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DYNAMICS AND EVOLUTION OF CLOSE

BINARY SYSTEMS

N66 379#7

1. INTRODUCTION Obviously this assumption is far f_om being

Since the discovery of the periodicity of the true. Indeed, the pre&ction based (t_ this as-
change in light of Algol (_ Persei) in 1782 by John sumption fails to agree completely with the
Goodricke in England and his correct interpreta- observed light curve. Hence, the deviation of
tion for the variability of light of this star as due the observed results from the predicted ones opens
to the "interpositions of a large body revolving up a way to improve the dynamical model of close q
around Algol," the study of light variation to- binaries. Thus, the component stars may not be
gether with the accompanying variation in radial regarded as point masses and their shape not
velocity, known respectively as the light curve and spherical. Also, other body or bodies than the
the (radial) velocity curve, has provided us with two components themselves may be present in the
the sole means for the empirical study of close system. Such refined treatments are given in the
binary system. On the other hand, the close later _ections.
binary system can also be understood theoretically Whether these complications can all be deter-
from Newtonian mechanics. Thus, our function mined unambiguously from the photometric and
is to reconcile the observational results in the form spectroscopic obsoxvation with the aide of dy-

and light and velocity curve with the prediction namical principles is not known at present. Is
based on the dynamical principles and thereby to the empirical information--when conditioned by
derive 9 consistent picture of the close binary sys- Newtonian mechanics and other laws of physics_
tem. Indeed, the history of our stud)' of close comprehensive enough so that a unique deter-
binaries shows clearly that, like any field in sci- ruination of the geometrical configuration and
ence where theories and experiments mutually physical state of the system can be performed at
help to make prog_ss, observations of light and least in principle? This fundamental question
veloci*oy curves and calculations based on dy- has, to my knowledge, never been asked before,
namics act as two facets of a single process of let alone answered. Undeniably this is a ques-
successive approximations that lead finally to the tion of high mathematical complexity. What-
present understanding of the nature of close bi- ever the answer may be to this question, we are
naries. Thus, the genel_! form of the light and safe in predicting that such a unique determina-
velocity curve suggests as a first approximation tion is unlikely in practice because it is too diiti-
that dynamically the two components behave like cult to disentangle one effect from many others in
two mass points and geometrically look like two a single light and velocity curve, which has a
spheres. .&ny analysis of light curves and veloc- limited accuracy imposed by measuring means.
ity curves that is based on this assumption which Such a situation which is common to all branches
we call the gross, analysis will be discussed in §2 of observa_,ional science in general is particularly
and is included here for those who are not closely t ,ident in astrophysics.
associated with observational astronomy. If we cannot treat the various deviations from

the binary problem in an overall manner, we may*CIoddsrd Space Flight Center and Catholic Univemity, Wsshington,
D.c. nevertheless study them individually and compare
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the results of each individual effect with observa- For definiteness we shall regard rather arbi-
tion. In this way. we can still test the consist- trarily all binaries with separations less than 10
ency between observation and theory but the times the mean radius of the two component stars
uniqueness of interpretation is not warranted by as close. Thus, the close binaries can be further

this kind of approach. By necessity it is this classified into three c.._egories: (1) detached sys-
kind of npproach which astrophysicists hereto- terns, (2) semi-contact systems and (3) contact
fore have cultivated in their study of close-binary systems as we shall see in §5.
systems and which we will follow in our treatment.

Next we consider the Roche model and the 2. OBSERVATIONAL BACKGROUND
related problem of mass overflow from the stellar
surface. The mass motion resulting from the In this section we assume that the binary mo-

overflow is then discussed according to different tion may be treated as a two-body problem, i.e.
apploaches. In the last two sections the origin each component acts as a mass point and that the
and evolution of close binary stars are examined circular disk of each star follows a gixen In" of
in the light of what we have learned from this limb-dar_-:ening. Under these simplifying as-
article as well as from the present understanding sumptions, the physical state of the two compo-
of evolution of single stars, nent stars is specified by their masses (M,, M_),

