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DYNAMICS AND EVOLUTION OF CLOSE
BINARY SYSTEMS

SU-SHU HUANG*

1. INTRODUCTION

Since the discovery of the periodicity of the
change in light of Algol (8 Persei) in 1782 by John
Goodricke in ¥ngland and his correct interpreta-
tion for the variability of light of this star as due
to the “interpositions of a large body revolving
around Algol,” the study of light variation to-
gether with the accompanying variation in radial
velocity, known respectively as the light curve and
the (radiai) velocity curve, has provided us with
the sole means for the empirical study of close
binary system. On the other hand, the close
binary system can also be understood theoretically
from Newtonian mechanics. Thus, our function
is to reconcile the observational results in the form
and light and velocity curve with the prediction
based on the dynamical principles and thereby to
derive o consistent picture of the close binary sys-
tem. Indeed, the history cf our study of close
binaries shows clearly that, like any field in sci-
ence where theories and experiments mutually
help to make progress, observations of light and
velocity curves and calculations based on dy-
namics act as two facets of a single process of
successive approximations that lead finally to the
present understanding of the nature of close bi-
naries. Thus, the general form of the light and
velocity curve suggests as a first approximation
that dynamically the two components behave like
two mass points and geometrically look like two
spheres. Any analysis of light curves and veloc-
ity curves that is based on this assumption which
we call the gross, analysis will be discussed in §2
and is included here for those who are not closely
associated with observational astronomy.
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Obviously this assumption is far from being
true. Indeed, the prediction based (n this as-
sumption fails to agree completely with the
observed light curve. Hence, the deviation of
the observed results from the predicted ones opens
up a way to improve the dynamical model of close
binaries. Thus, the component stars may not be
regarded as point masses and their shape not
spherical. Also, other body or bodies than the
two components themselves may be present in the
system. Such refined treatments are given in the
later sections.

Whether these complications can all be deter-
mined unambiguously from the photometric and
spectroscopic observation with the aide of dy-
namical principles i1s not known at present. Is
the empirical information——wvhen conditioned by
Newtonian mechanics and other laws of physics—
comprehensive enough so that a unique deter-
mination of the geometrical configuration and
physical state of the system can be performed at
least in principle? This fundamental question
has, to my knowledge, never been asked before,
let elone answered. Undeniably this is a ques-
tion of high mathematical complexity. What-
ever the answer may be to this question, we are
safe in predicting that such a unique determina-
tion is unlikely in practice because it is too diffi-
cult to disentangle one effect from many others in
a single light and velocity curve, which has a
limited accuracy imposed by measuring means.
Such a situation which is common to all branches
of observational science in general is particularly
¢ 7zident in astrophysics.

If we cannot treat the various deviations from
the binary problem in an overall manner, we may
nevertheless study them individually and compare
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the results of each individual effect with observa-
tion. In this way, we can still test the consist-
ency between observation and theory but the
uniqueness of interpretation is not warranted by
this kind of approach. By necessity it is this
kind of approach which astrophysicists hereto-
fore have cultivated in their study of close-binary
systems and which we will follow in our treatment.

Next we consider the Roche model and the

related problem of mass overflow from the stellar
The mass motion resulting from the

surface,
overflow is then discussed according to different
approaches. In the last two sections the origin
and evolution of close binary stars are examined
in the light of what we have learned from this
article as well as from the present understanding
of evolution of singie stars.

Finally, we would like to add that the main pur-
pose of the present article is to help understand
the physical nature of close binary systems. It is
intended to serve as an introduct’on to the ba
physics of close binaries. Consequently, theo-
retical studies of a pure mathematical nature
which cannot be matched in the furesceable future
with observation will not be discussed here.  Simi-
larly cbservational results of individual close bi-
naries are mentioned only when they have some
bearing either on general principlr« or on the com-
mon nature of the binary st+  Jecause of a
limitation of space we shall not b able to review
here many physical problems sii-h as models of
peculiar systems, physical processcs in the gaseous
streams, atmospheric eclipses, etc. as we!l as many
technical problems such as the distorticns of ve-
locity and light curves duc to various causes and
the methods of correction, accurate determination
of the absolute dimension of eclipsing systems,

For surveys and observations the reader is
referred to Xukarkin and Parenago’s (1963)
article.

While close binaries are not necessarily under-
going eclipse as seen by us, we are interested in
only those that do, because the light variation
caused by eclipse reveals much information about
the nature of the system. It is true that the mere
fact of undergoing orlipse does not necessarily
warrant a close binary, but its chance of being one
is very high. For this reason a theoretical study
of close binaries is intimately associated with the
observational investigation of eclipsing variables.

For definiteness we shall regard rather arbi-
trarily all binaries with separations less than 10
times the mean radius of the two component stars
as close. Thus, the close binaries can be further
classified into three c..egories: (1) detached sys-
tems, (2) semi-coniact systems and (3) contact
systems as we shall see in §5.

2. OBSERVATIONAL BACKGROUND

In this section we assume that the binary mo-
tion may be treated as a twe-body problem, i.c.
each component acts as a mass point and that the
circular disk of each star follows a given la- of
limb-dar’:ening. Under these simplifying as-
sumptions, the physical state of the two compo-
nent stars is specified by their masses (M, M,),
their r. dii (R,, R,) and their luminosities (L,, L,).
Altogether there are six independent parameters
to be determined for component stars themselves.
in uecordance with convention, we have denoted
here by subseript 1 the quantity that is related to
the primary compnnent and by subscript 2 that
related to the seccondary component. Needless
to say, the princija! -omponent is the brighter one
of the two but is nct necessarily the more massive
one, although in i3t cases the brighter one is
alsn the more mss=:++ one. From the radii and
luminosities, the «fi» .ive temperatures (T,, T,)
or equivalently th. -: rface brightness (J,, J2) can
be readily ¢ ymy.. 1.+

The state of u Lirury can be specified under the
assumpticn iu-! :aade by the period, P, the eccen-
tricitv, ¢. e sani-major axis, a, of the relative
orbit, the- it vlimation i of the orbital plane, and the
longitude oi the periastron « as defined by the
angular distance of tie periastron from the ascend-
ing node measured in the direction of orbital
motion, and T the time of periastron passage.
Altogether there are also six independent param-
eters to be determined for the binary itself. Ail
these parameters are often called the orbital
elements.

In the course of analysis of the velocity curve,
it happens that we can also determine the radial
velocity—called the ¥ velocity—of the entire bi-
nary system. Although the ¥ velocity is not con-
nected with the internal properties of a binary
system, it is nevertheless regarded also as an
orbital element by convention.
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In mosi cases of close binaries the two compo-
nents move around each other in circular orbits.
This gives ¢ =0 which is sometimes assumed in the
analysis of light curves of eclipsing binaries. Since
the nerias‘ron loses its meaning when e=o, the
binary motion is then fixed by the time of the
deeper minimum of the light curve instead of the
time of periastron passage.

The determination of the orbital elements from
the light curve—a process perfected by H. N.
Russell, J. E. Merrill, etc.—has been discussed in
detail elsewhere in this series (Irwin 1962). While
the procedurc :tself is a very tedious one, the un-
derlying principle and what can be derived from
it can be simply stated. Fiest the law of limb-
darkening is assumed to be a priori given for each
component and is usually written as

J=J(l—z4x cos 8) 2.1)

where J. is the surface brightness at the center of
the disk, z is the coefficient of limb-darkening,
and 6 is the angle between the line of sight and the
stellar radius vector to the point in question.
Needless to say, both J. and z vary with the wave-
lengths in which the light curve is obtained.

The period of the binary can be obtained very
accurately from the long observation of the times
of light minimum of the eclipsing binary. Then
t.-e shape of the light curve, obtained by observa-
tions and all reduced to one single cycle, depends
upon the following elements, ¢, w, R,/a, R,/a, 1,
L,/(Ly+L;), z; and ;. Conversely the observed
light curve determines these orbital elements. If
the binary satisfies the simplifying assumptions
we have made anc *he light curve is determined
in all phases, such a determination is unique in
most cases and can be performed in practice, al-
though it is quite complicated when e deviates
appreciably from zero and 7 from #/2. Usually
only the value of e cos w is determined with a high
accuracy from the intervals of the minima in such
cases. Also, under some circumstances, consid-
crable ranges of various orbital elements lead,
within the accuracy of observation, to the identi-
cal light curve.

For example, sometimes one cannot even tell
from the light curve whether the eclipse is total or
annular, consequently we cannot decide which one
of the two component stars has a larger radius

than the other. The intrinsic difficulty of doter-
mination of orbitel elements however, arises in
the first place fron: the various effects which are
not included in our simplifying assumptions, and
in the second place from the imperfection of the
observed light curve.

As has been emphasized by Irwin (1962), only
in the most favorable cases and with the best
observations van we determine z, and x; from the
analysis of the light curve. In general, these two
parameters c .n be assigned beforehand in acrord-
ance with tue prediction by theory of stellar
atmospheres (e.g. Chandrasckhar 1950).

In any case the light curve which gives only the
sizes of the stars in terms of their separation does
not reveal the complete information about il
nature of the binary system. In order to derive
the dimension of the system in an absolute meas-
ure we depend upon the velocity curve. Refer-
ences t~ the analysis of velocity curves may he
found for example in articles by Struve and Huang
(1958), by Petrie (1962) and by others.

For some binaries <pectra of both - »mponents
may be seen on a spectrogram hut for others only
one is visible, depending npon the rela.ive mag-
nitude between the components and their colors
(Hynek 1951). If both components are visible,
two velocity curves —one from each component
star—give M, sin® i, M, sin? i, a, sin 1, a; sin 3,
where a, and a; are the semi-major axes of the
orbit of the two components in the rest frame of
reference, i.e.,

a=a,+a, (2.2)

The velocity curve also gives e cos w, € sin w, time
of periastron passage, T, and the vy velocity.
Since the factor, sin ¢, is persistently associated
with the measured radial velocity, we cannot get
rid of it from the spectroscopic results as we have
seen. Here ¢ determined from the light curve
supplies the missing iriormation. Hence, the
spectroscopic results combined with the photo-
metric data determine the properties of the binary
system completel,, if the two component stars
obey our simplified assumption.

If the spectrum of only one component is visi-
ble, we can letermine e cos w, e sin w, T, and vy
without difficulty just as in the double-lined spec-
troscopic binary. However, concerning the mass
and dimension of the system, we can now obtain
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from the velocity curve (of the primary compo-
nent alone) only the auantity,

3 - 3.
M, sin’t

fn(M)=m§7

2.3)

known as the mass function and a, sin 7. When
the results of analysis of both the light curve and
the velocity curve are combined, M3/ (M,+M>)?
and a, are obtained. In such a case we cannot
determine M, and M, separately. The missing
link is the mass ratio expressed by either

M, M,

1‘[ or #=M1+Alz‘

a=

(2.4)

Thus for an eclipsing binary showing only the
spectrum of one eomponent, other means must be
sought in ordcr to determine the mass ratio.  The
means, if available, varies from one case to an-
other and has no general rule. Basieally it con-
sists of an estimatec from various physical argu-
ments any onc of the following parameters, my,
m., &, a, R, and R, since only one additional pa-
rameter i needed to specify completely a single-
spectrum eclipsing binary. The fact that a
knowledge of either B; or R. can determine the
masses of two components and their meun sepa-
ration may be seen if we remember that R, ’a and
Its/a can be empirically obtained from the light
curve  Ths gives a from which we ~an calculate
M+ M, from the following well-known relation

P * a’
(5;;) =GOn 30y (2.5)

where G is the gravitional constant. Conse-
quently M, and M, may be separately determined.

In this way the physical and dynamical state
of many an eclipsing binary has been painstak-
ingly derived by investigators in the past few
decades. Those binaries with apparent photo-
graphic magnitudes brighter than 8.5 at maxi-
mum have been compiled and studied by Plaut
(1950, 1953). Other catalogues of the elements
of eclipsing binary systems have been provided
recently by Kopal and Shapley (1956) and Wood
(1963).

3. DYNAMICAL CONSIDERATIONS OF THE
DEVIATION FROM THE TWO-BODY PROBLEM

There are several reasons for which the motion
of component stars cannot be regarded as a prob-
lem of two bodies. The component stars in a
close pair obviously cannat have a spherical sym-
metry in density distribution. The mass of each
star may not be constant. A third body or bodies
in the form of stars, planets or resisting medium
composed of gases, dust, and larger particles may
be present in the binary system. All these effects
disturb the orbit of the binary star from what
would be expected from Kepler’s law of binary
motion.

If we regard Kepler's law as the zeroth order
approximation to the orbital motion of close bi-
naries, each of those effects mentioned above pro-
duces a corresponding perturbation which may be
computed in principle to high order of approxima-
tion. It is self-evident that starting at the second
order approximation, cross terms each arising from
two effects will appear in the final result. While
it is interesting to investigate the effect of each
cause to a high degree of approximation, it is only
the result of the first order approximation that the
astrophysicist has actually sought in most cases
because his main purpose is to identify among
various perturbing factors the one that is domi-
nant in any given binary. Needless to say, the
result of higher order approximation for a single
effect is often useful but we have to be very care-
ful in applying its result quantitauvvely to the
interpretation of observed phenomena Lecause of
<nie presence both of the cross terms just men-
tioned and of the first-order term due to some
effect which has not been considered.

In what follows we shall discuss each of these
perturbing factors separately, emphasizing physi-
cal significance at the expense of mathematical
completeness.

3.1. Departure of Component Stars from the
Spherical Symmetry

Because of the rotational and tidal distortions
the component star in a close binary system can
never be treated as having a spherical symmetry
in its density distribution. Thus, the mutual
attractive force between the twc stars can be
resolved into two components: one is the domi-
nant force resulting from the mutual attraction
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of two point masses M, and M, and the other is
the perturbing force arising from the deviations
from the spherical symmetry. Since the perturb-
ing force is very small compared with the domi-
nant force, the orbital motion should follow
closely, with only a slight deviation, to what is
predicted in the two-body problem. In other
words, the component star may be approximated,
in each short time interval, as exercising Kep-
lerian motion. Because of the small perturbing
force it is obvious that the orbits defined by two
short time-intervals which are themselves sepa-
rated by a long time-interval, cannot be ide¢ ntical.
Thus, we may describe the motion as elliptical
but the orbital ellipse changes with time. Obvi-
ously the rate of change for each of the orbital
elements depends upon the perturbing force and
indeed can be expressed in terms of it. The math-
ematical procedure underlying this physical con-
ception is the method of variation of parameters
which is often used to study the motion of a planet
under the dominant force of the sun and the per-
turbing force of other planets. Its application to
the study of close binaries was due to Russell
(1928) whose calculation was later improved by
Sterne (1939 a,b,c). Also, Cowling (1938) siudied
this problem by an entirely different approach.
The presentation adopted in the following discus-
sion follows that given by Sterne (1939 a).

The calculation consists of three steps: (1) to
find the disturbing potential field, at the location
of the primary due to the undistorted secondary
component and due to the primary’s own axial
rotation, (2) to find both the deformation of the
primary due to the disturbing potential obtained
in the first step and the potential ficld at the loca-
tion of the secondary due to the deformed primary
and (3) to find the change of orbital elements be-
cause of the potentiai field obtained in the second
step. Since the potential field derived in the first
step distorts the primary and the distorted pri-
mary in turn produces in the second step a dis-
turbing potential to effect the binary motion, the
first two steps may be regarded as a process of
successive approximation.

Let S; and S, be respectively the centers of
mass of the primary and the secondary which are
at u distance, r, apart. If r, and r, are respec-
tively the distances of any point from 8, and S,,
the undistorted secondary gives rise to a potential

field (negative values throughout) equal to
GM./r,. At point P in the neighborhood of
Sy, 1/r: can be expanded in a series. Thus,

S’%=GM'“’ 2 (?) P, (cos 9)

T2 ¥ a=n

3.1

where P, is the Legensire coefficient of order n and
0 represents the angle PS,S,. If the separation
between S; and S; be fixed, the first term is a
constant of no conscquence while the second term
produces an acceleration GM,/r* equal in magni-
tude for all elements of the primary along S,S..
This acceleration is simply the orbital acceleration
of the primary as a whole. The remaining terms

V,=GM? 2 (?) P, (cos 6)

r a=2

3.2)

constitute the tidal potential and produce tidal
distortion in the primary.

In an elliptical orbit, r is actually a function of
the time. Thus, a rigorous treatment would be
very complicated. The complications have been
described by Sterne (1939a). However, as Cowl-
ing (1938; pointed out, the time of adjustment »f
a star to an external gravitational field is of : @
order cof the period of free adiabatic oscillations oi
the star, which is much smaller than the orbital
period of its companion around it. Therefore,
it appears probable that the form of the star at
any time would approach a state very close to
equilibrium form in which the distortion is in-
stantaneously adjusted to the external gravita-
tional field given by equation (3.2). (Thus the
longest axis of both component stars is always
along the line joining the centers of the two
components.)

Now the stars will be assumed to rotate with
uniform angular velocities w; and ws about axes
normal to the orbital plane. Such an assumption
appears to be consistent with observations in
general. Rotation of star introduces a disturb-
ing potential which arises from the centrifugal
force. Apart from a term which is symmetric
with respect to the center of mass of the primary
and consequently does not distort the star from a
spherical configuration, the disturbing potential,
Vs,

V,=—3riwiPs (cos 68)

where ' is the co-latitude.

