Lagrange.

We will show that all three problems are basically the same, first
showing that the functions f can be eliminated, i.e., we can write

equivalent problems involving no integrals.

Let the problem be

X = xi(t),

n Lt't
y = y tts
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where

y_(t) = [_dt,

The differential equations are now

with side conditions

M. R. HESTENES

p = 0,1, ...,p.

Jr(x) = g_ -k y_(t z) = 0,

yP(t °) = O.

The problem reduces to a Problem of Mayer, for we now wish

to make

J0 = go q- Y °(tl) = min.

This transformation does not preserve the concept of strong

neighborhoods.

Let us consider a more general Isoperimetric Problem of Bolza.

Let the state variables be

xi(t),w ° i = 1, ...,q; a = 1,...,p; to < t < t _,

assuming that the state also depends on parameters w, and with

the differential equations

(VI.IO) P,(t, x, _c) = O.

We have end conditions

(VI.11) t'= TS(w), xi(t ") = X_'(w), s = 0,1

and constraints

t 1t _

(VI.12) Jr(x) = g,(w) + J,0 L(t'x'x)dt = 0 3" = 1, ...,r;

and we wish to make

t 1t"

(VI.13) J (x) = g(w) -k Jto [(t, x, 5c)dt =
min.

If w appears in the integrand of (VI.12), we merely add the new
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state variables x q+e and the differential equations xq+_= 0. Then

the integrand in the constraints corresponding to (VI.12) contains

no terms in w _.

To see that the problem consisting of (VI.5), (VI.6) and (VI.7)

is a special case of this, let

to = w l, xi(t °) = w 1+i, t I = wq+2, xi(t 1) = wq+2+ i.

The problem (VI.10), (VI.11), (VI.12) and (VI.13) is, con-

versely, identical to (VI.5), (VI.6) and (VI.7). If we append to

the set of differential equations associated with the latter problem

the following, W e= 0, i.e., w e= constant, the end values, then

we obtain the problem

Differential equations

xi(t), we(t).

We _ O,

Po = (t,x,x) = O,

with end conditions becoming the constraints with [, =-0,

to - T°(w(t)) = 0, xi(t °) - xi°(w(t°)) = 0,

t 1- Tl(w(tX)) = 0, xi(t 1) - Xil(w(tl)) = 0,

and we wish to make

t 1

J = g(w(t°)) + Jto f(t, x, _c)dt = min.

By similar arguments and transformations, it is possible to

eliminate the constraint functions J, (x) by transforming the vari-

ational problems to control problems. It is straightforward, con-

versely, to show that the control problem is a variational problem

of one of the special types (VI.7), (VI.8) or (VI.9). Thus, all of

the special types of problems we have formulated and discussed

are basically the same. The type of formulation one chooses is a

matter of taste, or convenience in application.

VII. Methods of computation. The method of steepest descent,

or gradient method, can be most easily discussed in terms of

mIl_,onz ,. - finite number of variables. Let f(x) be a function

of n variables x (xX, x z, .,x"). The derivative of f in ,u^= • " bile
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direction h is

(VII.l) ['(x,h) =g h= lgl IhlcosS,

where g= grad/= (O[/Oxl,...,Of/Ox"), and 0 is the angle be-

tween g and h. For fixed Ihl, f is greatest in the g direction.

Recall that at the minimum point Xo we can expand

(VII.2)
1

f(x) =f(x0)+_ ["(Xo,X-Xo)+ ....

If we truncate this expression at the second order term and set

[(x) = constant, we have an equation for an ellipsoid in x"-space.

Thus, starting with some approximate value of the solution Xo,

we use the concept of the gradient, or direction of greatest change

of/, to follow the "flow lines" from some ellipsoid [(Xo) = constant

to the minimum point of [, i.e., we must solve the set of equations

dx i

(VII.3) dt - [_i = - gi.

For numerical computations, (VII.3) is diseretized to

or the iterative form

(VII.4)

Axi: --giAt

i i i
Xn+1 = Xn -- agn.

Equation (VII.4) is the Gradient Iteration Formula, and embodies

in it the Method of Steepest Descent.

An advantage of gradient methods is that they pull the solution

away from saddle points. However, they do encounter the difficulty

in application that one may have to deal with narrow ellipsoids.

To overcome this difficulty, one must apply special methods to

choose a in (VII.4).

To discuss the gradient method for integrals, consider the problem

x = x(t) (t o < t <- t 1)

[t°, x(t °) ], [t _,x(t_)] held fast

t1

d(x) = Jto ([(t),x(t),x(t))dt = min.