Finally, we would like to add that the main pur- their r_ _lii (R,, R2) and their luminosities (L,, L_). ,

pose of the present article is to help understand Altogether there are six independent parameters I
the physical nature of close binary systems. It is to be determined for component stars themselves.
intended to serve as an introduet'on to the },_ :h. bl accordance with convention, we have denoted
physics of close binaries. Con:,equeatly, theo- here by subscript 1 the quantity that is related to
reticai studies of a pure mathematical nature the primary comp,ment and by subscript 2 that
which cannot be matched in the foreseeable iuture related to the secondary component. Needless
with observation will not be discus:,ed here. Simi- to say, the princip_d .'omponent is the brighter one
larly observational results _f individual close bi- of the two but is no.t necessarily the more massive
naries are mentioned only wh,z_l they have some one, although in ._:,:t cases the brighter one is
bearing either on general prim.ipJ¢,.__r on the corn- also the more m_:.:,,, one. From the radii and

mon nature of the binary st',.'_ Jecause of a luminosities, the eff_.,:ive temperatures (T,, '/2)
limitation of space we shalJ not b(. able to review or eqt'ivalently tb,, -,,rface brightness (J,, J_) ('an
here many physical problems su,,h as models of be readily t _ml,. _,,!
peculiar systems, physical process_._in the gaseous The state of _, !,_':_ry can be specified under the
streams, atmospheric eclipses, etc. a.__ <,11as many assumpti_,l_ i::..., ::_:tdeby the period, P, the eccen-
technical problems such as the distortions of _'e- tricltv, ¢..,[_',. ,:._ai-major axis, a, of the relative
locity and light curves due to various caubes _m,l orbit, th,. i: ,4,mtion i of the orbital plane, and the
the methods of cormctiorJ, accurate determination longitud,, ui the periastron _ as defined by the
of the pl)solute dimension of eclipsing systems, angular distance of the periastron from the ascend-

_'or surveys and observations the reader is ing node measured in the direction of orbital
referred to Kukarkin and Pamnago's (1963) motion, and T the time of periastron passage.
article. Altogether there are also six independent param-

While close binaries are not necessarily under- eters to be determined for the binary itself. Ail
going eclipse as seen by us, we are interested in these parameters are often called the orbital
only those that do, because the light variation elements.

caused by eclipse reveals much information about In the course of analysis of the velocity curve,
the nature of the system. It is true that the mere it happens that we can also determine the radial

fact of undergoing _4ipse dc,es not necessarily velocity--called the "rvelocity--of the entire bi-
warrant a close binary, but its chance of being one nary system. Although the _*velocity is not con-
is very high. For this mason a theoretical study neeted with the internal properties of a binary
of close binaries is intimately associated with the system, it is nevertheless regarded also as an
observational investigation of eclipsing variables, orbital element by convention.
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In most cases of close binaries the two compo- than the other. The intrinsic difficulty of (lvter-
_- nents move around each other in circular orbits, mination of orL,it_,l elements however, arises in

This gives e=o which is sometimes assumed in the the first place from the various effects which are
analysis of light curves of eclipsing binaries. Since not included in our simplifying assumptions, anti

2 the ,)ecias'_ron loses its meaning when e=o, the in the second place from the imperfection of tile

binary motion is then fixed by the time of the observed light curv-..
deeper minimum of the light cu._'e instead oi the As has been emphasized by Irwin (1962), only
time of periastron passage, in the most favorable cases and with the best

The determination of the orbital elements from observations can we determine xl and x2 from the

the light curve--a process perfected by H.N. aqalysi:_ of the light curve. In general, these two
Russell, J. E. Merrill, etc.--has been discussed in parameters c .n be assigned beforehand in accord.-
detail elsewhereinthisseries (Irwin 1962). While ance with t,le prediction by theory of stellar
the procedur( :tself is a very tedious one, the un- atmo._pheres (e.g. Chandrasekhar 1950).
derlying principle and what can be derived from In any case the light curve which gives only the
it can be simply stated. First the law of limb- sizes of the stars in terms of their separation does
darkening is assumed to be a priori given for each no_ reveal the complete information about tl,_-

component and is usually written as nature of the binary system. In order to derive
the dimension of the system in an absolute meas-