(3.3)
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Therefore, the total disturbing potential, Vg
imposed on the primary is

Va=V,+V, (3.4)
and can be expanded in a series of terms of the
form

Caum?'t Pu™(0,0) (3.5)
where (8,0) are polar coordinates taken with
respect to Sy, P,™ is a tesseral surface function of
(8, ¢) and ¢, is a constant of expaasion. This
~ompletes the first step of calculation.

The problem of deformation of a sphere which
cannot maintain a shearing stress, and conse-
quently of the potential arising from the deformed
body, as the result of an imposed disturbing func-
tion V4 has been studied by Clairaut, Legendre,
Laplace and others. A summary of their works
can be found in Tisserand (1891). Here, we shall
only outline the general idea of the approach to
the problem, omitting detailcd calculatiors.

The equation of the surface of equal density in
the distorted primary can bhe written as

n=§1+ Z Y,"), (3.6)

where ¢ is a parameter (the mean radius) char-
actr-izing the surface in question. Thus, the
density p of the primary is a function of ¢ alone—
a fact that makes £ well suited to replace r, as the
independent variable in the present problem.
Thus, the value of the independent, variable £ at
the stellar surface is K,, the mean radius of the
priraary itself. The Y,™s in equation (3.6) are
tesseral surface functions with respect to 6 and ¢
and are also functions of £ Thus the deforma-
tion of the primary will be completely determined
if we can find the &dependence of Y,™ and know
the p-dependence of &.

The total gravitational potential ¥ at any point
in the primary is the sum of the gravitational po-
tential, {7, due to the deformed primary itself and
the imposed disturbing potential, vy, i.e.,

¥=U+V, (3.7

It can be shown that the condition of hydrostatic
equilibrium leads to a total differential equation

dp = pd¥ (3.8)

where p is the pressure. It follows from equation
(3.8) that both p and p must be functions of ¥
alone. In other wc ds ¥ =constant over any
surface of equal density and equal pressure in the
primary. Furthermore, since p is a function of
¢ alone, ¥ must be also a function ¢ alone, i.e.,
independent of 6 and ¢.

Now U at any point p inside the primary con-
sists of two parts, arising respectively from the
mass (1) inside the spherical surface passing
through p. (exterior potential) and (2) outside
the spherical surtace (interior potential). Since
the equal-density surfaces are given by equation
(3.6), both parts can be expressed in terms of Y ,™.
Actually when we carry out the lengthy calcula-
tion, we will find that each part of U can be ex-
pressed as a summation of terms involving Y,
and other factors (like p, £) which do not contain
the indices n and m (i.e., independent of 6 and ¢),
¢, if we assume that the distortion given by Y,™'s
is small so that only first order terms of them are
retained in the calculation. We have already
mentioned that V,; can be expressed as a series
whose typical term is given by (3.5). Hence, we
can write down ¥ as a sum of three series, two
involving Y,™ and the other involving P,™. All
terms are indexed by n and m (i.e., indicating
their 8 and ¢ dependence). The condition that
¥ is independent of 6 and ¢ makes it necessary
that in the expression of ¥ the terms associated
with cach pair of indices » and m must vanish
identically. In this way we derive a differential
equation for each Y,™. (It is a differential equa-
tion because of the transformation from r, to ¢ as
given by equation (3.6,..) If we define

~(-£ )Y
nﬂ—()/’:‘n> a£ (3.9)
and
3 ré¢
pn=? / o, (3.10)

which is simply the mean density interior to £, we
can transform the differential equation of Y,™
into the following form:

et ara—1) =n(u+ D+l 1) =0, 3.11)

One reason that we introduce 7, instead of deal-
ing directly with Y,™ is to eliminate the (6, ¢)
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dependence of Y,™ which is simply p,™. Hence
equation (3.11) together with p,™ determines com-
pletely the deformation of the primary if we know
the values of Y," and #, at any one point inside
the star. This can be easily obtained for the
point { =0. There is no distortion at the central
point. Hence Y,™(0)=0. In order to derive
7.(0) we assume that p(0) has a finite value.
Setting { =0 in equation (3.11) we obtain

7.(0) =n—2. 3.12)

This completes the determination of deformation
of the primary.

In the process of determiningy the deformation
we have already derived the potential U that the
deformed primary produces at the external points
as a series of Y,™. Corresponding to the (n, m)
component of the distorting potential given by
(3.5), the deformed primary produces a compo-
nent U,,™ to the potential

n+ lnn(Rl) R2n+1

Unym=
nym nym n+71n(Rl) rrlt+l

P,"(6, ¢) (3.13)

at external points. Here 7,(R;) is the value of
7. at £=R, (i.e., at the surface). Since 9,(R)) is
obtained by integrating equation (3.11) which
involves p/pm, the (n,m) component of the exterior
potential depends upon the structure of the star.

The result contained in equation (3.13) can now
be applied to the present case of tidal and rota-
tional disturbance. The terms of the indices
n=2(m=0) in the disturbing potential vs—v.+v,
given by equations (3.2) and (3.3) are

vd_(‘M

ripa(cos 6) — 3r1w1pz(cos ). (3.14)

Since the result given by (3.13) is independent of
the choice of coordinate systems, the primary
deformed by Vf of equation (3.14) produces an
external gravitational potential field

GM,

Us=2— k'mI: ——=Py(cos ) "'—Pz(COS 9’)] (3.15)

where
3— ﬂz(Rl)

b 1= S T ma(Te)]

(3.16)

computed for the primary to which the second
subscript is « is referred to.

The acceleration of the secondary due to U,
directed towards S, can be obtained by setting
ri=r, 8=o0 and &' =7/2 in—al,/é,r, and is given

by
lez, (oa@ +w1>

If we now regard r as the independent variable,
the acceleration given by equation (3.17) corre-
sponds to a potential function,

&, = Rik», (GM2+“>

If the relative orbit is considered, (1-+m,/m,))®,
will be identical to the disturbing function R of
perturbation theory in celestial mechanics. Since
the perturbing force is confined to the orbital
plane which coincides with the equatorial planes
of both components, the change in « (e.g., Brower
and Clemence 1961) is given by

3.17)

(3.18)

1—é ]%1 oR

dw
E’=[G(M1+M2)a ¢ o BI19

In order to derive dR/d¢ we have to expand R
in terms of e. Since we are intcrested in the
secular motion of the apsides, only non-periodic
terms are needed in the evaluation. A detailed
calculation by Sterne (1939a) thus derives the
secular motion arising from the distortion of order
n=2 of the primary as

. R <M1+M2)z[

2y lM Ga
where fa(e) and g.(e) are series, convergent for any
value of e less than inity,

GM
at 2.'2(6) +

(c)] (3.20)

SO =145 .

gae)=1+2 + ...
Buih fi(e) and ga(e) can also be expressed in closed
expressions (Sterne 1939a) and have been com-
puted by Plavec (1960).

Similarly, the secondary will be distorted by its
own rotation and by the attraction of the primary.
The perturbation produced by the distorted sec-
ondary on the primary can be easily obtained, be-
cause of symmetry, by interchanging M, and M,
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as well as replacing respectively R, and k.., by R
and k; 5, in (3.20). Thus the resultant motion of
the apsides as compared with the mean orbital
motion is

p R ,JMQ a wf
?=k2v l( ) [ 2(€ )+GM gz(e)]

) [10——f2( >+g o) e

where p and p’ are the orbital and apsidal periods
respectively.

If the orbital motion and axial rotation of both
components in a close binary are synchronized
(Swings 1936), equation (3.21) reduces to

p =k, 1(R> {M [10f2(9)+g0(3)]+92(6)}

+ks, 2(1{2) {——;[151‘2(6’)+gz(e)]+92(t’)}- (3.22)

The contributions arising from the third and
fourth order harmonic (tidal) distortion can be
similarly obtained. The results can be exprecsed
in terms of k3, and k4 (=1,2) which are func-
tions of 7:(R;) and n4(R,) respectively in a similar
way as k., being a function of n.(R,.).

The values of k’s can be readily found for any
model by integrating (3.11). Thus, values of k;
have been tabulated for a series of models by
Russell (1928). For homogeneous stars, k, has
a value 3/4; for completely concentrated stars all
the k’s are zero. In the case of certain polytropic
models, the k,’s have been obtained by Chan-
drasekhar (1933) and later more extensively by
Brooker and Olle (1955) for =2 to n=7. The
k’s for other stellar models have been obtained by
Kellar (1948), by Motz (1941, 1950, 1953), by
Pike (1955), by Hiirm and Rogenson (1955), and
by Kushwaha (1957).

Table 1 gives the k; values for some polytropic
gaseous spheres from Brooker and Olle’s paper.
It illustrates its relation to two other parameters
that also depend upon the density distribution in
the sphere.  The two parameters are the ratio of
the central density p, to the mean density 7 and
the radius of gyration of the sphere. The values
pe/P given in Table 1 are taken from Chandra-

sekhar's (1939) book. The radius of gyration

TasLE 1.—Relation between the Apsidal Motion Constant
and other Parameters that Relate to the Density Distribution
in the Polytropic Gaseous Sphere

7 ky oc/P I/(MR?)

0 . 75000000 1 .4

1.0 . 25990728 3. 28987 . 26138
1.5 . 14327923 5. 99071 . 20502
2.0 . 07393839 11. 40254 . 15704
2.5 . 03485234 23. 40646 . 11203
3.0 . 01444298 54. 1825 . 07583
3.25 . 00869160 88.153 |.________.
3.5 . 00491907 152, 884 . 04558
4.0 . 00119488 622. 408 . 02358
4.5 . 00031609 6189.47  |___._____.
5 0 @ 0

given in the form of I/MR?) in the table where I
denotes the moment of inertia follows Motz’s
(1952) calculation. According to the latter.
H. N. Russell has suggested that the apsidal mo-
tion constant &k, might depend in a simple way on
the radius of gyration of a star. Indeed, in the
case of polytropic gaseous spheres and main se-
quence stellar models, Motz (1952) has found if
logk, is plotted against log{I/(MR?)], all points do
fall on a straight line. However, he has also
pointed out that the giant models do not follow
this linear relationship.

The secular variation of ¢ and a can be simi-
larly investigated. But it is hardly necessary to
follow the calculation through. The variation
must vanish because the interaction we are con-
sidering does not change the total dynamical
energy and the total angular momentum of the
orbital motion.

The assumption that the axes of rotation of
both component stars are perpendicular to the
orbital plane is likely true in most close binaries.
However, if either or both axes of rotation make
a considerable angle with the normal of the orbital
plane, the motion of stars in a close binary would
be greatly complicated, because we then would
have 1o consider, apart from the motion in the
orbital plane, the motion of the orbital plane it-
self and the motion of the equatorial planes of
both components. Brouwer (1946) studied the
problem by examining the motion of two rigid
spheroids. His treatment was followed by Kopal
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(1959) who has included the revolution of the
tidal bulge in his considerations.

Thus, if two components have similar distribu-
tions of density so as to make corresponding k’s
for the two components equal, we may express in
general the ratio of periods in the following form
(Sterne 1929b).

-g—,=a2kz+a3ka+a4k4+ . 32

where a’s can be computed from the orbital ele-
ments alone, while k’s depend upon the stellar
model. For each one-parameter family of stellar
models, such as the polytropic family, the ob-
served value of p/p’ determines uniquely the pa-
rameter, such as the polytropic index. Therefore,
it is frequent practice to express the observed
motion of apsides in terms of the equivalent index
of polytrope for the component stars. If, how-
ever, there are many plausible families of stellar
models, the apsidal motion does not give any in-
formation as to which is the physically correct
family. Hence, what the apsidal motion can pro-
vide for the astrophysicist is only a consistency
check of the computed model.

A large number of papers have been published
on the observed motion of apsides of various close
binaries. The reader may find the references to
these papers in several I.A.U. reports on eclipsing
binaries by Kopal (1954, 1957), by O’Connell
(1960, 1962) and by Merrill (1964). Also, the
catalogues of orbital elements of binaries provided
by Kopal and Shapley (1956) and by Wood (1963)
give the observed apsidal motion where ever avail-
able. The observed results of apsidal motion of
some binaries have been analyzed by Luyten,
Struve, and Morgan (1939), by Sterne (1939b)
and by Schwarzschild (1958).

3.2 The Perturbation Caused by a Third Body

In order to study the perturbation of the orbital
elements of a ciose binary, caused by the presence
of a third body, we have to assume that all three
bodies behave like point masses. If the three
bodies should move at distances of the same order
of magnitude from one another, no orbital ele-
ments could be defined. Intuitively, such a state
of motion is perhaps not stable. Indeed, few
such systems have be 1 found observationally
What we have actually observed of triple systems

usually consists of a close pair accompanied by a
third companion which is at a relatively large dis-
tance from the close pair. In these cases, the
orbit of the close pair and that of the distant com-
panion are well defined and perturbation theories
developed for the motion of the moon can be ap-
plied directly because the perturbation of the
earth-moon system by the sun is, in many re-
spects, similar to the perturbation of the close
pair by the distant companion in a triple system.
Thus, Slavenas (1927), Lyttleton (1934), Brown
(1936, 1937) and Martynov (1948) have respec-
tively applied different lunar theories to the stellar
case. In principle, they all derive the change of
orbital elements from the disturbing function, but
their detailed calculations are so involved that it
is impractical to be given in this short article. It
will suffice to say that the elements of the close
orbits that show secular changes are the line of
apsides, the line of nodes and the mean longitude.
If the p and p’ are respectively the period of close
binary and the orbital motion of the third body
respectively, the periods of revolution of the
apsidal and nodal lines p” are given by

pll (p/)z
p \p
in order of magnitude.

Actually, the discovery of triple systems does
not depend upon the results of these calculations.
Observationally it is the change in the ¥y velocity
obtained from spectroscopic data as well as the
change in the period obtained mainly from photo-
metric data that leads to the identification of the
third body.

Since the semi-major axis of the relative orbit
of the close pair suffers neither secular nor long-
periodic perturbations by the third body, its
period will remain constant. However, the ap-
parent period as observed between two successive
light minima will not be strictly constant bee: 1se
of the motion of apsides and nodes. The varia-
tion arising from these causes is small however,
since the periods of revolution of the apsidal and
nodal lines are very long, as one can see from
equation (3.24). The actual observed variation
in the apparent period is due to the continuous
change .in distance of the close pair from the
observer. Since the velocity of light is finite, the

(3.24)
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change in distance means also a variation in the
time-interval between two successive minima.
Consider a rectangular coordinate system with
its origin, 0, at the center of mass of the triple
system and with its Z-axis coinciding with the line
of sight. The distance of the center of mass S of
the eclipsing pair from the XY plane is evidently

r sin ¢ sin (v+w),

where r represents the radius vector from 0 to
any point on the orbit of Sy, 7, the angle of in-
clination of this orbit to the celestial sphere, v
the true anomaly of Sy, and w the longitude of
the periastron as defined before. If the space
motion of the entire triple system produces a v
velocity —denoted by vy,—in the z-direction, the
distance z between the eclipsing system and the
observer at any time becomes

z2=2z,+7v,(t—t,)+r sin 7 sin(v+w), (3.25)

where z, denotes the initial value of z at time ¢,
of a light minimum of the eclipsing system. Thus,
a term (z—z,)/c, where ¢ is the velocity of light,
will be introduced into the ephemeris of the light
minima.

Any apparent difference in time, arising purely
from the light propagation, of some cosmic event
is known in astronomy as the time equation or
light-time. For example, there is the light-time
for converting observed time on the earth to the
heliocentric time, because the light carrying the
news of the event does not reach the earth and
the sun at the same time as the result of a differ-
ence in distance. This converting factor can be
computed from our knowledge of the earth’s posi-
tion with respect to the sun’s. In the present
case, the light-time results from the orbital motion
of the eclipsing pair around a third body or bodies.
Thus, the light-time in this case is the difference
(0-C) between the time of observed light mini-
mum anc the computed time based on the con-
stancy of the period of the eclipsing pair. A light-
time curve can therefore be plotted which, like
the velocity curve, yiclds information as regards
the nature of orbit on which the center of mess,
Sz, of the eclipsing pair move.

The light-time curve—a plot of 0-C against
the number of eclipsing cycles—of the Algol sys-
tem has been extensively studied by many inves-
tigators because its records can be traced back

nearly two hundred years. Eggen (1948) has
shown that the system is composed of four stars,
namely the eclipsing pair themselves, a third com-
ponent causing wriggles in the light-time curve
with an orbital period of 1.873 years and a fourth
component causing the slow but dominant varia-
tions in 0—-C with an orbital period of 188.4 years.
This interesting system is continuously being
studied with the purpose to make a better deter-
mination of the periods.

The determination of the (light-time) orbit from
the light-time curve, which has been discussed by
Woltjer (1922), Martynov (1948), Irwin (1952,
1959) and Kopal (1959) is very similar to one of
determining orbital elements from the velocity
curve. Indeed, the two problems are basically
identical because if we differentiate (3.25) with
respect to {, we obtain the radial velocity of S,
in its cou-se of orbital revolution around 0. Thus,
the light-time curve of an eclipsing pair in a triple
system is equivalent in pirinciple to a velocity
curve of the motion of the center of mass, Sy, of
the eclipsing pair around the center of mass, 0,
of the entire system.