We will admit corners in the minimizing arc
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Xo = xo(t) (to < t < tl),

and we will call a variation h admissible if

h = h(t) (t o < t <- t 1)

and h(t °) = 0; h(t i) = 0. Note the vectorial character ef h(t). If

h is admissible, so is ah. If, in addition, g is admissible, so is

alh + a2g.

We define the inner product of h and g as

(VII.5) g. h = (g, h) =

Let us define

fo'(VII.6) g(t) = [[x(r, Xo(r),Xo(r)) -

where c is chosen so that

t 1

ftl g (t) ti(t) dt.

'f,(x, Xo(S), Xo(S) ) ds - c ]dT,

(VII.7) g(t _) = O.

Since g(t °) = O, g is an admissible variation. In fact, g is the

gradient of J at xo, hence

t 1

J'(xo, h) = | g(t) ti(t) dt = g. h,
Jto

(VII .8)

where

If

f0g(t) = [_ - [,ds - c.

r, tl

Jt ]_2dtIhI_= o

is held fast, then J'(x0, h) has a maximum value when h = ag.

For numerical solution of this type of problem, we can use the

concepts developed earlier for functions of n variables, i.e., (VII.4),

but to use our definition of g, we would rewrite (VII.4) as

(V!!.9) x,+,(t) = x,(t) - ag,(t).

For a general discussion of gradient methods, see Ill].
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The freedom of choice of the definition of gradient in these numeri-

cal methods is unconstrained. Suppose we define the dot or inner

product of the functions g(t), h(t) as

_t 1
/

(VII.10) g. h = (g,h) = | g(t) h(t) dt.
Jt 0

For J, defined as before,

_t 1

(VII.11) J'(xo, h) = i ([_h-t- ffli) dt.
J t o

Integrating by parts with h taken as admissible, we obtain

J'(xo, h) = (tlghdt
.]to

(VII.12)

with

(VII.13)
d

g= fx-- -_([_).

We could call g in (VII.13) the gradient. Analogous to (VII.3), we
would have to solve

ox }(VII.14) _-_ (t, s) = ([_) - Ix = - g

x(t°,s) = 0, x(tl, s)= 0, where x(t,O) = xo. For example, if

ix2=1 (0_t/2? ,

Ix= x,

then we have the system

Ox 02x

#s fit 2 '

with x(t°,s) = O, x(t_,s) = 0, and x(t,O) = xo(t). Note that by using

the gradient approach in this simple example, we obtain a heat

equation which gives the set of flow lines of the energy integral.

Of course, the above problem of minimization could have been

handled by what Courant and Hilbert [3] call Indirect Methods;

that is, by solving the corresponding Euler equation



ELEMENTS OF CALCULUS OF VARIATIONS 249

d

_-(fx) = fx

subject to the two point conditions x(t°), x(t 1) fixed. In the same

book, Direct Methods are discussed. For example, if we define

# = infJ(x) for all admissible x, the problem is to find _ by con-

structing a minimizing sequence Xq such that

lim J (xq) = tt.
q_

On the other hand, we could approach the problem by (a) finding

_, (b) showing that _q_Xo, and then (c) tt = limJ(xq)> J(xo).

The latter approach is that of the Tonelli School in Italy, and

stems from work by Weierstrass and Hilbert.

As the first direct method, consider the following basically

Eulerian technique for obtaining a minimizing sequence. Suppose

the interval of interest is (t o< t < tl). Divide the interval into q

sub-intervals of length

t __ to
h-

q

where q is some integer. Then the integral ftJ_fdt can be approxi-

mated by a function of q variables _1,_2,'-',_q,

F(_i, _2,'" ", _q),

and the minimum of this function can be obtained by the usual

methods for functions of n variables. One disadvantage of this

method is that it usually involves too many variables.

A second direct method, which is very useful when the side

conditions are linear and the integrand functions are quadratic,

is the Rayleigh-Ritz. The details of this method are discussed in

Courant-Hilbert [3].

For another approach, we observe that the admissible variation

h = x(t) - xo(t)

has the properties

h(t °) = h(t _) =0.

We can estimate h by choosing a complete set of functions hk(t),

k = 1,2, ..., which vanish at to and t 1, for example, if t o ----0, t_ = 1:
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(VII.15)

We then write

_kt
hk(t) = sin (_k= k_).