J=J_(1-xTx cos 0) (2.1) ure we depend upon the velocity curve. Refer-
ences t_ the analysis of velocity curves may be

where Jo is the surface brightness at the center of found for example in articles by Struve and Huang
the disk, x is the coefficient of limb-darkening, (1958), by Petrie (1962) and by others.
and Ois the angle between the line of sight and the For some binaries spectra of both ' .)mponents
stellar radius vector to the point in question, may be seen on a spectrogram but for others only
Needless to say, both J_ and x vary with the wave- one is visible, depending upon the relative mag-
lengths in which the light curve is obtained, nitude between the components and their colors

The period of the bina_ can be obtained very (Hynek 1951). If both components are visible,
accurately from the long observation of the times two velocity curves --one from each component
of light minimum of the eclipsing binary. Then star--give MI sin '_i, M_ sin a i, a_ sin _, a2 sin i,
t_,e shape of the light curve, obtained by observa- where a_ and a_ are the _mi-major axes of the
tions and all reduced to one sinl_le cycle, depends orbit of the two compon_,nts in the rest frame of
upon the following elements, e, _0,Rt/a, R_/a, i, reference, i.e.,

LJ(LI+La), zl and x_. Conversely the observed a=a,+a2 (2.2)
light curve determines these orbital elements. If
the binary satisfies the simplifying assumptions The velocity curve also gives e cos _, e sin _, time
we have made and 'he light curve is determined of periastron passage, T, and the 7 velocity.
in all phases, such a determination is unique in Since the factor, sin i, is persistently associated
most cases and can be performed in practice, al- with the measured radial velocity, we cannot get
though it is quite complicated when e deviates rid of it from the spectroscopic results as we have
appreciably from zero and i trom _r/2. Usually seen. Here i determined from the light curve
only the value of e cos _ is determined with a high supplies the missing imormation. Hence, the
accuracy from the intervals of the minima in such spectroscopic results combined with the photo-
cases. Also, under some circumstances, eonsid- metric data determine the properties of the binary
_rable ranges of various orbital elements lead, system completel:_, if the two component stars
within the accuracy of observation, to the identi- obey our simplified assumption.
cal light curve. If the spectrum of only one component is visi-

For example, sometimes one cannot even tell ble, we ear, ,_',termine e cos _, e sin., T, and 'v
from the light curve whether the eclipse is total or without difficulty just as in the double-lined spec-
annular, consequently we cannot decide which one troseopic binary. However, concerning the mass
of the two component stars has a lather radius and d;mension of the system, we can aow obtain
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from the velocity curve (of the primary compo- 3. DYNAMICAL CONSIDERATIONS OF THE
nent alone) only the quantity, DEVIATION FROM THE TWO-BODY PROBLEM tThere are several reasons for which the motion

M 32 sin3i of component stars cannot be regarded as a prob- ._

f,(M)=(MiTM2).z, (2.3) lem of two bodies. The component stars in a
close pail" obviously cannot have a spherical sym-

knowu as the mass function and a_ sin i. When merry in density distribution. The mass of each

the results of analysis of both the light curve and star may not be constant. A third body or bodies
the velocity curve are combined, M_,/(M, TM_) 2 in the form of stars, planets or resisting medium :
and at are obtained, h, such a case we cannot composed of gases, dust, and larger particles may
determine M_ aud M2 separately. The missing be present in the binary sys_m. All these effects
link is the mass ratio expressed by either disturb the orbit of the binary star from what

would be expected from Kepler's law of binary
motion.