Actually the velocity curve of S;; can be directly
determined from observation. Since the motion
of Si2 may be regarded as constant during a few
cycles of the orbital motion of the close pair, the
v-velocity determined from the velocity curve
during these few cycles of one or both components
of the close pair represents the radial motion of
Si2. Thus, a velocity curve of S;; may be ob-
tained by plotting the y-velocity of the close pair
in different epochs. Therefore, we can derive all
those orbital elements that are derivable in any
single-lined spectroscopic binary. For example,
the component, with a period of 1.873 years in the
Algol system, mentioned previously, was first
detected in this way by McLaughlin (1934).

Both the presence of a third body and the tidal
and rotational distortions of component stars pro-
duce the effect of apsidal motion. It would be
difficult to separate the causes of the observed
motion, if there were no other observable criteria.
Fortunately, because the presence of the third
body in a binary system can be independently
dete:ted by the change in y-velocity or by the
light equation, there will be little ambiguity in
interpreting the motion of apsides in a close bi-
nary. Thus, if the central condensation of the
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star is to be studied, we can always choose those
close binaries in which no third component is
detectable.

3.3 Perturbation by Galactic Objects

A binary system is continually perturbed by
the encounters with other objects in the galaxy.
As a result the energy is fed into the binary sys-
tem, thereby increasing the separation of its two
components. Ambarzumian (1937) has esti-
mated the effectiveness of the tidal forces, due to
the neighboring stars, in modifying the orbital
elements of a binary. He has used the two-body
approximation of stellar encounters to evaluate
the tidal effects of the nearby stars. As Chan-
drasekhar (1944b) has pointed out, “the essen-
tially characteristic features of the problem are
ignored if an attempt is made to evaluate the dif-
ferential effects of the neighboring stars on the
components of a binary along the conventional
lines of treating stellar encounters as a series of
independent two-body problems.”

In view of some recent investigations it becomes
apparent that encounters with interstellar clouds
play an important role in modifying the peculiar
velocities of single stars (Spitzer and Schwarzs-
child 1951) and in feeding energy into a cluster
(Spitzer 1958). On the same ground we may
expect that encounters of a binary with inter-
stellar clouds would increase the separation of the
binary system. A rigorous treatment of the en-
counter of a binary with another object belongs
to the well-known problem of three bodies in celes-
tial mechanics and a complete solution is still
lacking. A brief review of some recent investiga-
tions along this line, however, may be found in
the book by Leimanis and Minorsky (1958).

In the meantime, a general statistical method
has been proposed by Chandrasekhar (1943, 1944a
and b) for solving many problems in stellar dy-
namics. The method first analyzes the nature of
the force acting on a star by the rest of the stellar
system and then by Markoff’s process derives the
probability distribution of the force field.

In the case of a binary systew it is apparent
that the forces exert~d by the neighboring stars
on the two components differ by a certain amount
because of their different positions in space. For
any given separation between the components

there exists a definite distribution function,
(W(Fy, Fy), which governs the probability that
forces of intensities F, and F, respectively, will
act simultaneously on the two components of the
binary and which can be obtained by Markoff’s
method (Chandrasekhar 1944a). Thus, the dif-
ference,

AF=F,-T,, (3.26)
represents the differential force which tends to
accelerate the star ““1” relative to the star “2.”
The differential force may be resolved into two
components, a parallel component given by where

AF.,=(F'1—F2)'IC1, (327)
k. is a unit vector parallel to the direction of F-'—;
and a perpendicular component. Since the per-
pendicular component is of a random character,
it produces no net effect during a time scale, r,
long compared to the periods of the elementary
fluctuations in F. Therefore, the average net in-
crease in the velocity of the star ““1” relative to
the star “2” during r is given by

AV1'2=AF" T. (3.28)

If the orbit is circular, it follows from the defini-
tion ci W(Fl, Fg) that

AV1,2=Tfm fm (ﬁ—ﬁ)
TW(F, Fy)dFdF,.  (3.29)

The evaluation of this integral is very involved
and we can only refer the reader to the original
paper by Chandrasekhar (1944a and b). When
the separation between the two components,
i.e., a, is small compared with the average dis-
tance between stars, the result may be approxi-
mately written in a simple form as follows:

Avy. ,=47GNMar, (3.30)

where M denotes a certain average mass for the
field stars and N the number of stars per unit
volume.

Instead of the time of dissociation of a wide
binary system that Chandrasekhar is interested,
we set ourselves to calculate the slow increase in
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separation of a close binary due to galactic per-
turbation.

Since &y, is the increase in the relative velocity
ofﬁone component with respect to the other,
Ay, ,2/2 represents the increase in the dynamical
energy per unit reduced mass E of the binary,
namely

AE=142m2 (3.31)
while E itself is given by
__GM\+M,)
E= B P (3.32)

It follows from equations (3.30)--(3.32) that the
new separation, denoted by a’, after a time 7 is
given by

G(M,+M,)<é—§) = (4rGNMar)®,  (3.33)

This equation reduces to Chandrasekhar’s equa-
tion for determining the time scale of dissociation,
ra, when we set a’— o,

(MM

rd " 4rG'2NMa3®

(3.3%)

Assuming, in the neighborhood of the sun, N=0.1
star/(parsec)® and setting M =0.5Mo, M,+M,
= 1Mo, Chandrasekhar has obtained from equa-
tion (3.34) the following numerical results

74=2.22X10% %2 years (3.35)
if the separation, a, is expressed in astronomical
units,

It becomes obvious from equation (3.35) that
dissociation of close binaries does not take place
in the galactic time scale, say 2X10' years.
What we would like tc calculate is the small in-

crease in separation during this time. For this
purpose let us write
a’'=a+Aa (3.36)

Since Aa is small, it can be shown as a first ap-
proximation that

3.37)

which gives numerically

%‘_1_—_-2,03)< 10~* in 10" years (3.38)

if a is 1/10 A.U. Therefore, we may conclude
that close binaries are not effected by the per-
turbation due to neighboring stars in aay time
scale relevant in astronomical disscussions.

Chandrasekhar’s investigation of dissolution of
binaries forced by the fluctuating field of stars has
been followed by Takase (1953) who considers the
effect of the interstellar matter instead of stars.
He assumes that the interstellar medium may be
regarded as a continuous mass distribution with
strong density fluctuations in space (Chandrasek-
har and Miinch 1952). The density fluctuation
may be measured by the mean square deviation of
density in the medium, denoted by (8p)2. It may
be assumed that the scale of fluctuations (i.e., the
size of density irregularities) is much larger than
the distance between two components of a binary.
Then using the relation derived by Osterbrock
(1952) between the fluctuating force field and the
fluctuating density field and following Chandra-
sekhar’s reasoning, Takase obtains a formula for
the time of dissociation of the binary system due
to interstellar matter. His formula can be writ-
ten down by simplyv replacing N? m? in equation
(3.34) by (8p)?/8. Since (5p)% i> about the same
order of magnitude as N2 m? Takase’s result does
not change our previous conclusion obtained from
Chandrasekhar’s analysis.

3.4 Resisting Medium

The effect of the resisting medium is to reduce
the dynamical energy and angular momentum of a
binary system that is embedded in it. Histori-
cally, this problem has created interest among
astronomers mainly through the study of the ori-
gin of our planetary system. As is evident, the
matter in the solar nebula in the early phase of the
solar system cannot all have condensed into plan-
ets, whatever the mechanism of their formation
is. A certain amount of gas and dust must have
remained in the space around the sun (especially
near the fundamental plane). This remnant
formed a resisting medium that the new-born
planets were submerged. More recently the re-
sisting medium has again been discussed in con-
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nection with the problem of accretion of matter
by stars (McCrea 1953). But the discussion has
been limited only to single st.rs.

As an illustration of the effect of a resisting
medium on the binary motion, let us assume that
the medium exerts simply a retarding couple on
the binary system. For simplicity, we shall de-
note by ¢ the retarding couple that acts on unit
reduced mass of the system. Hence, the couple
acting on the entire system is M\ M,¢/(M1+M,).
We further denote by h and E respectively the
angular momentum and dynamical energy per
unit reduced mass of the binary system, thus

h=r2(—ig

b7 (3.39)

while E has already been given in equation (3.32).
We obtain

dh
E={ (3.40)
and
dE ,d8
i ta-t- (3.41)

from our assumption. Needless to say, the polar
coordinates (r,8), represent the position of one
component star with respect to the other, 8 being
measured from the periastron.

Since it can be shown from the two-body prob-
lem that

ht*=G(M,+M,)a(l—e?) (3.42)

we find from equations (3.32) and (3.41) that

1de 2  do
@ GO, ¥ &t (3.43)

and from equations (3.39), (3.40) and (3.42) that

de ¢ 2

31=§[2 cos 0+¢(1+cos)). (3.44)
As the retarding couple acts egainst the orbital
motion, { is negative. Therefore, the semi-major
axis, and consequently the period of the orbit
decrease in the resisting medium according to

equation (3.43) as would be expected. If the
resistance to the motion should increase with the
speed of stars, their orbital motion would encoun-
ter the strongest resistance near the periastron
(i.e., 8=0) and the least resistance near the apas-
tron (i.e., #=7). Then de/dt integrated over a
complete 2ycle would be negative, and the eccen-
tricity decreases in the medium. Or if the resist-
ance is independent of the speed, the same result
follows because of the second term in the bracket
in equation (3.44), the first term in the bracket
being zero on the average. However, if the
resistance should decrease with increasing speed,
the eccentricity could either increase or decrease
depending upon the exact law of resistance.

Jeffreys (1918, see alsu Jeans 1928) wi.» advo-
cated the collisional theory for the formation of
the planetary system used this result to explain
why planets formed from the matter ejected from
the sun by the tidal ction of the colliding star
should finally settle into nearly circular orbits.
According to the current view, the planets were
formed in a medium that was already revolving
around the sun. Hence, the planet would be
rotating with about the same velocity as its sur-
rounding medium from which it had emerged and
the medium was no longer a resisting one.

The previous example concerning the motion of
new-born plenets illustrates very clearly the
difficulty of treating the problem of binary motion
in a gaseous medium. It shows that the effect
of the medium on the binary motion depends
critically upon the dynamical state of the medium
itself.

Recently, two papers (Fesenkov 1956; Kiang
1963) have appeared which deal with the motion
of planets in a medium that is not static (with
respect to the sun). Actually, Kiang has con-
sidered three plausible cases for the state of the
resisting medium: (1) static, (2) rotating freely
and (3) rotating uniformly and calculated the
effect in a great detail for each case. However,
the basic idea in his calculations is identical to
what we have described here.

The effect of a resisting medium on the eccen-
tricity of a binary has been recently rediscussed
by Varsavsky (1962) who has followed the treat-
ment of Poincaré (1911) and has been able to
explain why binaries of shorter and shorter periods
have a general, smaller and smaller eccentricities
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for their orbits. However it should be noted that
Poincaré has assumed that the resistance increases
with an increase of relative velocity of two com-
ponents and with a decrease of separation be-
tween them. Obviously this law of resistance has
no physical ground. Consequentl;’, Varsavsky's
quantitative analysis may not be regarded as
realistic although the general idea may be valid.

The most difficult factor in treating the birary
motion in a resisting medium is the variation of
masses of stars themselves, As we shall see later,
the medium may have been created as a result of
mass ejected from the componen* stars. Or the
stars may accret mass from the medium in which
they are embedded, and which could exercise in-
finite varieties of laminar or turbulent motion that
we can conceive of. All these factors only indi-
cate that a medium surrounding the binary
system can give widely divergent results. Indeed
if the medium is rotating faster than the binary
motion, the orbit will expand instead of shrinking.
Therefore, mathematically it may be interesting
to study the effect on the birary motion by assum-
ing a particular state of motion for the medium
(with or without an accompanying change in
stellar masses), the result will represent only one
of a large number of possible cases that may or
may not actually confront us. What is impor-
tant astrophysically is to find out the actual cir-
cumstance under which a particular binary is
found: Is the binary system embedded in a
medium of its own creatior? Is the medium
resisting or accelerating? Does either of the
component stars lose or gain mass? While we can-
not answer all these questions from the scanty data
we have accumulated for any binary system, these
are astrophysi ally inieresting questions. It fol-
lows that it is not urgent tec make any elaborate
calculation for a few possible cases. Rather we
should consider the problem in a general way with
the aid of some simple model. For only in this
way can we expect to obtain some physical insight,
to the problem by combining theoretical studies
with observational ones. Otherwise, thoorcticai
calculations can never meet the challenge of
observations.

Since the resisting (or accelerating) medium is
intimately related to the change in mass of com-
ponent stars, we shall come back to this problem
in the following section.

3.5 Change in Mass of the Component Stars

The effect of mass loss of component stars on
the orbital elements has been discussed by Krat
(1950) and Wood (1950). The following discus-
sions, however, will be based on Huang’s (1963)
presentation.

Because the orbital elements—period, P, semii~
major axis, a, and eccentricity, e, — are related to
the masses of the two components, angular mo-
mentum, h, and dynamical energy, ¥, per unit
reduced mass of the system by the well-known
formulae in the two-body problem, it can be easily
shown that

ad M, +M, dl E dt’ e
ldp_ 1 dM+M,) 31dE
p dt M\+M, dt 2 E dt’ (3.46)
e de_ 1 dM,+M.)
1—e?2 dt M, +M, dt
11dE 1dh
g a ha O

where E and h are given respectively by equations
(3.32) and (3.39) or (3.42). Thus, the changes
in orbital elements are not uniquely determined
by the rate of mass variation but are dependent
also upon dE/di and dh/dt. This illustrates
clearly the importance of the mode with which
the variation of mass takes place because both
dE/dt and dh/dt depend critically upon the mode
of mass variation. Since the mass of the com-
ponent star can lose or gain in an infinite variety
of ways, this makes the problem somewhat un-
certain.

The quantity, A, is related to the angular mo-
mentum per unit mass, h, by

MM,

h°=(Mn+M:)*

h (3.48)

and a similar relation exists between E and E,
the latter being dynamical energy per unit mass
Fliminating dE/dt from equations (3.46) and
(3.47) and combining the resulting equation with
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equation (3.48) we obtain

dp_ 4 dMi+My)

1
p dt M,+M, dt

_3(_1_ dMi+ 1 dﬂ_fz)

M, dt M. dt
1 dh,, 3e de
+37{; —(.i—l-+—1 ¢ di (3.49)

This is a very useful relation because dE/dt (or
equivalently dE,/d!) which is unknown in most
cases do not appear in it.

As in any problem that has multitudinous
choices of possibilities we may idealize a few sim-
ple modes of mass variation that have u physical
significance and then examine their effect on the
orbital elements. In this way three modes of
mass loss froin the component stars have been iso-
lated: (1) slow mode, (2) intermediate mode and
(3) fast (or Jean’s) mode. We shall discus3 these
three modes here under the simplified assumption
that there is no interchauge of angular momentum
between axial rotation and orbital revolution of
the component stars. A treatment of coupling
between these two kinds of motion can be found
in Huang’s (1963b) paper.

1. Slow Mod-

This represents an extreme ca.e of losing mass.
When th2 ejection velocities from the stars are
low, the ejected matter will not be expected to
escape from the binary system. Consequently,
the total angular momentum of the system will
be conserved but the total dynamical energy of
the binary can vary in either way.

We may subdivide this mode into two cases:
(a) the particles ejected fall back either to the
original star or to its companion and (b) the par-
ticles ejected from the less massive component
form, after many collisions among themselves, a
rotating ring around the more massiv: component.
The second case is proposed in accordance with
observational results (Joy 1942, 1947; also Sahade
1960a). Formation of a rotating ring around the
less massive component from matter ejected from
the more massive component does not seem
common because not a single case has been obser-
vationally established without dispute. Theoreti-
cally it is diificult to form and maintain such a

ring (Huang and Struve 192 3; Huang 19572) but
it is by no means prohibitive.

For a long time scale, the gaseous rings »e ex-
pected to dissipate since they are continuously
perturbed by the less massive component of the
system. Hence, case (b) represents only a tran-
sient stage of mass loss. In either case we may
set as a first approximation

d(M.+ M) ‘d+M I (3.50)
{
In adopting this approximn‘ion we may regard
the rings in case (b) as a part of the more massive
component.
In case (a) we have

dh,

dt

which yields, af.c: its combining with equations
(3.49) and (3.50),

(3.51)

dpz__a(Mz—M1>de 3e de (352)

1
p dt MM, /) di "1-e dt’

For binaries of small eccentricities, the second
term on the right-hand side of equation (3.52)
may be neglected. Thus, we arrive at the con-
clusion that a transfer of mass from the more mas-
sive component to the less massive component
(i.e., M,>M,, ¢M,/di <0) makes the period de-
crease with time and a transfer of mass in ihe
reverse direction (i.e., M,>M,, dM,/dt<0) re-
sults in an increasing period. Woolf has privately
pointed out that the increase in period of 8 Lyrae
may be precisely due to this mechanism, support-
ing the proposition (Huang 1962, Woolf 1962) that
the primary component of this system is less 1aas-
sive than the secondary component.

More elaborate calculation of the variaticns of
orbital clements with mass exchange has been
recently carned out by Piotrowski (16.4). He
has consider=d separately the effect on the orbital
elements of ejection, of flight and of landing of
each mass clement. While the calculations are
mathematicaily interesting, it is hard to evaluate
their significance in connection with observed data
because of the infinite van :ties of ways that an
individual mass eiement can be transferred from
one component to ancther. Also the results will
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be seriously upset by collisions of particles during
the flight (Cf., §6).