M. R. HESTENES

(VII.16)

Hence

(VII.17)

Thus

(VII.18)

h(t) = _ a,h,(t).
k=l

x(t) = Xo(t) -4- a,h_(t) -4- ... -f- aqhq(t) -}- ....

J(x) =F(a,,...,aq)

if we terminate (VII.17) at the qth term. Thus we again have the

problem of minimizing a function of q variables. The effectiveness

of this method depends, as does the effectiveness of Raleigh-

Ritz, on the choice of the functions hk(t). It is a type of Rayleigh-

Ritz method.

Side conditions of the form

tl/-i

K(x) = Jto g(x,t)dt= C

merely impose on the problem of minimizing F(a) conditions of
the form

G(a,, _2, "", aq) = constant.

Iterative methods play a dominant role in the problem of

minimizing integrals and functions of a finite number of vari-

ables. In general, we are given the task of finding the minimum

of F(x,y,z). If we guess a set xo, Yo, Zo that is close to the answer,

we will get convergence of an iterative scheme, which we can formu-

late as follows:

Given xo, Yo, z0:

(1) minimize F(x, Yo, Zo), solution: xl

(2) minimize F(x,, y, z0), solution: yl

(3) minimize F(x,,yl, z), solution: zl,

and so on; this is a Gauss-Seidel-like procedure.

Let us define formally an iterative procedure. Let Xo be an 'initial

guess (a vector). Then we write
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(VII.19) Xq+l = Xq -4- aqhq

as our iterative process; hq is essentially a choice of direction along

which we go from the qth estimate to the q + lth estimate; aq

determines how far we go in that direction. To use (VII.19), we

must have a program for .... "--sete_u_ _q and _#_q.

One form of Newton's method for finding the minimum of a

function of n variables is basically written in the form (VII.19). If

a 2

(VII.20) F(x + ah) = F(x) + aF' (x, h) + _ F"(x, h),

truncating the Taylor Series at second order terms, then we mini-

mize the right-hand side with respect to a and obtain

- F'(x, h)
ot--

F"(x, h) '

and hence we take

-- F'(xq, hq)

(VII.21) aq - F"(xq, hq) "

The Method of Conjugate Gradients given by Hestenes and Steifel

in [12] is a variant of (VII.19). For a discussion of iterative methods

for linear systems, see [13]. The gradient method, as applied to the

problem of min-hnizing an integral, is discussed in [14].

Let us discuss in some detail an iterative method for finding the

minimum of a function of n variables F(x) = F(xl, x 2, ...,x"). By

iterating on x, we hope to improve a given approximation of the

solution by choosing a 5x such that

Y_= x+ _x = x+ ah,

i.e., xq+l = Xq + aqhq. Program for a:

(a) aq = a = constant. Usually if a is chosen too large for con-

vergence, choose a* = a/2; if too small, choose a* = 2a. One can

also step a to find the value for quickest convergence.

(b) aq = - _ (F'(xq, hq)/F"(xq, hq)), where we have added a scale

factor, # (1 - t < _ < 1 +D. If B < 1, one is under-relaxing; if B > 1,

over-relaxing.

Program for hq:

_-_ r_k ..... 1;n_arly ind_nendent vectors

Ul, U2, . . . , Un.
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Choose ha successively from the sequence

Ul) U2) . . .) ant Ul) ... .

This is the usual Gauss-Seidel procedure. Any combination of the

uj can be made.

(b) hq = - grad F. Recall F' (Xo, h) = Fxi h i = grad F. h.

Usually we define the dot product of the two vectors x, y as

x • y = xiyi.

We could define

x. y = __,gi/xiyj,

a positive definite form. Then, for quick convergence, we could write

o OF
(gradF)i = g _X7,

where g0,g_k = 5_, and then choose gi/ so that grad F points toward

the minimum point, not normal to F = constant as is usually the

case. This implies a particular choice of hq.

Newton's method appears in all phases of numerical analysis.

When solving the equation

a(x) = O,

we write

G(x + _x) = G(x) + G' (x) ,Sx,

set the right-hand side equal to zero, and pick

G(x)
5x

G'(x) "

For a system of equations G_(x) = 0, we put

OGi
0 = Q(x + _x) = G_(x) + _ _x _.

Then we put gij(x) = (aGi/oxJ), not necessarily a symmetric matrix,

and then let

_x i = _ gi'G,(x).

If Gi = OF/Ox i, then gij = (OF)/OxiOx j is symmetric. For quadratic
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functions F, we choose (gradF)i=gii(OF/OxJ); but if F is of an

indefinite form, we may get saddle points. Suppose we are solving

a minimization problem with constraints

f(x) = min,

g(x) = O.