M: M2
a=M---_ or U=M_+M _. (2.4) If we regard Kepler's law as the zeroth order

approximation to the orbital motion of close bi-
naries, each of those effects mentioned above pro-

Thus for an eclipsing binary showing only the duces a corresponding perturbation which may be
spectrum of one component,, other means must be computed in principle to high order of approxima-

sought in order to determine the mass ratio. The tion. It is self-evident that siarting at the second
means, if available, v.tries from one case to an- order approximation, cross terms each arising from
other and has no general rule. Basically it con- two effects will appear in the final result. While
sists of an estimate from various physical argu- it is interesting to investigate the effect of each
menta any one of the foUowing parameters m_, cause to a high degree of approximation, it is only
m.,, a, a, R_, and R2 since only one additional pa- the result of the first order approximation that the
rametcr i:; needed to specify completely a single- astrophysicist has actually sought in most cases

spectrum eclipsing binary. The fact that a because his main purpose is to identify among
knowledge of either lf_ or R_ can determine the various perturbing factors the one that is dotal-
masses of two components and their mean sepa-, nant in any given binary. Necdless to say, the
ration may tm seen if we remember that R_/a and result of higher order approximation for a single
R2,/,_ can be empirically obtained from the light effect is often useful but ue have to be very care-
curv,.' Th,s gives a from which we _tn calculate ful in applying its result quantitatively to the
M,+Mo. from the following well-known relation interpretation of observed phenomena because of

"J_e presence both of the cross terms just men-

(p)-" a._ tionedand of the first-order termdueto some2_r =G(Mj-4-M.,)' (2.5) effect which has not been considered.- In what, follows we shall discuss each of these

perturbing factors separately, emphasizing physi-
where (; is the gravitional constant. Conse- cal significance at the expense of mathematical
quently M_ and M2 may be separately determined, completeness.

In this way the physical and dynamical state
of many an eclipsing binary has been painstak- 3.1. Departure of Component Stars from the
ingly deri'¢ed l)y investigators in the past few Spherical Symmetry
decades. Those binaries with apparent photo- Because of the rotational and tidal distortions
graphic magnitudes brighter than 8.5 at maxi- the component star in a close binary system can

mum have been compiled anti studied by Plaut never be treated as having a spherical symmetry
(1950, 1953). Odwr catalogues of the elements in its density distribution. Thus, the mutual
of eclipsing binary sysWms have been provided attractive force between the twe stars can be
recently by Kopal and Shaplcy (1956) anti Wood resolved into two components: one is the dotal-
(1963). nant force resulting from the mutual attraction

|
i
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of two point masses Mt and Ms and the other is field (negative values throughout) equal to
the perturbing force arising from the deviations GM../r2. At point P in the neighborhood of
from the spherical symmetry. Since the perturb- $1, 1/r_ can be expanded in a series. Thus,

ing force is very small compared with the domi- _,\,_)nant force, the orbital motion should follow GM2=GM_. _ _ P, (cos .9) (3.1)
closely, with only a slight deviation, to what is r_ r ,=,_

predicted in the two-body problem. In other where P, is the Legen, lre coefficient of order n and
words, the component star may be approximated, 8 represents the angle PStS_. If the separation
in each short time interval, as exercising Kep- between St and $2 be fixed, the first term is a
lerian motion. Because or the small perturbing constant of no consequence while the second term

force it is obviou,_"that the orbits defined by two produces an acceleration GM:/r _-equal in magni-
short time-intervals which are themselves sepa- tude for all elements of the primary along StS:.
rated by a long time-interval, cannot be i& ntical. This acceleration is simply the orbital acceleration
Thus, we may describe the motion as elliptical of the primary as a whole. The remaining terms
but the orbital ellipse changes with time. Obvi-

ously the rate of change for each of the orbital vt_GM_.,_2 r_ _elements depends upon the perturbing force and r = r P_ (cos 0) (3.2)

indeed can be expressed in terms of it. The math- constitute the tidal potential and produce tidal
ematical procedure underlying this physical con- distortion in the primary.
ception is the method of variation of parameters In an elliptical orbit, r is actually a function of
which is often used to study the motion of a planet the time. Thus, a rigorous treatment would be
under the dominant force of the sun and the per- very complicated. The complications have been
turbing force of other planets. Its application to described by Sterne (1939a). However, as Cowl-
the study of close binaries was due to Russell ing (1938)pointed out, the time of adjustment ,¢
(1928) whose calculation was later improved by " "
Sterne (1939 a,b,c). Also, Cowling (1938)s_udied a star to an external gravitational field is of " .e

order cf the period of free adiabatic oscillations ,Ji
this problem by an entirely different approach, the star, which is much smaller than the orbital
The presentation adopted in the following discus-

period of its companion around it. Therefore,
sion follows that given by Sterne (1939 a). it appears probable that the form of the star at