In case (b) h, is no longer constant because a
part of angular momentum is absorbed in the
rotating rings. If we approximate the ring
(formed out of matter ejected by M:) as rotating
directly in a circular orbit of radius, ay, around,
and under the gravitational attraction of. the me e
massive component, M,, alone, we obtain

_1. th__ _1__ % 3e dfi )
Y4 dt aM_’ dt + —22 (353)

where
- M) g = Ot M |
(1!—3(('51—14'1‘{l and Y= M,a(l—e‘*’) (354)

Numerical values of « fut a few 2ases ot /@ and
M,/M  have been given in Huang’s (1963b) paper.

Finally, it is to be noted that (a) and (b) repre-
sent two physically different cases of idealized
circumstances. When we mentioned that (a)
represents the ultimate situation of the slow mode,
we do not mean that case (b) will reduce to case
(a) if the ring coalesces with the stellar surface,
because that would result a transfer of angular
momentum from orbital revolution to axial rota-
tion—a situation precluded to the present discus-
sion. In such cases we must include the coupling
between orbiial motion and axial rotation into
our considerations.

2. Intermediate Mode

By thc intermediate mode we mean that the
ejection velocities are large enough to overcome
the attraction of both components so that the
ejected particles can penetrate the inner contact
surface (Cf 5) of the system but not large enough
to justify the neglect altogether of interaction be-
tween the ejected particles and the binary system.
Actually the change of orbital elements under this
mode of mass loss is most uncertain because we
have no way to estimate the angular momentum
carried away by cscaped mass.

This mode may also be divided into two cases:
(a) ejected particles escape to infinity directly and
(b) particles form an envelope around the entire
binary system, such as found in 8 Lyrae (Struve
1941, 1938). If the envelope is a quasi-stable

rotating ring (or disk) around; and in the plane of,
the binary system, the change in period may be
evaluated in terms of the size of the ring (Huang
1963b). However, observationally there is no
clear-cut evidence to conclude that such is actu-
ally the case.

Finally, we should again point out that case (b)
represents only a transient stage of this mode
since eventually the envelope will be dissipated.

3. Fast (or Jeans’s) Mode

This is an extreme case, for it is assumed that
there is no net reaction of the escaped mass on the
binary itself. We call it Jeans’s mode because
Jeans (1924, 1925) was the first to treat this case
when he examined the effect of rndiation loss
(which is equivalent to mass loss) on the binary
system. Since then it has been applied to cases
involving direct loss of mass (Huang 1956,
Boersma 1961). The physical circumstance of
actual mass ejection that may be approximated
by Jeans’s mode must satisfy two conditions: (1)
the ejection of ma-~s has a statistically spherical
symmetry and (2) the velocities of ejection must
be very high to insure a negligible interaction with
the binary system. According to these conditions
the loss of mass resulting from a supernova ex-
plosion (Blaauw 1961) and from ordinary nova
outburst (Ahrert 1959) would closely approxi-
mate this mode. Mass loss due to corpuscular
radiation may also fall into this mode if emission
of particles is spherically symmetric. That cor-
puscular radiation may be important has been
pointed out by Fesenkov (1949) and Masevich
(1949) in their theory of stellar evolution. Tidman
(1958) has proposed on the other hand a theory
that suprathermal particles may be produced in
the binary system if the expanding coronas collide
each other, thus creating a region of violent mo-
tion favorable for accelerating charged particles.
In any case, corpuscular radiation from com-
ponent stars may be the reason, according to
Huang (1958), why a luminosity anomaly exists
in many binary stars.

It can be shown (Huang 1956) that Jeans's
mode of ejection leads to

dh_ . 1dE__ 2 dMi+M,)
az—OandE i

M\+M. dt

(3.55)
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which, when combined with equations (3.45)--
(3.47), yield the following results due originally
to Jeans:

lda_ 1 dM+Ms)
a t— M1+Jug dt !
1dp_ 2 d(M+My) -
P AU MAM, dt (3.56)
_e de_
1—e? dt

It follows from equation (3.48) and a similar cqua-
tion between E and E,, we may write equa.ions
(3.55) in the following form:
1 dM,

i {1112 1 dlM‘_r

h, d¢ M, dt M., di
2 d(M,+M,),

- L D .v'-—
i al (3.57)
A dE,_ i dM, 1 dM;
E, dt M, dt "M, dt’

Thus, in Jeans’s mode the angular momentum per
unit mass changes, although 2 maintains con-
stant. Also, the dynamical energy per unit mass
of the system has increased as a result of this mode
of ejection.

An extreme case of Jeans’s mode of ejecting
matter is the sudden explosion either with a
spherical symmetry or with an axial symmetry as
found by Weaver (1958} in his study of Nova
Aquilae (1918). If the mass cjected during the
explosion exceeds a critical amount of r(M 4+ M),/
(2a) where r represents the scparation of the two
stars at the instant when the instantancous mass
ejection takes place, it would result in a complete
separation of the two component stars, as was
pointed out by Blaauw (1961). Indeed he pro-
posed that this is how the high-velocity O and B
type stars sometimes observed in the gulaxy had
acquired their velocities from orbital motion.

So far we have discussed only the case of mass
loss of component stars. It first appears that we
may treat the problem of mass gain in a similar
manner. Actually, the problem is much more
complicated than the case of mass loss because
first of all, we have to assign the state of motion
of the medium from which stars may aceret mass.
In general, the problem of changes in orbital ele-
ments depends upon the following factors: (1)

the relative motion of the center of mass of the
binary system with respect to the medium, (2) the
state of internal motion of the medium, such as
rotation, turbulence, ete. and (3) the binary mo-
tion itself. I'rom these factors we are supposed
to evaluate the rate of aceretion as weil as the
force (resisting or accelerating depending upon
cases) that each component experiences,  That
this is a difficult task may be seen from a simple
case that the medium possesses no net angular
momentum with respect to anv point inside. In
such a case the total rate of aceretion by both
components may be roughly estimated by treat-
ing the system at large distances as a ~ingle body
and thereby deriving the aceretion  column
(McCrea 1953) of the entire system.  However,
how can we estimate the proportion at which the
two components divide their loot in the aceretion
column? Sinee they move in the same region,
the more massive component which is gravita-
tionally stronger is expected to aceret matter more
effectively than the less massive one. On the
other hand if we consider the size and location of
the orbits we may expect the reversed situation,
namely the less massive component is more effec-
tive. Here we sec the intrinsie difficulty of the
problem.

Observationally, we can determine only the
period of a binary with any accuraey that justi-
fies the theoretical investigations. Indeed, we
have found variations in orbital period in many
eclipsing binuoiies, although it should be remem-
bered that the varations in period can be due to
many causes other than the mass variations.  For
example, any perturbation due to the departure
from the idealized binary composed of two nass
points could produce complicated variation in
observed period which is the !ime-interval be-
tween two consecutive principa’ (or secondary)
eclipses.  Actually, we have indeed found that
periods of many binaries change in irrcgular wavs,
the same binary may have its period inereasing
and decereasing at different epochs in a seemingly
unpredicted manner.  This lewds Wood (1950
see also Sehneller 1962) to suggest  that the
changes may be due to ejection of gas jet by the
component star sonietime in the direction of its
motion and at other times in the opposite direc-

tion.  Wood’s view has been eriticized by Kopal
(1939).  The present writer inclines to regard
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Wood’s view to have its merit. We have found
that the changes in period depend upon the modes
of ejection as well as the rate of mass loss. Since
there is a continuous range of possible modes and
rates of ejection, it is apparent that there will be
statistical fluctuations with respect to time, pro-
ducing thereby corresponding fluctuations in
period variations. Especially we should point
out that if the velocities of ejection are high, mass
could be thrown cut of the star in any direction,
not necessarily limited to the channel through the
Lagrangian points L, and L.. However, the
cause of variations in period observed in eclipsing
binaries is not uniquely determined. Most likely
many factors are involved in producing the
observed variations.

Extensive collections and analyses of observed
period variations of eclipsing binaries have been
given by Tung and Chang (1957), by Kwee (1958),
by Prikhod’ko (1961), by Wood (1953) and by
others (See references given by Kopal 1954, 1957;
O’Connell 1960, 1962; and Merrill 1964).

4. RELATIVISTIC EFFECT

The advance of perihelion of the orbit of a
planet around the sun resulting from the relati-
vistic considerations provides one of the crucial
tests of Einstein’s theory of gravitation. Gravi-
tation in the general theory of relativity is closely
interwoven with the four dimensional space-time
continuum. Using the language of geometry, we
may state that the absence of gravitational field
corresponds to a four-dimensional Euclidean (flat)
space and the presence of any permanent gravi-
tational field distorts the space-time continuum
into a curved one. Indeed, the principles of
relativistic mechanics are mainly contained in
what is known as the field equation of Einstein
(e.g. Fddington 1923), which connects the physi-
cal situation (i.e., the energy-momentum tensor
which describes the distribution of matter and
energy) with the geometry of space-time and
which may be regarded as the relativistic ana-
logue of Poisson’s equation. Also, according to
the theory, the space-time trajectory of a free
particle is given by the geodesic, which, as is well
known in geometry, directly depends upon the
property of the space-time continuum and conse-
quently on the gravitationai field which shapes it.

Since the property of space-time continuum corre-
sponding to an empty space surrounding a gravi-
tational point mass is known, the equations for a
geodesic can be written down immediately and
provides the basis for the treatment of the motion
of planets around the sun. When these equations
are reduced to an ordinary polar coordinate (r, ¢)
they yield the equation (e.g. Eddington 1923)

du GM

W+“=W(1+3h2”2)

(4.1)

as compared with the equation of a Newtonian
orbit

d’u GM

d¢2+#=(7h_)—2 (4.2)
where u—1/r, M is the mass of the central body,
ch is a constant of integration, and c is the velocity
of light in empty space.

The ratio, 3 h2u?, of the second term to the first
term on the right hand side of equation (4.1) can
be shown to be practically equal to three times
the square of the transverse velocity of the planet
measured in unit of the velocity of light. For ex-
ample, the ratio for the earth is 0.000,000,03.
Thus, the difference between the relativistic and
Newtonian orbits must be slight. It can be
shown (e.g. Eddington 1923) that the perturba-
tion caused by the presence ot this small term
produces an advance of the perihelion equal to

6rGM
Aw= m (43)
radians per orbital revolution.

The previous result is derived from the assump-
tion that the planet has a negligible mass. The
case of two bodies of comparable masses has been
studied by Levi-Civita (1937) who shows that as
a first a~»roximation the same formula for the
advance of periastron holds true in the case of
binary stars as in the case of an infinitesimal
planet moving around a central mass having the
tc’ .l mass of the binary system. Thus, except
by replacing M by M+ M, we have equation
(1.3) for the advance of periastron in a binary sys-
tem. If we write p’ as the period that the peri-
astron advances a complete cycle of 27, equation

|
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(4.3) can be written as

p'_dp(1—¢)
P ra (44)

If we now write K=K+ K, where K, and K,
are respectively the semi-amplitude of the veloc-
ity curves of the two components the previous
equation can be expressed in terms of directly
observable quantities, thus:

P_’_l(e_smy
p 3\ K /J°
Since K rarely exceeds 300 km/sec while ¢
=300,000 km/see, p’/p is of the order of 3X10°
Hence, the advance of periastron as a result of
relativistic correction must be very small.
Luyten, Struve and Morgan (1939) have com-
puted the motion of apsides according to equa-
tion (4.5) and found that the computed values
are less than the uncertainty in the observed
values for all the seven binaries whose apsidal
motion they have studied.

It is evident from (4.3) that apsidal motion due
to relativistic correction should be most pro-
nounced in massive binaries with short separations.
After calculations based on various assumptions
as to the dimensions and internal structure of the
components, Rudkjbing (1959) has concluded
that in the eclipsing binary, DI Hercules, the
relativistic part of the apsidal motion may well be
larger than the part due to deformation of the
components. However, according to O’Connell
(1962) ‘“‘no indication of apsidal motion has in
fact been observed as yct in this system.”

Levi-Civita (1937) has furthermore pointed out
thai aside from the slow precession of the relative
orbit, the general theory of relativity also predicts
“the absolute motion in the sky of any double
star system.” This result comes naturally from
the fact that general relativity does not include, as
a rigorous law, the principle of action and reaction
which plays such an important role in Newtonrian
mechanics. Thus, one of the most important con-
sequences of this principle, namely, the uniform
motion of the center of mass of a system in
absence of external forces, becomes invalid.

According to the calculations by Levi-Civita,
the secular acceleration of the center of mass of a

(4.5)

binary is directed along the major axis towards
the periastron of the more massive component,
and the increase AV of the velocity of the center
of mass in a century is given by

e
AV=12.55 p(1—=w)(1=20) 7 —ommm
M,—M, 1 , ,
ZWQ_?%;T km/sec. {1.6)

where pq is the orbital period in days, Mo the mass
of the sun and u is the mass ratio defined by (2.4).
Beeause of the factor u(1-u) (1-2u), Av has a
maximum with respect to the mass ratio at
u=(1-3"1/2, which roughly corresponds to two
stars respectively containing 14 and 34 of the total
mass of the system. The maximum value of
u(1-p)(12u) isabout 0.1. Since e is usually small
for close binaries, the change in velocity, even in a
century, is too minute to be detected by present
means of spectroscopic study. Actually, I doubt
that this effect could be detected in ordinary cases
even after we have observed a close binary for
tens of centuries, because the apsidal motion re-
sulting from the rotational and tidal distortion
obliterates this effect completely.

As two stars revolve around each other in a bi-
nary, it is obvious that the gravitational field they
produce varies with their motion. According to
Newtonian theory, the effect is instantaneously
felt everywhere. Consequently, the notion of
gravitational waves never arises. As the relativ-
ity theory presupposes that no casual effect can
travel faster than light, we might anticipate that
the change in the gravitational field travels out
into space with the speed of light. A moving dis-
turbance thus propagated out may be called the
gravitational wave. Such is the physical reason
for the existence of gravitational waves (e.g.
Eddington 1923; Synge 1960). A realistic evalua-
tion however could be made only after empirical
detection (which is now actually attempted)
should be successful.

We may expect that the emission and absorp-
tion of gravitational waves carry, to be sure, very
small amounts of energy. Hu (1947) has com-
puted the very sinall damping forces due to the
emission of these waves. Actually, the rate of
energy radiated in the form of gravitational wave
by a binary star (in circular motion) as given by
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Landau and Lifshitz (1951) is

dE _ 32 G' (Mi+M,)M:M;

dt 5 ¢ a®

4.7)

From equation (4.7) Kraft, Mathews and Green-
stein (1962) have found that for the repeating
nova WZ Sagittae (1913, 1946) the rate is in the
range of 10°2— 10% ergs/sec if their mass ratio u is
between 0.1 and 0.5. However, they have pointed
out that the gravitaiional flux reaching the earth
is quite small and 1ts detection very difficult. But
they went on to suggest that the period change
due to energy dissipation by gravitational wave is
probably detectable. As we have seen in §3,
variations in period may arise from many causes.
Thus, even if the period change in this star were
detected, it would remain a difficult problem to
prove that the variation is indeed due to dissipa-
tion of energy through gravitational waves. This
kind of uncetainty is intrinsic to observational
science and strongly contrasts to the high preci-
sion of controllable investigations in experimental
science, such as physics and chemistry. But no-
where in the entire field of astronomy do we
encounter more frustration than in the attempt to
detect relativistic effects in binary systems as we
have seen in this section.

5. THE ROCHE MODEL

5.1 Stellar Surfaces According to the

Roche Model

The shape of single stars without axial rotation
must be a sphere since there is no one particular
dire~tion that is physically different from the
other.  When it rotates, the shape will no longer
be spherical because of the existence of a pre-
ferred direction, namely the axis of rotation. As
a result, we would expect that a rotating body,
like the earth, Jupiter, ete., will be flattened to
become an oblate spheroid.

In general, the component star (in the close
binary) rotates in synchronism with its orbital
revelution (Swings 1936, Plaut 1959). Hence,
the centrifugal force does play a role in shaping
the component star. However, a more serious
complication arises from the force field due to its
companion. What. would be the shape of stars
thus influenced by its close companion?  We have

investigated this problem in §3.1. But the result
is too involved to be useful for the present pur-
pose. Here we shall consider a simple model
such that the gravitational potential due to each
component star may be regarded as equivalent to
a mass-point. Then the potential field of the
entire system can be easily calculated and the
shape of star determined. Such is the Roche
model of close binary stars.

Let us assume that the two component sturs in
a system revolve around each other in circular
orbits. Furthermore, we choose as the unit of
mass the total mass of the system, i.e.,

M;=pu M=1—y (5.1)
Also, we choose the separation between two com-
ponents as the unit of length. If we take P/27
as the unit of time (i.e., the angular velocity of
orbital motion is one), we shall have unity for the
gravitational constant. This can be easily seen
from equation (2.5).