The first necessary condition is

[xi + Xgxi= O.

By Newton's method,

f_i + hg_i + (/,i,i + _gxi_i) bxi + b_g_ = O,

and

g -kgxibx j = O.

To solve these equations for bx j and b_, we must have

g,i 0

and then to iterate, we put

;kq+l= ;%-k 5_,q.

Finally, let us consider Newton's method for finding the solu-

tion of a simple differential equation

T = 1 + y,2 _ yy, = 0 subject to y(a) = A, y(b) = B,

with y > 0;

hence y" > 0.

This is the catenary problem. To solve this, guess a function y (x)

to satisfy the boundary conditions, and set T + 5 T-- 0, i.e.,

T Jr- 2y'by' - 5yy" - ySy" = 0

with 5y(a)= 0, 5y(b)= O. Improve on the guess by solving this
linear equation for by.

This " 'meLnott is tlt_tt-1..... _pptt_ao,_l:_-l'l^to o....°;'_pl°,_.............ond m_lltlpla integrals.
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Index

angle from vernal equinox to line of
nodes, 45

angular residuals, 205
ANNA geodetic satellite, 209
anomaly, mean, 45

astronomical leveling, 126
axial moment of inertia, 130

Bolza

isoperimetric problem of, 243
problem of, 214

brachistrochrone problems, 212

canonical

equations, 45, 62
transformation, 55, 60, 61
variables, 55, 59, 60

cartesian

coordinates, station's geocentric, 180
system, earth fixed, 173

characteristic exponent, 91, 117
Clairaut, equation of, 140
cloudlike satellites, 34
co-geoid, 175
collinear libration points, 33
commensurability, 35, 115
cone, ??_2

convex, 232

confocal ellipsoids, 156
control variable, 237

coordinate system, inertial, 173
critical

eccentricity, 161
mass ratio, 34

of order h, 15
period of rotation, 168
value of polytropic index, 168

Dalembert characteristic, 18
data residual, 203
date, true equatorial system of, 174
datum

point, 176
world, 177

deflection
of plumb, 125
of vertical, 125

Delaunay
elements, 39
variables, 45

denominators, small, 61

density distributions, Polytropic, 167
determining function, 57, 58
difference in mean longitude, 47
differential, 215
direct effect, 39, 41

of Sun, 49, 53
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directional derivative, 215, 218

disturbing function, 45, 46, 48, 49, 50,

52, 53, 55, 59, 61

divisors, small, 114, 118

dynamical flattening, 130

Doppler shift, 183

earth fixed cartesian system, 173

eccentricity, 44, 65

critical, 161

effects of geodetic errors, 190

ellipsoids

confocal, 156

Jacobi, 159

Maclaurin, 159

elliptical problem, 106, 109

periodic solutions of, 115

restricted, 105

equatorial system of date, true, 174

equilateral

Lagrangian points, two, 80

libration centers, 83

points, 103

equilibrium

hydrostatic, 131

pear-shaped figure of, 162

errors

in orbit parameters at epoch, 198

in satellite motion, 198

Euler equations, 223

first variation, 215

first-order stability, 97

flattening, 125, 175

forced

oscillations, 111,113, 116

solution, 110, 115

part of, 109

free oscillation, 110, 115, 117

Fundamental Lemma, 226

fundamental plane

longitude in, 51

generating function, 55, 56, 57, 60

geodesy, 170

three-dimensional, 127

geodetic

coordinates, 175

errors

effects of, 190

latitudes, 128

INDEX

longitudes, 128

problems, 170

quantities, 180

satellites, ANNA, 209

geoid, 123, 175

geometry, relative, between satellite and

station, 183

geopotential, 131,170

grad, 218

gravity, 131

Hamiltonian, 37, 45, 55, 56, 57, 58, 59,

60, 61, 62

harmonic analysis, 87, 88, 89

Hill's equation, 81, 91, 92, 97

hydrostatic equilibrium, 131

identity transformation, 56

impressed solution, 114

inclination, 44, 65

indirect effect, 39

of the Sun, 41, 50, 53

inertia, axial moment, 130

inertial coordinate system, 173

instability, 97

integration constants, 64

intermediate orbits, 35, 106

isoperimetric problem of Bolza, 243

Ivory, theorem of, 156

Jacobi

constant, 80, 97, 100

coordinates, 38, 39, 40

ellipsoids, 159

integral, 98

Kepler elements, osculating, 192

Lagrangian points, two equilateral, 80

latitude(s)