The calculation consists of three steps: (1) to
find the disturbing potential field, at the location any time would approach a state very close to

equilibrium form in which the distortion is in-
of the primary due to the undistorted secondary stantaneously adjusted to the external gravita-

component and due to the primary's own axial tional field given by equation (3.2). (Thus the
rotation, (2) to find both the deformation of the longest axis of both component star,,: is always
primary due to the disturbing potential obtained
in the first step and the potential field at the loca- along the line joining the centers of the two
tion of the secondary due to the deformed primary components.)Now the stars will l)e assumed to rotate with
and (3) to find the change of orbital elements be-

uniform an_;ular velocities oJ_and o_:about axes
cause of the potential field obtained in the second

normal to the orbital plane. Such an assumption

step. Since the potential field derived in the first appears to be consistent with observations in
step distorts the primary and the distorted pri- general. Rotation of star introduces a disturb-
mary in turn produces in the second step a dis- ing potential which arises from the centrifugal
turbing potential to effect the binary motion, the force. Apart from a term which is symmetric
first two steps may be regarded as a process of with respect to the center of mass of the primary
successive approximation, and consequently does not distort the star from a

Let St and S_ be respectively the centers of spherical configuration, the disturbing potential,
mass of the primary and the secondary which are V,,

at a distance, r, apart. If rt and r_ are respec- _-_ _" (cos 0') (3.3)tively the distances of any point from St and S_, V, = -_,_o_r2
the undistorted secondary gives rise to a potential where 0' is the co-latitude.
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Therefore, the total disturbing potential, Vd where p is the pressure. It follows from equation
imposed on the primary is (3.8) that both p and p must be functions of

alone. In other wcds _I,=constant over any
V_= V,A- V, (3.4) surface of equal density and equal pressure in the

primary. Furthermore, since p is a function of
and can be expanded in a series of terms of the _ alone, _I,must be also a function _ alone, i.e.,
form independent of 8 and _.

c,.mrnp,'_(8,q_) (3.5) Now U at any point p inside the primary con-
sists of two parts, arising respectively from the

where (8,_) are polar coordinates taken with
mass (I) inside the spherical surface passing

respect to $1, P,_ is a tesseral surface function of through p. (exterior potential) and (2) outside
(8, _) and c,.m is a constant of expa_lsion. This the spherical surtace (interior potential). Since
-ompl_.tes the first step of calculation.

the equal-density surfaces are given by equation
The prob!em of deformation of a sphere which (3.6), both parts can be expressed in terms of y m.

cannot maintain a shearing stress, and con_e- Actually when we carry out the lengthy calcula-
quently of the potential arising from the deformed tion, we will find that each part of U can be ex-
body, as the result of an imposed disturbing func- pressed as a summation of terms involving Y,m
tion V_ has been studied by Clairaut, Legendre, and other factors (like p, _) which do not contain
Laplace and others. A summary of their works

_he indices n and m (i.e., independent of 8 and _),
can be found in Tisserand (1891). Here, we shall

_), if we assume that the distortion given by Y_'s
only outline the general idea of the approach to

is small so that only first order terms of them are
the problem, omitting detailed calculatiol:s.