We may easily write down the equations of
motion of a test particle in the gravitational field
of the binary system. It is equivalent to the
restricted three-body problem in celestial me-
chanics and can be most advantageously expressed
in a coordinate system rotating with the compo-
nent stars (e.g., Moulton 1914, Plummer 1918).
The rotating coordinate system (x, y, z) may be so
chosen that its origin locates at the center of mass
of the binary, that its z-axis is perpendicular to
the orbital plane and that its x-axis coincides with
the line joining the two component stars. If we
denote by r the radius vector from the origin to
the test particle (z, y, 2) and by r, and r, the 1e-
spective distances of the test particle from the 1-u
component at (—u, o0, 0) and from the ¢ component
at (1-u, o, 0), the equation of motion becomes

&P dF
O e —oEx Y grad 17 5.
e kth-H,lad (5.2)
where
U=ttt (5.3)
2 r rs :

and F represents a unit vector in the positive z-
direction. Taking the scaler product of di/dt and
equation (2) and integrating the resulting equation
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over ¢ we obtain an integral for the test particle

LU (5.4)

2l —

dt

where C is a constant of integration and is there-
fore a characteri. tic value for the test particle of a
given set of initial conditions. In celestial me-
chanics it is often called the Jacobian integral.
The equation (5.4) relates the kinetic energy
with the coordinate of the test particle in the
rotating frame of reference. Consequently nega-
tive U may be regarded as a potential function in
this reference system and we may plot a series of
equipotential surfaces by setting 2U =C, namely

TR LN (5.5)

T Ta

where C now serves as a parameter labeling the
surfaces. However, it may be noted that because
of the first verm on the right side of equation
(5.2), U does not behave exactly like a potential
in an inertial system. It is for this reason that the
surfaces defined by equation (5.5) are not called
the equipotential surfaces in celestial mechanics.

For a given value of C, which is fixed by the
initial conditions, equation (3.4) determines the
speed |dr/dl| of the test particle at different points
in space. Therefore, we can find all the points at
which the speed will vanish. The locus of these
points then define the so-called zero-velocity sur-
face in celestial mechanics. It is obvious from
equation (5.4) that the zero-velocity surface thus
defined is identical to the one given by equation
(5.5) which we have previously called the equipo-
tential surface.

In order to see the importance of the zero-
velocity surface let us consider |d7/dt}? of a test
particle of a given value of C as a function of the
coordinate according to equation (5.4). On the
zero-velocity surface this function vanishes every-
where. Hence, in general, the function would be
positive on one side and negative on the other.
Since [dF/dt|? cannot be negative, it only shows
that the test particle cannot penetrate the zero-
velocity surface into the other side. Because of
this property, it is useful to know zero-velocity
surfaces correspending to different values of C (or
different initial conditions). Finally, we may add
that in some special cases, the values of C may be

positive on both sides of a zero-velocity surface.
This happens whan the function i.e., |dF/dt|? in the
present case, has an extremum equal to zero at
some points in space. Indeed, such an occurrence
gives rise to a few interesting and critical cases of
zero-velocity surface that will be discussed later.

It is to be noted that we have .sod C sometimes
to characterize the condition of the test particle
aceording to equation (5.4) and at other times to
label the zero-velocity surfaces according to equa-
tion (5.5). Thus, a particle of a certain value of
C cannot penetrate the zero-velocity surface
labelled by the same value of C.

Let us now examine the general behavior of the
zero-velocity surfaces defined by equation (5.5).
For very large values of C, say C;, we have three
possibilities: (1) large z*+¥% (2) small r; and (3)
small 7, corresponding to three separate surfaces
for a single value of C. If x2+y? is large, other
terms on the left side of equation (5.5) may be
neglected. Consequently, the surface represents
a large circular cylinder with its axis coinciding
with the z-axis. Similarly, when r; (or r3) is small,
other terms become negligible. We then obtain
a small sphere around the l-u component (or
around the u component). If we do not neglect
small terms, we will obtain three surfaces slightly
distorted from what have been described. There-
fore, space around the binary can be divided into
four regions, one outside the nearly cylindrical sur-
face, two inside the two closed surfaces respec-
tively around the two stars, and the fourth be-
tween these three surfaces. It is easy to see from
equation (5.1) that the test particle whose C value
is equal to C, can be either inside the two small
closed surfaces or outside the large eylindrical sur-
face. But it is forbidden to enter space between
these three surfaces. Thus, the test particle (of
C)) can move in any one of the three permitted
regions but cannot jump from one to the other.

In a close system the shape of each component
star that satisfies the Roche model (i.c., a highly
centrally condensed star with an envelope of a
negligible mass) is determined by the closed zero-
velocity surface around it, since, as we have seen
in equation (3.8), the equal pressure surfaces in a
star must follow the equipotential surfaces as a
result of the hydrostatic equilibrium under which
negative U will now behave exactly like a poten-
tial function in the rotating coordinate system.

R Y
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As C decreases, the two closed surfaces around
the two stars increase in size and the outer cylin-
drical-like surface shrinks. Eventually, these
gurfaces will come into contact. Actually, the
contact occurs first between the two closed sur-
faces at a certain value of C which will hereafter
be denoted by C;. This critical zero-velocity sur-
face is often called the innermost contact surface
(e.g., Kuiper 1941), or the S, surface as we shall
call it later. The point of contact L, is one of the
Lagrangian points (or double points), which are
special solutions of the restricted three-body prob-
lem. The contact point illustrates the case we
have mentioned earlier that in sorie special cases
|d7/dt|? can be positive on both sides of a zero-
velocity surface. This is true at Ly, say along the
X-axis,

In Figure 1 we have illustrated several zero-
velocity surfaces including the critical ones for the
case u=14. Two cross-scction: for each surtace
have heen drawn, one in the xy-plane (in the
lower diagram) and the other in the zz-plane (in
the upper diagram). Because of symmetry we
have shown here only one half of each cross-sec-
tion, namely for positive y and positive z only.
The case C=41.1 represents the situation before
surfaces come into contact. Thus, this value of
C corresponds to three distinct surfaces mentioned
before and all shown in the figure. The case
C=C,=3.946 corresponds to the innermost con-
tact (S)) surface. It consists of two lobes which
we shall call the primary lobe (around the 1—u
component) and the secondary lobe (around the
u component). A large distorted eylindrical sur-
face associated with the same C, is also shown in
the figure.

The importance of the contact point is the fact
that it forms a channel through which a test par-
ticle with C only slightly less than €1 may move
from the permitted region around one star to that
around the other. As a result of this property we
can conclude that the two lobes of the S, surface
provides respectively an upper limit to the size of
individual component stars because if either of
them touches the surface, the matter will leak out
at the point of contact into the other lobe. We
may find examples for this situation in the Algol-
type eclipsing binary systems in which one star
(the less massive secondary) has usually a size
comparable with the corresponding lobe of the

S surface while the other star (the more massive
primary) is invariably small compared with its
lobe of the sume surface.

In reality the star must be smaller than the
corresponding looe of the contact surface as the
particles (atoms, ions, electrons) in the surface

. e,
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F1gurE 1.—Zero-velocity surfaces corresponding to u=1/3.
The two cross-sections of several zero-velocity surfaces—
one in the ry plane (below) and one in the zz plane
(above) arcillustrated here. The two contact surfaces
are marked by C, (inner) and (. (outer) respectively
with (1 =3.95 and C,=3.55. It can be seen that for
C >, illustrated by the case ("=4.1 each surface has
three separate branches. For (2 <C <, (illustrated by
the case C'=3.6) there are two separate branches.

layer of a star are exercising all kinds of motion,
thermal, turbulent or else. Therefore, they can
escape the inner contact surface even before the
stellar surface has reached the contact surface.
However, the velocities in these motions (except
of course, corpuscular radiation) may in general
be regarded as small in the present consideration
because the unity velocity in the present unit sys-
tem is equal to [G(M,+M.)/c]} and amount to a
few hundred km/sec in close binaries. Therefore,
a velocity of a few tens of km/sec can be neglected




o aed

Bt e e Ak B Oy AT SR & G 4 b ey Ly

ASTRONOMY AND ASTROPHYSICS 89

in equation (5.4), thus making the S, surface the
actual limit of individual st~ts in a close system.

When C decreascs from (', the two lobes of the
innermzs, contact surface coalesce into one single
dumb-bell like surface (corresponding to C=3.6
in Figure 1). They represent the appearance of
two stars in actual contact such as in W UMa
stars. Such a binary, though consisting of two
stars, has a common envelope. A series of the
contact configuration is possible, corresponding
to different values of C. The smaller the value of
C, the greater is the size of this dumb-bell like sur-
face. On the other hand, the outer cylindrical
like surface shrinks with decreasing C. Thus, C
cannot decrease indefinitely without encounter-
ing another drastic change of the behavior of the
zero-veloeity surfaces.  This time it is the contact
between the dumb-bell like surface and the cuter
ceylindrical-like surface, Kuiper has called it the
outermost contact surface (or the S, surface)
whose C value will be hereafter denoted by C, as
is shown in Figure 1. The point of contact L, is
another Lagrangian point. With this second con-
tact, the inner region is connected to the outer
region and the test particle with C only slightly
less than C. can move without restriction due to
energy. Thus, particles with C between C; and
C; can move either inside the dumb-bell like sur-
face or outside the distorted cylindrical surface.
This leaves a forbidden region hetween the two
surfaces. In Figure 1, this situation is illustrated
by the case C=3.6. When C <C,, there will not
be any forbidden region for the particle from the
consideration of the energy integral. Therefore,
the S, surface represents the maximum size of a
stable contact configuration of a close binary.
For if the contact binary has reached this size,
mass will continuously flow out of the system
through L, and the binary is no longer stable.

With the aid of the S, surface we can now
classify close binaries into three groups. If both
components are well inside the S, surface, their
system is said to be a detached one. If one com-
ponent fills up the corresponding lobe of 8, surface
but the uther is not, the two form a semi-contact
(or semi-detached) binary. In the third group,
i.e., the contact binaries, two components are in
physical contact. More claborate classification
of close binaries may be found in Kopal’s (1959)
and Sahade’s (1960 a and b) paper.

Finally, it may be noted that since the zero-
velocity surfaces are defined in the rotating frame
of reference, the Roche model predicts that axial
rotation of stellar envelope and orbital revolution
are synchronized, i.e., the two component stars
revolve in their respective orbits face to face.
This result appears to be valid in most close bi-
naries (Swings 1936, Plaut 1959 Struve 1950). In
a few cases, such as 8 Lyrae (Kopal 1959), where
one or both component stars undergo secular ex-
pansion as a result of internal evolution, this
synchronization could be temporarily violated.

We can now summarize the result briefly in the
following way. The closed zero-velocity surfaces
around two stars for C> (), represents the shape
of two components that are detached frecm cach
other, The smaller the radius, the close to a
sphere is the surface. What we are interested in,
however, is only when the star approaches the size
of the inner contact surface and is strongly dis-
torted from a spherical shape. Thus, at C=C,
each lobe of the S, surface represents the limiting
size of the individual component. The star in a
binary that is found actually in this limiting con-
figuration is usually ejecting mass through L,
towards its companion if the latter is still small
compared with its own lobe of contact surface.
For C,> /C> C, the dumb-bell like surface of equa-
tion (5.5) represents the configuration of two com-
ponent stars in physical contact. The limiting
case of the contact configuration is given by the
outer contact surface (C=C,). Binary stars that
are in this limiting configuration lose mass to
outer space through the point, .. It can he seen
from Figure 1 that the range of sizes of the contact
systems (from the S, to S. surface) is quite small,
Therefore, any binary that is in physical contact is
usually losing mass through L,. The problem of
losing mass from a star through the points L, and
L, was first extensively discussed by Kuiper (1941)
(Cf. 6). Such an instability at the surface of the
close binary stars gives rise to a number of ob-
servable phencmena which Martynuv (1957 also
Krat 1960) has summed up in a review together
with examples of stars that show these various
phencmena.

Because of their importance in the study of close
binaries both 8, and S, surfaces for different values
of u have been computed by Kuiper (1941); by
Kopal, whose result was first published in 1954
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and is now included in his book (1959); and by
Kuiper and Johnson (1956) and more recently by
Szebehely and Williams (1964). Table 2 gives
C, and C; for 9 values of u taken from Kuiper and
Johnson’s paper. Table 3 and 4 gives the inter-
section of the two contact surfaces with the zy-
plane (first and second column) and with the zz-
plane (first and third column) for those values of
p listed in Table 2. They are partly taken also

TABLE 2.— Labelling Constants for the Contact Surfaces

l

m (', (inner) C; (outer)
.5 4 3. 4567962
.4 3. 9809086 3. 5189346
1/3 3. 9455706 3. 5474582
2/7 3. 6074840 3. 5589342
.25 3. 8706588 3. 5611940
.20 3. 8046532 3. 5523932
.10 3. 5969532 3. 4666844
.05 3. 4204164 3. 3543942
.02 3. 2523262 3. 2257332

from Kuiper and Johnson’s paper but partly com-
puted especially for the use of the present occasion
by Mr. C. Wade, Jr., of Goddard Space Flight
Cenler. The case of u=13 is furthermore illus-
trated in Figure 1 as we have described. For
diagrammatic illustrations of the contact surfaces
corresponding to other values of u we refer the
reader to Kuiper’s (1941) paper.

Finally, it should be noted that the basic size
of a star, whether single or in a close binary, is
determined by its internal structure. What we
have said previously is only about the external
shape of its envelope. That the envelope is all
that we can observe of a star lies significance of the
zero-velocity surfaces in the study of close binaries.

The Roche model of an infinitely centralized
star represents only one end of a series of stellar
models. At the other end there is the liquid
model of a homogencous density. Darwin (1906)
and Jeans (1919) have studied the binary configu-
rations and their stability based on the latter
idealization. Darwin’s and Jeans’ results have
recently been examined by Chandrasekhar (1964).

5.2 Departure from the Roche Model

An actual star is built neither cn the infinite
centralization nor on the homogeneous distribu-
tion of density. We have roted in 3.1 that the
rate of apsidal motion decreases with the degree
of central condensation. For component stars
built on the Roche model the binary would show
no apsidal motion at all. The fact that the ap-
sidal motions in many binaries have been observed
in relatively a short time of a few decades only
shows how approximate the model is., However,
for a prediction of the stellar surfaces the Roche
model perhaps gives a good approximation. In-
deed, according to a recent estimate by Plavec
(1958), the departure of stars from the infinite
central condensation of the Roche model does not
produce a serious modification of the zero-velocity
surfaces.

On the other hand, Plavec has pointed out in
the same paper, that a deviation from the synchro-
nization of axial rotation and orbital revolution
would cause an important change in the shape of
the contact surface. He has treated the problem
of non-synchronization by simply modifying that
term in U (given by equation [5.3]) which corre-
sponds to the centrifugal force. In this way he
has found that it is very simple to compute the
modified contact surfaces. Unfortunately Pla-
vec’s process may not be regarded as legitimate
because the eentrifugal force arising from orbital
motion and that arising from axial rotation do not
have the same axis. This same problem has later
been studied by Limber (1963) and Kruszewski
(1963). The works by these two investigators
are parallel and suffer the same difficulties.