geodetic, 128

tangent of, 51

Legendre polynomials, 40

level surfaces, 218

libration(s), 66, 76

amplitude, 33, 65, 67, 81

centers, equilateral, 83

equation, 64

frequency, 39, 65

orbits, 32, 33, 34, 38

periodic libration, in restricted

problem of three bodies, 103
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point(s), 33, 34
collinear, 33

periodic, 80
triangular, 31, 32, 33, 38, 44

terms, 39, 54, 57, 61

35,66
librational

motion, 80

nonperiodic, 83

stability, 81
limiting orbit, I14

long period(s), 32, 65

motions, 33
orbits, 32

terms, 39, 49, 50, 53, 54, 57, 59, 60, 61

longitude

in fundamental plane, 51
geodetic,128

mean, 45
differencein,47

motion in,39

ofnode,45

ofperigee,45

Maclaurinellipsoids,159

Main Problem, 38,41,46,53

mass ratio,critical,34

oforderk,15
mean

anomaly,45

longitude,45

differencein,47

motion,45

measuringreciprocally,122
motion

inmean longitude,39

ofnear-earthsatellite,170

NASA World Datum, 177

neighborhood,strong,225
noninfinitesimalperiodicorbits,36

nonperiodic

fluctuations,94

librationalmotion,83
orbits, 81
reference orbits, 103

Trojan, 98

optic_ trackln_g, 183

systems,209
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orbit(s), 171

intermediate, 35, 106
limiting, 114
long period, 32
noninfinitesimal periodic, 36
nonperiodic, 81
p_a._m_eters _t e!_och , errors in, 198
periodic, 35

libration, in the restricted problem
of three bodies, 103

reference, 91, 96
nonperiodic, 103
periodic, 80, 82, 83, 104

satellite, 170
short period, 32

orbital stability, 97
oscillations

forced, 111, 113, 116
free, 110, 115, 117

osculating Kepler elements, 192

parallax, sine of, 51
pear-shaped figure of equilibrium, 162

periodic
libration orbits, in restricted problem

of three bodies, 103
librations, 80
orbits, 35
reference

orbit, 80, 82, 83, 104
planet, 98

solution(s), 94, 115
of elliptic problem, 115

polar moment of inertia, 130
polytropic

density distributions, 167
index, critical value of, 168

potential, 164
precision in survey, 122

Radau

result shown by, 129
radio tracking systems, 209
Range rate residuals, 206
reference

orbit, 91, 96
solution, 115, 116

reference-Trojan, 99
refraction, 122
regression of the nodal line, 66
relationship, 173
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residual(s)

angular,205

data,203

Range rate,206

scalarslantrange,205

restrictedproblem,109
elliptical,105

sun-Jupiter,"Trojan" planetsin,80

three-body,31

inperiodiclihrationorbits,103
Trojan,106

satellite(s)

ANNA geodetic,209

cloudlike,34

motion,181

errors in, 198
ofa nearearth,170

orbits,170

trackingdate,170

scalar slant range
rate, 183
residuals, 205

semi-major axis, 44, 125
variation of, 66, 67

semi-minor axis, 125
short-period(s), 32, 57, 58, 65

fluctuations, 92
orbits, 32
oscillations, 80
terms, 39, 49, 53, 54, 55, 57, 60, 61

slant range vector, 182
unit, 183

solar

perturbations, 34
sail, 34

spheroid, 175
spirit leveling, 122
stability, 81, 92, 96

constant, 91
first-order, 97

state variable, 237
station's geocentric cartesian coordi-

nates, 180
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Stokes'principle,126

tangent
cone,233

oflatitude,51
three-bodyproblem,restricted,31

periodiclibrationorbits,103
three-dimensionalgeodesy,127

Tisserandcriterion,100

tracking

data,satellite,170

optical,183

radar,182
station,175

trackingsystems
optical,209

radio,209
transformation

canonical,55,60,61

identity,56

transversalitycondition,229

triangular

equilibrium,1

lihrationpoint,31,32,33,38,44
Trojan

asteroids,34

case,103

group,32

nonperiodic,98

planets, 70
in restricted sun-Jupiter problem, 80

problem, restricted, 106
reference,99

turningpoints,81,91

undulationsofthegeoid,125

variation

first,215

ofsemi-majoraxis,66,67

von Zeipelmethod, 39

weak neighborhood,225

Weierstrasecondition,223
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