retained in the calculation. We have already
The equation of the surface of equal dem'ity in

mentioned that Vd can be expressed as a series
the distorted primary can be written as

whose typical term is given by (3.5). Hence, we

rl=_(l+ _ y m), (3.6) can write down • as a sum of three series, two
,. _, involving Y_ and the other involving P,_. All

terms are indexed by n and m (i.e., indicating
where _ is a parameter (the mean radius) char-

their 0 and ¢ dependence). The condition that

acto-izing the surface in question. Thus, the _I, is independent of 8 and _ makes it necessary
density p of the primary is a function of _ alone-- that in the expression of ,I, the terms associated
a fact that makes _ well sui:ed to replace rt as the with each pair of indices n and m must vanish
independent variable in the present problem, identically. In this way we derive a differential
Thus, the value of the independent variable _ at

equation for each Y_. (It is a differential equa-
the stellar surface is R_, the mean radius of the tion because of the transformation from r, to _ as
prir.mry itself. The Y_='s in equation (3.6) are given by equation (3.6,) If we define
tesseral surface functions with respect to 0 and

and are also functions of _. Thus the deforma- =[I:'_av"I._Z_F"'_-
tion of the primary will be completely determined T/, \Y_/ O_: (3.9)
if we can find the _-dependence of ]'__ and know
the p-(lependence of _. and

Thethetotal gravitational potential ,I, at any point p_ 3 f_ p_d ?;. (3.10)in primary is the sum of the gravitational po- =_o J
tential, I r, due to the deformed primary itself and
the imposed disturbing potential, va, i.e., which is simply the mean density interior to $, we

can transform the differential equation of y m

• = UTVd (3.7) into the following form:

fl_"+_,(_ 1)-n(n+l)+O°(,7,+l)=O. (3.11)
It can be shown that the condition of hydrostatic _-_- - p_,
equilibrium leads to a total differential equation

One reason that we introduce ,1_instead of deal-

dp=M_I , (3.8) ing directly with Y," is to eliminate the (0, _)

I
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dependence of Y._ which is simply p,_. Hence computed for the primary to which the second
' equation (3.11) together with p_ determines corn- subscript is _ is referred to.

pletely the deformation of the primary if we know The acceleration of the secondary due to U2
the values of Y,'_ and y_ at any one point inside directed towards S_ can be obtained by setting
the star. This can be easily obtained for the r_=r, 0=o and 0'=_'/2 in-aU2/_,r, and is given

point i"= 0. There is no distortion at the central by

point. Hence Y,"(O)=O. In order to derive R_ _6GM_A+_ )
_(0) we assume that p(0) has a finite value, r-Tk'' _,,__+"

(3.17)

Setting _'= 0 in equation (3.11) we obtain
If we now regard r as the independent variable,

_,(0) =71-2. (3.12) the acceleration given by equation (3.17) corre-
sponds to a potential function,

This completes the determination of deformation (GM_± o_
of the primary. _.. = R_k_,_\--_-7.-_r._] (3.18)

In the process of determining the deformation
we have already derived the potential U that the If the relative orbit is considered, (1 +m.,/mj))(_
deformed primary produces at the external points will be identical to the disturbing function R of

as a series of Y_. Corresponding to the (n, m) perturbation theory in celestial mechanics. Since
component of the distorting potential given by the perturbing force is confined to the orbital
(3.5), the deformed primary produces a compo- plane which coincides with the equatorial planes
nent U,. _ to the potential of both components, the change in _ (e.g., Brower

and Clemence !961) is given by
][_2n+l

n+l,,(R1) ._lA__p_c_ _) (3.13) [ 1--e ]_1 ORUn, m =Cn,ra" n_}_yn(R1 ) r_+l -" _' do_ 2 1
-dr= [ / (3.19)G(M--_M_.)a_] e Oe

at external points. Here n_(R,) is the value of
_, at _=R, (i.e., at the surface). Since _,(R,) is In order to derive OR/Oe we have to expand R
obtained by integrating equation (3.11) which in terms of e. Since we are interested in the
involves pip,,, the (n,m)component of the exterior secular motion of the apsides, only non-periodic

potential depends upon the structure of the star. terms are needed in the evaluation. A detailed
The result contained in equation (3.13) can now calculation by Sterne (1939a) thus derives the

secular motion arising from the distortion of order
be applied to the present case of tidal and rota-
tional disturbance. The terms of the indices n = 2 of the primary as