In order to see the difficulties let us assume that
axial rotation, say of the 1-u component, is not
synchronized to the orbital motion, although its
axis is still assumed to be perpendicular to the
orbital plane. In considering the motion of a test
particle in the envelope of the 1-u component we
first translate the origin of the (zyz) coordinate
system along the z-axis to the center of the 1-u
component star by making the simple trans-
formations:

=z+p y'=y, 2=z (5'6)
and then rotate the (z'y’2’) system by a second
transformation so that in the end it will be in

e e it mnee avim o o e a o a
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TABLE 3.—Innermost Coniact Surfaces for Different Values of

S L et e

z ty { +z z ty tz
u=0.5 0.5 0. 2701 0. 2585
0.6 0.3051 0. 2025
+0.1 0.1456 0. 1370 0.7 0.3123 0. 2990
+0.2 0. 2520 0. 2388 0.8 0. 2012 0. 2779
+0.3 0.3205 0. 3050 0.9 0. 2337 0. 2216
+0. 4 0.3596 0.3426 1.0 0. 0831 0. 0781
+0.5 0.3740 0. 3561 1.0120 0. 0000 ; 0. 0070
+0. 6 0.3647 0. 3465 Ny
40,7 0.3288 0.3112 r=2/7
0.8 0. 2549 0. 238 —0.7743 0. 0000 0. 0000
+0.9 0. 0595 0. 0555 —0.7 0. 2482 0. 2288
+0. 9050 0. 0000 0. 0000 -0.6 0.3578 0. 3318
—-0.5 0. 4187 0. 3901
#=04 —0.4 C. 4513 0. 4220
0 attn -0.3 0. 4619 0. 4328
_g: g’“" 8: ?g?g 8: ?ggg ~0.2 0. 4524 0. 4243
o7 0. 3065 0. 2871 0.1 0.4224 0. 3960
o6 0.3712 0. 3494 0 0. 3691 0. 3453
o5 0. 4037 0. 3814 0.1 0. 2867 0. 2672
o4 0. 4122 0. 3502 0.2 0. 1663 0. 1543
-0.3 0. 3987 0.3777 0.3 0.0114 0. 0106
-0.2 0. 3625 0. 3431 0.3072 0. 0000 0. 0000
o1 0. 2000 0. 2897 0. 4 0. 1283 0.1214
0.0 0. 2025 0. 1900 0.5 0. 2205 0. 2107
o1 0. 0616 0. 0606 0.6 0. 2729 0. 2618
0. 1416 0. 0000 0. 0000 0.7 0. 2039 0. 2510
0.2 0. 0872 0. 0819 0.8 0. 2861 0. 2738
0.3 0. 2045 0 1041 0.9 0. 2453 0. 2335
04 0. 2707 0. 2670 1.0 0. 1455 0. 1373
0.5 0.3221 0. 3081 1.0415 0. 0000 0. 0000
0.6 0. 3376 0. 3227 u=.25
0.7 0.3272 0. 3120
0.8 0. 2872 0. 9727 —0. 7554 0. 0000 0. 0000
0.9 0. 2001 0. 1878 ‘g- (73 g- fg(')g g- 28;;
0. 9696 0. 0000 0. 0000 -0.5 0. 4208 0. 3899
p=1/3 -0.4 0. 4609 0. 4286
-0.3 0. 4784 0. 4460
—0.8013 0. 0000 0. 0000 -0.2 0. 4761 0. 4444
—0.8 0.0329 C. 0303 -0.1 0. 4543 0. 4241
-0.7 0. 2772 0. 2574 0 0.4112 0. 3834
—0.6 0. 3656 0.3415 0.1 0.3426 0. 3185
—-0.5 0.4144 0. 3886 0.2 0. 2405 0. 2225
—0.4 0. 4370 0.4110 0.3 0. 0976 0. 0903
—0.3 0. 4380 0.4126 0. 3607 0. 0000 0. 0000
0.2 0. 4182 0. 3040 0.4 0. 0587 0. 0551
~0.1 0.3759 0. 3538 0.5 0.1738 0.1655
0 0. 3068 0. 2878 0.6 0. 2422 0. 2323
0.1 0. 2028 0.1803 0.7 0.2751 0. 2642
0.2 0. 0591 0. 0550 0.8 0.2776 0. 2662
0.2374 0. 0000 0. 0000 0.9 0. 2482 0. 2369
0.3 0.0019 0. 0865 1.0 0. 1704 0.1613
0.4 0. 2022 0.1925 1.0628 0. 0000 0. 0000
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TaBLE 3.—Innermost Contact Surfaces for Different Vlues of u — Continued
z ty +z z ty tz
uw—.2 u=05
—0.7320 0. 0000 0. 0000 ~0.7178 0. 0000 ' 0. 0000
-0.7 0.1758 0. 1590 -~0.7 0. 1510 0. 1256
-0.6 0. 3388 0. 3090 -0.6 0. 3733 0.3152
-0.5 0. 4235 0. 3885 -0.5 0. 4859 0.4149
-0.4 0. 4740 0. 4367 -0.4 0. 5595 0. 4818
-0.3 0. 5008 0. 4628 -0.3 0. 6085 0. 5271
-0.2 0. 5079 0. 4702 -0.2 0. 6385 0. 5555
-0.1 0. 4965 0. 4600 ~0.1 0. 6524 0. 5689
0 0. 4659 0. 4314 0 0. 6511 0. 5684
0.1 0 4136 0. 3822 0.1 0. 6347 0. 5537
02 0. 3339 0. 3075 0.2 0. 6023 0. 5243
0.3 0. 2178 0. 1997 0.3 0. 5515 0. 4781
0.4 0.0619 0.0571 0.4 0.4778 n.4118
0. 4381 C. 0000 0. 0000 0.5 0.3724 0.3187
0.5 0. 0883 0. 0831 0.6 0.2189 0. 1875
0.6 0. 1867 0. 1784 0.7 0.0257 0. 0232
0.7 0. 2398 0. 2304 0. 7152 0. 0000 0. 0000
0.8 0. 2583 0. 2482 0.8 0. 1024 0. 0971
0.9 0. 2444 0. 2340 0.9 0.1554 0. 1494
1.0 0. 1895 0. 1801 1.0 0. 1572 0. 1508
1. 0009 0. 0000 0. 9000 1.1 0. 1002 0. 0947
1. 1412 0. 0000 0. 0000
w1 p=02

—0. 7050 0. 0000 0. 0000 —0. 7585 G. 0000 0. 0000
-0.7 0. 0758 0. 0659 -0.7 0. 2858 0. 2231
-0.6 0. 3332 0. 2930 ~0.6 0. 4534 0. 3616
-0.5 0. 4434 0. 3031 -0.5 0. 5563 0. 4508
-0, 4 0. 5125 0. 4572 -0.4 0. 6273 0.5143
-0.3 0. 5559 0. 4082 -0.3 0. 6765 0. 5593
-0.2 0. 5797 0. 5211 —-0.2 0. 7085 0. 5801
-0.1 0. 5862 0.5278 -0.1 0. 7255 0. 6053
0 0. 5762 0.5192 0 0.7288 0. 6088
0.1 0. 5493 0. 4945 0.1 0. 7184 0. 5907
0.2 0. 5034 0. 4522 0.2 0. 6939 0.5776
0.3 0. 4344 0. 3887 0.3 0. 6539 0.5415
0.4 0. 3343 0. 2977 0.4 0. 5956 0. 4803
0.5 0. 1906 0. 1698 0.5 0.5130 0. 4174
0.6 0. 0147 0.0134 a.0 0. 3973 0. 3187
0. 6000 0. 0000 0. 0000 6.7 0. 2224 0.1780
0.7 0. 1151 0. 1092 0.8 0. 0058 0. 0052
0.8 0. 1819 0.1747 0, 8035 0. 0000 0. 0000
0.9 0. 2037 0. 1960 0.9 0. 9990 0. 0945
1.0 0. 1855 0.1775 1.0 0. 197 0.1149
1.1 0. 1972 0.1012 1.1 0. 0671 0. 0360
1. 1340 0. 0000 0. 0000 1.1258 0. 0000 0. 0000
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z +y tz z Ty tz
u=0.5 u=2/7
—0. 8714 0. 0000 0. 0000
0 0.3261 0. 2011 -0.8 0. 2597 0. 22146
$0.1 0. 3488 0.3129 -0 7 0. 3829 0. 3367
+0.2 0. 948 0.3571 -0.5 0. 5007 0. 4497
+0.4 0. 4674 0. 4247 -0.3 0. 5314 0. 4824
+0.6 0. 4819 0.4329 ~0.1 0. 4945 0. 4500
10.8 0. 4325 0.3763 0.1 0. 3878 0. 3505
+1.0 0. 3019 0. 2431 0.2 0.3132 0. 2816
+1.1 0.1873 0.1382 0.3 0. 2582 0. 2328
+1,1984 0. 0000 0. 0000 0.4 0. 2668 0. 2440
0.5 0. 3085 0. 2857
0.6 0. 3438 0. 3199
w=04 0.8 0.3610 0.3332
1.0 0. 2962 0. 2634
—0. 9300 0. 0000 0. 0000 1.2 0. 1085 0. 0848
—0.9 0. 2705 0. 2202 1. 2597 0. 0000 0. 0000
—0.8 0. 3761 0.3271 4 =0.25
-0.6 0. 4794 0. 4298 )
-0.4 0. 5016 0. 4561 —0. 8404 0. 0000 0. 000G
-0.2 0. 4580 0.4175 -0.8 0. 2016 0.1737
0 0. 3544 0. 3200 -0.7 0. 3581 0.3138
0.1 0. 3046 0. 2736 -0.6 0. 4443 0. 3641
0.2 0. 3000 0. 2709 -0.4 0 5294 0.4770
0.3 0. 3387 0. 3082 -0.2 0. 5386 0. 4887
0.5 0.4120 0.3792 0 0. 4806 0. 4359
0.7 0. 4255 0.3873 0.2 0. 3498 0...146
0.9 0. 3678 0. 3235 0.3 0.2712 0. 2434
1.1 0. 2137 0.1708 0.4 0.7 a7 0.2177
1.2 0. 0670 0.0470 0.5 0. 2708 0. 2501
1. 2308 0. 0000 0. 0000 0.7 0. 3365 0. 3141
0.9 0.3271 0. 3004
1.a 0. 2227 0. 1928
w=1/3 1.2 0. 1145 0.0916
1. 2659 0. 0ro0 0. 0000
—0.9165 0. 0000 0.0000 2
-0.9 0. 1251 0. 1059
—~0.8 0.3174 0. 2754 -0, 8014 0. 0000 €. 0000
-0.7 0. 4108 0. 3625 --0.8 0. 0395 0. 0338
-0.5 O. 5021 0. 4526 -~0.7 0.3179 0. 2786
-0.3 0. 5150 0. 4688 -=0.5 0. 4933 0. 4386
-0.1 0. 4612 0. 4200 -0.3 0. 5569 0. 5011
0.1 0. 342, 0. 3002 =0.1 0. 5504 0. 4974
0.2 0. 2841 0. 2556 0.1 0. 24761 0. 4262
0.3 0. 2765 0. 2510 0.3 0. 3238 0. 2802
0.4 0.3143 0. 2889 0.4 0. 2393 0. 2145
0.6 0.3820 0.3538 0.5 0, 2208 0. 2019
0.8 0.383 0. 3493 0.6 0. 2589 0. 2410
1.0 0. 3027 0. 2¢46 0.8 ) *). 3106 0. 2007
1.1 0. 2224 0. 1850 1.0 0. 277 0. 2507
1.2 0. 0054 0.0717 1.2 0.1169 0. 0063
1. 2490 0. 0000 0. 0000 1.2710 0. 0000 N, 0000
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TaBLe 4.—Qutermost Contact Surfaces for Different Values of u —— Continued

z h +y l +z z I ty +tz
u=.1 0.1 0. 6569 0. 5657
0.3 0. 5765 0. 4932
- 0. 7452 0. 0000 0. 0000 0.5 0. 4087 0. 3444
-0.7 0. 2311 0. 1954 0.6 0. 2734 0. 2300
—-0.6 0. 3966 0. 3401 0.7 0. 1340 0.1179
-0 4 0. 5536 0. 4837 0.8 0. 1390 0. 1295
—0.2 0.6147 0. 5424 0.9 0.1759 0. 1667
0 0. 6104 0. 5402 1.0 0.1788 0. 1689
0.2 0. 5416 0.4778 11 0.1118 0. 1306
0.4 0. 3897 0. 3403 1.2 0. 0464 0. 0393
0.5 0. 2739 0. 2388 1.2281 0. 0000 0. 0000
0.6 0. 1708 0.1526 ‘
0.7 0.1772 0. 1643 1=0.02
0.8 0. 2175 0. 2051 —0. 7717 0. 0000 0. 0000
0.9 0. 2355 0. 2223 —-0.7 0.3177 0. 2446
1.0 0. 2248 0. 2101 —-0.6 0. 4739 0.3735
L1 0 1815 0. 1653 —0.4 0. 6420 0.5212
1.2 0. 0926 0.0791 —0.2 0.7213 0. 5945
1. 2597 0. 0000 0. 0000 0.0 0. 7410 0. 6139
0.2 0. 7066 0. 5832
u=.05 0.4 0. 6102 0. 4967
0.6 0. 4188 0. 3322
—0. 7424 0. 0000 ! 0. 0000 0.7 0. 2562 0. 2030
-0.7 0. 2347 0.1913 0.8 0. 0849 0.0746
~0.6 0. 4136 0. 3429 0.9 0.1133 0. 1069
-0.5 0.5170 0. 4342 1.0 0. 1306 0. 1241
-0.3 0. 6328 0. 5404 L1 0. 0934 0. 0861
-0.1 l 0.6745 0. 5805 1.1801 0. 0000 0. 0000
{

synchronization with the axial rotation of the
star. Thus:

z'=§ cos wl—n sin wt,

y' =& sin w!+n cos wl,
2'=§',

5.7)

where w represents the rotational angular velocity
of the star in the (x'y’:’) coordinate system.
Therefore, the (£n.¢) coordinate system follows
both the orbital revolution and axial rotation of
the 1-u component. The equations of motion of
the test particle in the (£,7,¢) system can be easily
derived by applying successively two transforma-
tions given by equations (5.6) and (5.7) tc equa-
tion (5.2). If we denote by @ the rotational angu-
lar velocity-vector, by & a unit vector in the same
direction and by 7 the radius vector of the test
purticle from the origin o’ the (£,,{) system, the

final result may be giver by

2~A
%t";l +2@+%) X % =grad U,+us, (5.8)
where
1— .
U= 3w+ 1)2(¢-+m?) +—n-"+ir‘2, (5.9)

and § represents a time-dependent unit vector
which has the following components*
—co0s wf, sin wl, 0. (5.10)

It is row apparent that non-synchronization
cannot be properly treated by simply replacing U
in equation (5.2) by U,in equation (5.9) because
equation (5.8) is not identical in form to equation
(5.2). Because of the time-dependence of the
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vector 3 and of » which is now given by

ro?=(£—cos wl)?+(n+sin wt)?+2, (5.11)
we cannot derive a simple relation like equation
(6.4) in the present. coordinate system. Conse-
quently, the potential function U, given by equa-
tion (5.9) predicts neither the equilibrium surfaces
of the star in general nor its limiting surface in
particular. A detailed discussion on this point
and a proper treatment of non-synchronization
will be given in a later paper.

Actually, the non-synchronization represents
only one of several possibilities that will destroy
the existence of zero-velocity surfaces. Indeed,
under no circumstance can we define zero-velocity
surface if the orbital motion of the binary is not
circular or if a third star is present in the neighbor-
hood (Huang 1964). In these cases the envelope
of the component stars become unstable and stars
themselves may not be expected to have station-
ary surfaces.

6. GASEOUS MOTION IN THE
CLOSE BINARY SYSTEM

As a result of spectroscopic observations by
Struve (1941, 1945 et seq. 1949a, 1950), Abhyankar
(1959a, 1960) and many others, gaseous flow origi-
nating from stellar surfaces in the close binary
system has been fully established. In the mean-
time Kuiper (1941) has examined the gaseous flow
in the binary system from a theoretical point of
view and introduced the idea of ejection of mass
by the component stars through the Lagrangian
points L; and L discussed in the previous section.
We may therefore, conclude that the components
of some close binaries have touched the S, surface
snd their atmospheres become unstable such that
gaseous particles are flowing out of the star either
at L, or L,. The conclusion is further strength-
ened by the photometric observations (Wood
1946, 1957; also Kopal 1959) which indicates that
the relative radii of component stars in such bi-
naries are indeed comparable to what would be
expected from the two lobes of the 8, surface for
their respective mass ratios.

The esiablishment of gaseous flow in close bi-
naries opened up a new field of theoretical study.
Several approaches have since been advanced,

namely (1) the orbital approach, (2) the hydro-
dynamic approach and (3) a rudimentary statis-
tical approach. Needless to say, if the binary
stars possess magnetic fields, a magnetohydrody-
namic approach to the problem would be in order.
However, unless we clearly know the nature of the
magnetic field, we cannot proceed with our study.
Consequently, no one has seriously treated the
gaseous flow in the binary system as a magnetohy-
drodynamie problem although magnetic activities
have been suggested rather quantitatively to ac-
count for the peculiar behavior of some binaries
(Huang 1959). However, one of the cffects of
magnetic activities may be predictable and that
is the braking of binary motion. Several mech-
anisms have been proposed for braking stellar
axial rotation (e.g. Huang and Struve 1960) but
the one proposed recently by Schatzman (1962)
may be regarded as most effective. According to
him, the angular momentum of axial rotation of a
star is transferred outwards as mass is ejected out
during strong magnetic activities. Similarly, we
may propose that the same mechanism can dissi-
pate the orbital angular momentum. If so, we
wonder whether the many close binaries are in-
deed the result of braking due to magnetic activi-
ties in the early phase of their evolution.

6.1 The Orbital Approach

The motion of a particle in the binary system is
computed according to equation (5.2), hence, the
particle is treated as if it were a celestial body in
classical mechanics. Kuiper (1941) studied the
problem of gaseous motion in this way and his
paper gives a simple but illuminating discussion
that has often been referred to in the literature.

Kuiper first emphasizes the symmetry of the
equation of motion with respect to the xy-plane.
At least this symmetry will not be disturbed if an
initial symmetry in the distribution of matter is
assumed. Consequently the principal current
should be symmetrical with respect to the plane.
Furthermore, since two symmetrical currents in
the z-direction would lead to a dissipation of
energy not present in currents parallel to the zy-
plane, Kuiper concludes that very probably the
latter are the most important currents in the
binary systera. In what follows we shall consider
only the motion in the zy-plane which incidently
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is also the plane in which observations may be
made in eclipsing binaries.

Kuiper next points out that because of the
Coriolis force (the first term on the right side of
equation (5.2)), a flow near L, in the positive z-
direction will be deflected in the -y direction.
This can be seen easily from the vector product if
we set the initial velocity d7/dt to be pointing in
the +z direction. The current wiil therefore go

principally in the direction of ,8, . . . as is shown
in Figure 2.
3
Y
£ B
C a

F1GuRE 2.- -Gascous flow in the orbital plane expected in a
close binary system (adopted from Kuiper’s 1941 paper).

Numerical integrations of gaseous motion in a
contact binary by Kuiper furthermore “show that
if, the speed is below a certain value, the matter
will go around the companion in the sense, «,8,7....
If, however, the speed is large, the matter will fly
off near 8. The returning stream (in the -z direc-
tion) will experience a Coriolis force in the +y
direction.” The current would continue in the
direction of §,£,¢ as is shown in the figure with
perhaps decreasing strength. Similarly, if the
current starts in the negative z direction near L,,
the same flow pattern will result. Such a flow
pattern is indeed consistent with what has been
observed, say in 8 Lyrae.

Now if only one component of the binary is in
contact with the S, surface, the gaseous flow pat-
tern following the ejection of matter at L, will be
affected by the Coriolis force in the same way as
we have described for the contact binary. With
frequent collisions among the ejected particles,
such a tendency of motion may bring them to form
a rotating ring or rings around the other coinpo-
nent star as Kuiper has suggested. Indeed
Kuiper's prediction was soon verified by Joy's
(1942) discovery of a rotating gaseous ring around

the primary component in the R W Tauri system
—one of the Algol-type eclipsing binaries. Joy
unaware of Kuiper’s investigation, deduced the
existence of the gaseous ring from the emission
lines. This discovery induced Struve (e.g. 1950)
and others to initiate an extensive study of the
emission structure of many Algol type binaries.
Emission rings have been since di.~overed in many
systems. A detailed discussion of rings has been
given by Struve and Huang (1957a) and a up-to-
date list of such binaries may be fermed in
Sahade’s (1960a) paper.

If the ejection velocity in the rotating system
is small, the motion of particles near the point of
ejection (namely L; and L,) may be treated by
linearized theory for the stability of orbits in the
neighborhood of the Lagrangian points (Moulton
1914). Physically, we may imagine the region
near the ejection point as a nozzle where the den-
sity is high and collisions are frequent. Conse-
quently, we would not expect that any result
derived from such a consideration wili have any
practical significance. If the ejection velocity is
large, only direct numerical integration of equa-
tion (5.2) is possibie. Abhyankar (1959b) has
studied the motion in the neighborhood of these
points in this way.

Kuiper has also investigated the motion of a
particle farther away from the ejection points L,
and L, by numerical integration. His pioneer
work in this direction has since been followed by
Kopal (1956, 1957b, 1959), Gould (1957, 1959)
and many others after the introduction of the high
speed digital computer. They have computed
extensive series of orbits according to equation
(5.2). Many orbits thus obtained are difficult to
interpret because of their seemingly erratic be-
havior with loops, cusps, etc. which obviously will
all be erased by collisions. A few, however, yield
some interesting results. For example, some of
the computed orbits indicate quite convincingly
that pariicles ejected from the less massive com
ponent may indeed coalesce into a rotating ring if
we properly take into account in our mental proc-
ess the effect of collisions among the particles
themselves.

6.2 The Hydrodynamic Approach

In spite of some success in the orbital approach,
the motion of gaseous stream in a binary system
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is not faithfully described by equation (5.2) since
it does not include collisions and pressure. A
more realistic treatment of this problem should at
least take the collisions into consideration. Pren-
dergast (1960) has examined the problem along
this line. The hydrodynamic equation for the
flow velocity % in space takes the following form
in the rotating (z, y, z) coordinate system:

where U is giver by equation (5.3) while p and p
are respectively pressure and den_sjty in the gase-
ous medium. The unit vector & has the same
meaning as in equation (5.2). The hydrodynamic
equation of motion is supplemented by the equa-
tion of continuity.

"a_‘l’+dw( i) =0 (6.2)

A comparison of equations (5.2) and (6.1) is
helpful in our understanding of the difference be-
tween the two approaches. In the first place we
have now introduced in equation (6.1) a new term
grad p/p due to the pressure, which does not ap-
pear in the orbital study. Secondly, we now con-
sider a continuous velocity field 7 (z,y,2,t) instead
of dr/dt of individual particles. Thus, dr/dt is
replaced by the first two terms in equation (6.1).
We may take the continuity of the velocity field
as a consequence of collisions among particles.
This illustrates how by introducing the pressure
and collisions we derive the hydrodynamic equa-
tion from equation (5.2). This point of view
helps explain the statistical point of view of the
problem that will be discussed in §6.3.

By considering a steady state (9%/dt=0p/dt=0)
and by neglecting the pressure term, Prendergast
has obtained an approximate solution for the two
dimensional case {in the ry-plane). He has as-
sumed that the velocity component at right angles
to the zero-velocity curve is small and to be neg-
lected whenever convenient. Theretore, his solu-
tion is a very special one. But because of this
assumption he can advantageously cheose a co-
ordinate system based on the zero-velocity curves
themselves. Thus, he has found that the solution
predicts circulatory currents around each of the
two components inside the S, surface and around

both components outside the S, surface. In this
way it has been shown that the gaseous rings
around the primary component of many Algol-
type binaries is indeed a solution of the hyd-o-
dy..amiec equation.

6.3 A Statistical Point of View

In the present section we shall present a point
of view from a statistical consideration. Itsscope
lies in the middle between the orbital approach
(which neglects both pressure and collisions) and
the hydrodynamic approach (which includes
both). It may also be given some physical in-
sight to the problem that cannot be seen by simply
integrating equation of motion—be it equation
(6.2) or (6.1). Also, it may develope into a sto-
chastic method that treats the gaseous particles
in the binary system like stars in a cluster (Chan-
drasekhar 1943) and eddies in turbulence (e.g.,
Chandrasekhar 1949). However, this is only a
remote possibility.

At present, we can only give some elementary
properties of gaseous particles in the binary sys-
tem according to a recent paper by Huang (1965).

Let us consider n particles of mass, m; (=1,
2...n) moving in a binary system. Furthermore,
the particle m, corresponds at a given instant to a
definite value of C, for the Jacobian constant de-
fined in equation (5.4). Because of collisions the
individual C/’s of the particles change continually.
However, since the particles are of atoraic and
subatomic sizes, the colliding particles at the in-
stant of collision may be regarded as occupying
the same point in space. If the total kinetic
energy of the colliding particles is furthermore
conserved during the collisions, it follows from the
definition of C given by equation (5.4) that the
new Jacobian constants denoted by C’, for these
particles after collisions should satisfy the follow-
ing equation

EmCi= ZmC, 6.3)

fml te=]

Thus, if we define an average <C>, we have

n
zm,C
<C>="!

n

zm,
=1

= constant (6.4)
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under the processes of elastic collisions. How-
ever, it may be noted that the dispers‘cn of C/'s
from their average value will in general change
with collisions.

For inelastic collisions an equation connecting
C/s and C’/s can always be obtained from the
energy consideration if we know the detailed
process of the collision. In the present considera-
tion we shall assume that the collisions that take
place among atomic particles in the binary system
are statistically elastie, i.e., endoergic collisions
balancing exoergic ones.

As a result of the constancy of <C> during
collision, the problem of gaseous flow is consid-
erably simplified because we have now a macro-
scopic quantity, <C>, to deal with instead of
following the courses of numerous particles in the
system, This situation resembles the introduc-
tion of the concept of temperature and pressure
which simplifies the study of the chaotic motion of
molecules in gases in free space. Therefore, what-
ever is the nature of ejection that occurs on the
stellar surface, the mean value of C/'s of ejected
particles and their dispersion may serve as two of
the most characteristic indices for the physical
mode of ejection as regards the course of their
subsequent motion.

It should be noted, however, that although the
gaseous particles maintain a constant <C>. the
mean flow does not follow the orbit derived from
equation (5.2).

In this way, we can treat the problem of gaseous
streams as a statistical problem of C/s. One of
the possibilities for further investigations along
this line of thought is to link the statistical prop-
erties of C's from the theoretical consideration
with the strengths of spectral lines arising from
the gaseous streams observed at different phases
of the binary motion.

Our immediate purpose is, however, to show
that an intermediate approach between the orbital
and hydrodynamic one may be obtained from a
statistical consideration of C's as well as of the
angular momentum (the z-component) per unit
mass, h, of each particie in the system. Since a
particle is moving in a two-centered field of force,
its h, which is given by

dy dr ,
—_ 2 2.t e T
h=z+y FT Yo (6.5)

varies with time, However, it can be shown from
equations (6.5) and (5.2) that

%?=#(1*u)y<%?— 1) (6.6)
which is a function of coordinates of the particle
only, being independent of its velocity. What is
more important is that the total angular momen-
tum is conserved among the colliding particles if
the collision may be regarded as taking place
instantaneously.

We can now derive the properties of a continu-
ous gaseous medium in the binary system from
those derived from a consideration of discrete par-
ticles. Let usillustrate it by the two-dimensional
case. Since the average values of C and h do not
change by collision, we may write in a steady state

u-vC=o0 (6.7)
from equation (6.4) and
1 1
V- Th=u(l-p) (;;— ;g) (6.8)
1 2

from equation (6.6) if we follow the streamline.
While we have obtained these two 2quations by
physical arguments, they can be easily derived
from the hydrodynamic equation by first neglect-
ing the pressure term. Naturally, equations (6.7)
and (6.8) yield the same approximate solution of
circulatory motions as Prendergast has obtained.
From equations (6.7) and (6.8) we can also see
clearly the range of validity of the approximate
solutions. As expected, the solution gives a good
approximation for the circulatory motion close to
each of the component stars. It has been illus-
trated by numerical calculation that wherever the
solution represents a good approximation, the
predicted motion from equations (6.7) and (6.8)
approaches the periodic orbits of the restricted
three-body problem (Huang 1964a). Thus, the
gaseous ring observed in many binaries may be
regarded equivalently either as a hydrodynamic
flow or as m..““ons of particles in a continuous
series of periodic orbits that exist around each of
the component stars.
Since we have emphasized the two physical
arameters, h and C it is interesting to note that
. some points in space certain combinations of
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values for these two quantities are incompatible.
In other words, with a given pair of values for h
and C a particle cannot go into a certain region
of space which may be called the forbidden
zone (Huang 1965). Since h is not a constant of
motion in the restricted three-body problem, the
forbidden zone is not as important as the
zero-velocity surfaces. However, it may serve
some useful purposes in depicting the trend of
motion in general, especially when it is applied
in combination with equation (6.6).

7. THE ORIGIN OF CLOSE BINARIZS

Essential difficulties encountered in various
hypotheses of the formation of binary systems in
general, have been discussed by Hynek (1951).
Many of his arguments can be applied to the close
binaries and are indeed followed in the present
discussion. From a general ground we may state
that the close binaries can be formed by one or
more of the three possibilities. They were formed
(1) as a result of the fiss’>n process in rapidly
rotating single stars, (2) from distant binaries and
(3) directly as cloge binaries in the beginning. We
shall briefly discuss the plausibility of these three
processes.

Jeans (1919, 1928, 1944) has spent many years
in studying the fission process of rapidly rotating
stars. He has found that when tne rotational
velocity is small, the shape of a flattened spheroid
is common to all rotating bodies whether they are
composed of gases, liquids or plastic material.
However, if the rotational velocity is high, their
shape depends greatly upon their internal consti-
tution and especially the degree of their central
condensation. According to him fission would
occur in massive liquid bodies in which there is no
appreciable central concentration of mass. But
for a gaseous body of an extreme central condensa-
tion (i.e., the Roche model), rapid rotation only
makes it flatten more and more with an accom-
panying loss of mass at its equator. No fission
will result. Jeans further shows that all bodies
having less than a certain critical degree of central
condensation behave very much like those made
of incompressible liquid while all bodies having
more than this c:itical amount of central con-
densation behave very much like those of an in-
finite central condensation. Since actual stars

have a central condensation much higher than the
critical value, fission does not occur in them
(Jeans 1944).

The fission theory encounters another difficulty
in that it cannot explain the existence of binaries
of large separations. Because of the conserva-
tion of angular momentum, it can be easily seen
that two components of a binary resulting from
the fission process must be very clcse together.
Thus, in order to account for binaries of wider
separations other mechanism of formation has to
be derived. While it is not prohibitive to have
two different mechanisms for the formation of one
kind of objects, the smooth distribution of sepa-
rations and other statistical behavior of binaries
throws serious doubt, according to Kuiper (1935a
and b), on any theory that cannot explain the
formation of all binaries, except perhaps those
really wide ones with separations of the order of
interstellar distances (e.g. Van Biesbroeck 1957),
by a single niechanism,

Next, let us examine the possibility of convert-
ing distant biuaries into close ones. In proposing
this possibility, the presence of distant binaries
is assumed. Then twou components are supposed
to drift together due to a resisting medium such
as we have seen in 3.4 or due to other energy
dissipating mechanisms. In order to make the
theory complete we must first of all answer the
question of how these distant binaries are formed.
It has often been suggested that they may be
formed by star capture. However, stars are far
apart in space and are moving with an average
velocity of about 1020 km/sec with respect to
the local centroid. Thus, if one star by chance
approaches another, each wiil move on an hyper-
bolic orbit. Consequently, the two will recede
from cach other to large distances unless their
energy can be dissipated during the encounter.
The agency which absorbs the dissipated energy
can be either a third star that happens to be in the
immediate neighborhood or a resisting medium.
But the chance of a three-star encounter in the
galaxy is vanishingly small and the interstellar
medium is in genersl tou tenuous to be effective in
reducing stellar velocities (McCrea 1953; Dodd
1954).

For the same reason of low intersteilar densities
and high orbital velocities, it is very doubtful that
the resisting force of an ordinary interstellar cloud
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can greatly reduce the separation of a binary in a
time scale, say of 10'® years. Therefore, the pos-
sibility of first forming binaries by star capture
and then converting them into ciose ones is also
ruled out.

This leaves us only the third possibility, i.e.,
the binaries—both close and distant—were formed
as they are. It appears that we have not found
any serious objection to this possibility. On the
contrary many observed facts are consistert with
it. For example, according to Kopal (1959) the
relative frequency of close binaries found in the
general galactic field is about 0.1 percent and is of
about the same order of magnitude as that found
in galactic clusters and stellar associations where
stars are supposed to be formed. Indeed many
eclipsing binaries have been identified to be mem-
bers of galactie clusters (e.g., Sahade and Frieboes
1960) and of stellar associations (e.g., Kraft ana
Landolt 1959; Semeniuk 1962). If binaries of
different separations were formed as they are,
their h'gh abundance in the galaxy strengthens
the suggestion made frequently (e.g., Roberts
1957) that stars (at least Pop. I stars) are formed
in groups. As a result of his statistical study
Batten (1960) gives reasons to suggest that many
binaries may have formed together in space.
However, statistics also give us some puzzling
resilts.  Jaschek and Jaschek (1957, 1959) have
found that although the frequency occurrence of
spectroscopic binaries is uniform among the young
stars (about 20 percent) whether they are in asso-
ciations, in clusters or in the general fieid, the
percentages of spectroscepic binaries in old groups
of stars (ages from 3 x 10° to 6 x 10° years) decreases
with age.

From the standpoint of star formation in gen-
eral we also find the emergence of binaries quite
natural. Two condensations just happened to be
formed near together in the primeval medium and
they will evolve to become a binary if their rela-
tive velocity is not large enough to escape from
each other. Since the two udjacent condensa-
tions evolve separately on their own, they will
become two stars as if they were chosen from a
random sample. This prediction is again con-
sistent with the observed result (Kuiper 1935 a
and b). Here we may mention the interesting
argument in favor of the simultaneous formation
of two components of a close binary advanced by

Krat (1952). He observed that if their formation
did not occur at the same time, then the second
component could never have been formed in the
neighborhood of the first one because of the lat-
ter’s strong tidal force and intepse radiation both
of which incline to disrupt the gaseous condensa-
tion that is to become the second star.

If the binary systems weie formed as they are,
it is inevitable to conclude that two components
of a binary must have the same age. Previously
this consequence was regarded as a difficulty, be-
cause one might argue, as with Jeans (1944) for
example, that co-nponents of binaries like Sirius,
Procyon, and others show signs of very different
ages. Both Sirius and Procyon contain a white
warf as one component together with an early-
‘ype main-sequence companion. Since the white
Iwarf is an old object while the early-type main-
sequen~= star is regarded as young, it is difficult
to helicve that they could be coeval. However,
it shouid L+« :d that whether a star is young or
old refers only to its own evolutionary sequence
and has nothing to do with time in the absolute
measure. For example, a massive star of 10Me
or more passes through all of its evolutionary
Stages perhaps in a fraction o1 time that a star of
1Mo remains on tae main .equence, Thus with
a loss of mass at late stages either continuously
(Deutsch 1956) or cataclysmically, there is no
reason to object why one star has reached the
white dwarf while the other of the same age is still
at the main-sequence stage. This is a fortiori
true for two components in a close binary, be-
cause, as we have seen, one component can accret
mass from its companion. Since we may regard
mass accretion as a rejuvenation process while
mass loss as an aging process, such an exchange of
m:'ss will enhance the apparent age difference be-
tween two components in a close binary. More
will be said about mass exchange and its effect on
evolution of close binary stars in the next section.

Although we have concluded that binaries were
formed in the way they now appear, we still do
not know for sure the detailed mechanism how
they actually emerged from the primeval nebula,
as the study of formation of bi. .ries, like that of
sing)~ ~tars, is still at the speculative stage. Here
we sh.l review briefly three suggestions regarding
the physical processes that shape the binaries in
general and close binaries in particular. As we
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will see presently, these three suggestions are not
mutually exclusive because each deals only one
aspect of the many faceted problem of binary
formation.

Dodd (1954) has advanced a model of binary
formation after he has found that star capture in
the present state of interstellar space is untenable.
He takes for granted that stars are forming around
various centers of condensation in the originally
homogeneous medium where there are no local
variations in the gravitational field. If two con-
densations happen to be nearby, the material in
the cylindrical volume between the two condensa-
tions. according to Dodd, w: collapse on the axis
joining them mainly under the gravitational in-
fluence of the condensations themselves. Because
the collapse on to the axis is cylindrical, energy
dissipation is much more effective than would be
the case of a spherical collapse. This cylindrical
collapse results in a column of comparatively small
cross-section extending bet™ n two condensa-
ticis. When the latter moves towards each other
unde. their gravitation, they sweep the mass be-
tween them, In acquiring mass in this way the
condensations also meet resistance which dissi-
pates the dynamical energy of the system. In the
end two condensations become two component
stevs in a binary. It appears that Dodd has
assumed the condensations to be at rest in the
medium in the beginning. They form a binary
instead of a single star only by a further assump-
tion that the condensations will be deflected from
the straight collision course by perturbation due
to neighboring stars. Perhaps by making these
two assumptions, Dodd h»< proposed an unreal-
istic model since without uutial relative motions
among the various condensations, one can only
expect the collapse of all condensations into one
big mass.

Kuiper (1935b, 195~ has studied the problem
of angular momentar »f binaries both obsery
tionaily and theo-etically. If one considers the
proto-star as a single hydrodynamical unit, its
Reynolds number is high and consequently mo-
tion inside it must be turbulent. Thus, its angular
momentum may be computed fron the random
motion of large eddies as Kuiper has done. Since
the motion is random, each of the three compo-
nents of the total angular momenta of stars must
be given by the Gaussian curve. In other words

the magnitudes of the total angular momenta of
proto-stars follow the Maxwellian distribution of
veiunity magnitudes, from which Kuiper is able
to aerive a theoretical distribution for the sepa-
rations between two components in binaries. He
has found that the theoretical distribution curve
indicates a less dispersion than the observed one
but has given several convincing reasons to show
why this should be expected.

Parenthetically it may be noted that unaw:re
of Kuiper’s investigation, McCrea (1959 see also
Struve and Zebergs 1962) has used practically the
same arguments to derive the angular momenta
of stars.

Finally, Huang (1957b) has suggested that solid
prestellar nuclei may serve as the basis for stellar
condensations. If a medium possesses a large
amount of angular momentum and is composed of
only gas, its contraction will lead to a rotational
break-up at the equator. It will not form a bi-
nary as we have already mentioned in connection
with the fission problem. However, the situation
will be different if there are large solid bodies
embedded in the gasecus medium. These large
bodies must move very slowly in comparison with
gaseous molecules for the same reason that the
Brownian movement is slow compared with mo-
lecular motions. Consequently, they are gravi-
tationally less stable than the gaseous substratum.
It could therefore happen that these bodies coa-
lesce into two revolving nuclei which seive later
as two centers of condensation. As a result, a
binary instead of a rapidly rotating single star
is formed.

All these ideas are qualitative in nature 1d
function no more than some vague suggestions.
Much work needs to be done before any of them
will develop into a complete and consistent theory.
Furthermore, other ideas may come up in the
future. Therefore, we cannot avoid the impres-
sion that the problem of binary formation is a
wide open field for further investigations.

Let us now put sside the question of physical
processes of formation and turn our attention to
the phenomenological side of the problem. In his
study of separations of binaries Kuiper (1935a and
b) has realized that the distances of the major
planets from the sun fall nearly in the mid-range
of the binary separations from 10~* to 10° A.U.
with a median value at about 20 A.U. Therefore,
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Kuiper (1951) believes that the binaries and the
planetary system form a single uniform group.
In his way he has argued that the number of plane-
tary systems in the galaxy must be considerabie
because binaries are numerous. His view is now
generally accepted.

At the same time Struve (1949b, 1950; also
Struve and Huang 1958) has raised some interest-
ing points on the relation between binaries and
planetary systems. Especially, he has suggested
from a consideration of angular momentum that
planetary systems may result from the mass dissi-
pation of W Urase Majoris systems.

Whether Struve’s intuition will turn out right
we cannot tell at this moment. One point we are
now certain is that the formation of close binaries
and single stars are events with no intrinsic differ-
ence. We suggest that only a few varying param-
eters in the identical process of formation make
all the different catagories of stars. One of the
important paramelers doubtless is the angular
momentum. If a condensation has a low value
of angular momentum, single stars neither rotat-
ing rapidly nor possessing platetary systems will
be formed. If the angular momentum is high,
repidly rotating single stars, stars possessing plan-
etary systems of clo:« binaries will be formed.
Which one of these possibilities will actually be
followed depends presumably upon other parame-
ters, among them we may mention density, total
mass, turbulence, magnetic activities, and other
(Huang 1965).

8. EVOLUTION OF CLOSE BINARY STARS

Concerning the evolution of c¢lose binary stars
we are faced with many peculia= systems but with
few tangible leads that may indicate their stages
of evolution. Consequently, we have a wide
choice of theories for the evolutionary scheme of
close binary stars. While it is inteiesting to know
the fascinating ideas about binary evolution ad-
vanced in the past decades, we shall follow a con-
servative course here in preparing this section not
only because we do not have enough space but also
because most of these ideas are tentative at best.

The difficulty in understanding the evoluticn of
close binary stars can be easily seen froia the fact
that in spite of recent successes in the study of
stellar evolution (e.g. Burbidge and Burbidge
1958; Schwarzschild 1958; Hayashi, Hoshi and

Sugimoto 1962) we are still not certain about evo-
lution of single stars after the red-giant stage.
The reason for this uncertainty lies in the first
place with the complications of various nuclear
reactions that take place in different layers of the
star. But a more serious one is the rate of loss of
mass from the .tar at different phases at and after
the red-giant stage. As a result of investigations
by Deutsch (1956, 1960, 1961) there is no doubt
that red giant or supergiant stars lose mass con-
tinuously but the exact amount is not certain.
Coming back to the close binary stars we know
even less about the rate of mass loss or gain at
different stages.

Because of this uncertainty we shail discuss
evolution of close binaries here orly on some gen-
eral ground. In the first place the component
stars must follow the natural sequence of evolu-
tion of every star because of the continuous out-
flow of energy which is derived either from their
gravitational potentials or from thermonuclear
reactions. Since two components of the same
binary are coeval as we have concluded in the
previous section, the more massive component
departs from the zerc-age main sequence at a
faster rate because of its higher luminosity than
the less massive companion. According to Smak
(1959) this is the reason why the primary com-
ponents in close binaries are systematically greater
than the secondaries of the same mass. However,
unlike single stars we would expect that stars even
at the main-sequence stage will lose mass if they
are components of close binaries. This is true
not only for the components in contact and semi-
contact binaries but also for those in completely
detached systems if prominence activities like
those taking place on the solar surfacc are active
there. Indeed the variations in period found in
the detached and semi-detached systems (Kwee
1958) may well be due to this kind of mass
variations.

When the star is well inside the S, surface, the
loss of mass is slow and its internal strucuire will
not be seriously different from that of a single star
of the eguivalent mass. Therefore, its struct'ire
may be derived by linear perturbsation as has beer:
performed by Morton (1960). The situation be-
comes quite different when one or both compo-
nents reach the size of the corresponding lobe
of the S; surface, such as in several important
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categories of close binaries like 8 Lyrae variables,
W Ursae Majoris variables, Algol-type variables,
etc. In these cases, the rate of mass variation is pre-
sumably high and the strizeture of the overflowing
component star at any time perhaps will find no
parallel among zingle stars, For example, it is
doubtful that the subgiant component of the
Algol-type binaries has any resemblance in their
internal structure to .ho single subgiant stars
(Struve 1954). Reddish (1957) has suggested
some special models for red giants in order to
account for the process of mass loss,

If we cannot derive the structure of component
stars of contact and semi-contact systems by
applying perturbation to the normal single stars,
can we caleulate directly their sequence of evo-
lution by assuming a given rate of mass loss? The
prospect of doing so is not good. There arc sev-
eral intrinsic difficulties involved in this kind of
calculations. In the first place the mass loss has
an effect not only on the star itself but also on the
separation and the contact surfaces which limit
externally the radius of the overflowing compo-
nent stur. In other words, the structure of the
component :tars is coupled to the orbit of the
binary itself. Now the contact surface is not
uniquely determined by the amount of mass lost
from the star. It depends critically on the mode
of ejection that can vary greatly from case to case
as we have already seen in 3.5. Thus, starting
from one configuration of contact or semi-contact
we do not know exactly what will be the configura-
tion at the next moment even if we assume a
definite rate of mass loss.

We also er.counter difficulty basic to the calcu-
lation of stellar structure itself. The effect of
mass loss proauces not only a pressure inbalance
but also a thermal inbalance in the interior. The
time of adjustment to the equilibrium condition
is therefore measured by the Kelvin scale of gravi-
tational contraction instead of the much shorter
time scale of pulsation (Crawford and Kraft 1957;
Morton 1960; Schwarzschild 1962). In other
words we no longer have the simple relation oi
energy loss (at the surface through radiation) bal-
anced exactly by energy production in the interior
by thermonuclear reactions. It follows that the
stellar structure in the present case becomes a
time-dependent problem instead of a problem of
equilibrium.

Or we may put our arguments differently.  Ae-
cording to the Vogt-Russell theorem (e.g, Chan-
drasekhar 1939), if the pressure, the opacity and
the rate of generation of energy are functions of
the local values of the density, the temperature
and the chemical composition only, then the strue-
ture of a star is uniquely determined by the mass
of the star and its chemical compositions. In
other words, among other structural properties of
a star, the radius is determined internally by the
mass and the chemical composition.  Now in the
contact and semi-contact hinaries, the radius of
the overflowing component is further limited by
the contact surface which is imposed externally.
Therefore, 1n general, we cannot find a stellar
model that can fulfili both internsl and external
condidon for its radius.  This is equivalent to say
that no solution ean be obtained from the consid-
eration of equilibrium. This explains why we
cannot derive the evolutionary sequence of mod-
els by computation for the overtlowing component
as we have done for the single stars,

Aflter what hes been said it becomes quite ap-
parent that discussions on the evolution of binary
stars are necessarily qualitative and highly specu-
lative. We should always remember that these
discussions represent only the preliminary probing
of the possibilities but not the final verdict.

Since the secondary comiponents of many W
Ursae Majoris stars are over-luminous with
respect to their masses by more than two magni-
tudes on the average, Kitamura (1959, 1960) has
suggested that the extra energy radiated away is
derived from the gravitational contra- tion of mass
that is being accumulated on the secondary sur-
face at the expense of the primary. Accordingly,
he has built a series of gravitationally contracting
stellar models that are accereting mass.  However,
he has not given any reason why the secondary
captures mass from the primary instead of the
reversed course, namely the primary captures
mass from the secondary, for after all the gases
are flowing around both components of these
contact Linaries. Therefore, the present writer
personallv inclines to regard Kuiper’s (1948)
interpretation of the depart .1e, from the mass-
luminosity relation of W Ursace Majoris stars still
worthy of our attention,

Because of the slowness of energy transfer in
the star, the loss of mass at the surface will change



104 PUBLICATIONS OF GSFC, 1964: 1. SPACE SCIENCES

the internal structure and the luminosity only
slowly (on the Kelvin time scale as we have said)
Thus, we arrive as with Krat (1957) at the con-
clusion that the star evolves under the conditions
of a constan* luminosity and decreasing mass.
Using a simple model Krat has shown that the
process of mass ejection under these conditions
will be a self-accelerating process. Hence, he
went on to suggest that the ejection veloeity will
increase.  In this way he has tried to understand
the high velocities of ejected ma‘*ter from the
Wolf-Rayet stars  According to him “the evolu-
tion of massive stars proceeds from the stage of
stable hot supergiants through the stage of Wolf-
Rayet stars and red giants to the main sequence
(thus approaching solar-type stars)” as a result
of mass loss. It appears that Krat's view may
have everstretched the idea of mass loss. How-
ever, he is not alone in putting the Wolf-Rayet
stars before the main sequence (c.g., Sahade
1958).

Among the many interesting views cobcerning
the evolution of close binary stars one that is
appealing is about mass exchange between two
components and the consequence as regards their
evolution, proposed independently by Crawford
(1955) and by Kopal (1955) for the Algol-type
binaries. Consider in a detached close binary
two components of diuerent masses. Since the
luminosity is propertional to about 4th power of
the mass (Russell and Moore 1940), the more
massive one evolves faster and consequently
reaches the stage of hydrogen-exhaustion in the
central core earlier than its companion,  Accord-
ing to the current understanding of stellar evolu-
tion, onee the hydrogen has been exhausted in the
central core, its envelope expands. Eventually,
it will reach the S surface.  Mass that fows out
from the expanding component at near the point
Ly beeause of the contract condition will be col-
lected at least partly by the other component.  In
this way the more massive component loses while
the less massive one gains mass.  Aecording to
Crawford this process can proceed until the origi-
nally more massive component becomes the less
massive of the two.  In this way, he explains. why
in the Algol-type binaries it is the less massive
component that now fills up one lobe of the S,
surface while the more massive component is small
and stable,

While this is an appealing idea there remain
some difficulties in applying it to the Algol-type
binaries as was initially suggested »y Crawford
and Kopal. Let us first consider the difficulty
raised by Struve and Huang (1938). If M, and
M, are respectively the present masses of the pri-
mary and secondary component and if in their
evolution, mass of an amount AM huas been trans-
ferred from the secondary to the primary and mass
of an amount 81! has been dissipated into outer
space by the secondary, the following inequality
can he easily established from the condition that
the initial mass of the secondary must be greater
than that of the primary:

20M+-sM>M - M, (8.1

Now the primary of the Algol-type binarics is
vsually a normal main-sequence star of spectral
tv+ A and may be assigned a mass of M,=3Me.
1.. sume cases, M, has been found to be 0.2M¢
or less (Sahade 1945, 1949). if we assume
M.;=0.2Mys, we find from the inequality (8.1)
that AM >1.4Me if all mass dissipated by the
secondary has been collected by the primary and
AM=56M>14,/10Mc if equal amounts are col-
lected by the primary and escaped to outer space.
Thus, cight-tenths to nine-tenths of the initial
mass of the secondary must have beer lost. If
we remember that when the envelope of a star
expands during its evolution after the main se-
quence the central core of more than one-tenth of
the total mass of the star contraets, it is hard to
see a star to lose eight-tenths to nine-tenths of its
mass by the mechanism described above.
Indeed Kopal (1959) has finally rescinded this
interpretation.  In addition to the mass consid-
eration, he has also called attention to the fact
that there is a complete lack of binaries whose
more massive component fills up the Ic’ * of S,
surface. However, the present writer does nct
regard this as a serious difficulty because the Kel-
vin time scale is short and the chance of discovery
is small (Morton 1960). Kopal has further
pointed out that there is not enough energy to lift
the mass from the hydrogen-depleted central core
of the secondary to the level of the primary sur-
face, if more than eight-tenths of the total mnass
is to be transported. Therefore, his second objec-
tion arises from the difficulty of too much mass to
be transferred which was discussed before. Kopal
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has not provided a new explanation for the A gol-
type binaries. However, he presumes on the
observational ground that the less massive second-
aries in these systems for some unknown reason
begin to expand at a ceriain stage of their evolu-
tion before the more massive primaries will do so.

From these considerations this idea of mass
transfer between two components does not appeuar
promising for the interpretation of the Algol-type
binaries. On the other hand, the mechonism is a
plausible one because, as we have seen in 3.5, it
is a necessary consequence of the slow mode of
mass ejection. Indeed, we now have reasons to
believe that it may be working in 8 Lyrae (Huang
1963a).

Thus far we have discussed only evolution of
component stars in close binaries. There remains
the questi n of evolution of the binary system it-
self. One can easily see that the two problems
are closely related. Theoretically we cannot
attack the problem of evolution of the binary sys-
tem without first understanding evolution of its
component stars. The difficulty encountered in
the latter makes a theoretical investigation of the
former impractical. Observaticnally, data are
too scanty to lead us to any definite and plausible
scheme of binary evolution. Struve (1950) once
made an interesting suggestion along this line
and Sahade /1960b) has recently rediscussed some
of Struve’s original ideas of deriving W Ursae
Majoris stars from early-type (B or A) systems.

Another fascinating problem cunnected with
close binaries concerns the nature of various pecu-
liar objects in the galaxy. Struve often expressed
the view that Wolf-Rayet stars, symbiotic stars,
and many other peculiar objects may all be bi-
naries and moreover derive their peculiarities from
being binaries. As a result of recent investiga-
tions by Abt (1961) the metallic line stars may
now be added to the list of peculiar objects which
appear to exist only in binaries. Although
Struve’s suggestions hav. not been accepted by
all astrophysicists, they have inspired many to
look at the problem. After the discovery of the
binary nature of Nova DQ Hercules (1934) by
Walker (1954, 1956), the question has again been
raised (Struve 1955) as te whether the novae and
nova-like cbjects are always components of close
binaries. This question has led to many interest-
ing studies abou: the relat.onshir between these

explodin 1 stars and binaries (Crawford and Kraft
1956; Huang 1956; Kraft 1962, 1964; Schatzman
1958). A review of extensive works in this field
is beyond the scope of the present article.

Finally T would like to express my sincere
thanks to Mr. Clarence Wade, Jv. for performing
on the IBM "94 computer some calculations used
in this paper.
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