5 1 2 -]

n=2(m=o) in the disturbing potential v_-v,-+-vt R_(M_+M_ r _GM_ o_ (3.20)
given by equations (3.2)and (3.3)are k2, 1_ _ ] Llo-_-'f2(e) +_o2(e) J

vd=GM2r_p2(cos 1 20)-_r_o_,p2(cos 0'). (3.14) wheref_(e) and 0,(e) are series, convergent for anyr_
value of e less than inity,

Since the result given by (3.13) is independent of 13
the choice of coordinate systems, the primary f2(e)=lTze_+..., o_(e)=lT2e +""
deformed by Vf of equation (3.14) produces an
external gravitational potential field Bo_h f_(e) and 0_(e) can also be expressed in closed

exp_ssioi_s (Sterne 1939a) and have been corn-

0') ]:R[. [GM_ . --_p_(cos (3.15) puted by Plavec (1960).
U_ffi2_,_L-r--i-p_(cos 0) o ' Similarly, the secondary will be distorted by its

own rotation and by the attraction of the primary.
where The perturbation produced by the distorted sec-

3-_(R_) ondary on the primary can be easily obtained, be-
k_, _=212+_(R_)] (3.16) cause of symmetry, by interchanging M_ and M_
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as well as replacing respectively Rt and k2._, by R2 TABLE1.--Relation betweenthe Apsidal Motion Constant
and k2,2, in (3.20). Thus the resultant motion of andotherParametersthatRelate,to the Density Distribution

in the PolytropicGaseousSphere
the apsides as compared with the mean orbital
motion is

k_ pc/P I/(MR _)

r . J,,,,M _ WlP--i= k2,,\__/_ l°M? "(e)-I-G-_lg2(e) 0 .75000000 1 4

(_)[ MM--_,f' s,, ] 1.0 .25990728 3.28987 26138 t_5 a w_ ,e_ , 1.5 14327923 5. 99071 20502"-t-kz,2 15 (e)-t-_--_292t _ (3.21) •. 2. 0 .073938.39 11. 40254 15704
2. 5 .03485234 23.40646 11203

where p and p' are the orbital and apsidal periods 3. 0 .01444298 54. 1825 07583
-c_pe(:tively. 3. 25 .00869160 88. 153 ..........

If the orbital motion and axial rotation of both 3.5 .00491907 152.884 .04558
4.0 .00119488 622.408 .02358

components in a close binary are synchronized 4. 5 .00031609 6189.47 ..........
(Swings 1936), equation (3.21) reduces to 5 0 _ o

P,= k2,, [15f2(e)+g2(e)] +g2(e)
given in the form of I/MR _) in the table where I

[#_\_(rd. ) denotes the moment of inertia follows Motz's

+k_,_t?)t_[15f2(c)Tg2(e)]Tg2(c)._ (3.22) (1952) calculation. According to the latter.
H. N. Russell has suggested that the apsidal mo-

The contributions arising from the third and tion constant k2 might depend in a simple way on
fourth order harmonic (tidal) distortion can be the radius of gyration of a star. Indeed, in the '
similarly obtained. The results can be exprezsed case of polytropic gaseous spheres and main se-
in terms of ks._ and k4,t (i= 1,2) which are func- quence stellar models, Motz (1952) has found if
tions of _3(R_) and _(R_) respectively in a similar logk2 is plotted against log[I/(MR2)], all points do
way as k2._being a function of 712(R_.). fall on a straight line. However, he has also

The vahws of k's can be readily found for any pointed out that the giant models do not follow
model by integrating (3.11). Thus, values of k2 this linear relationship.
h,',vc been tal)ulated for a series of models by The secular variation of e and a can be simi-
Russell (1928). For homogeneous stars, k2 has larly investigated. But it is hardly necessary to
a value 3/-1; for completely concentrated stars all follow the calculation through. The variation
the k's arc zero. In the case of certain polytropic must vanish because the interaction we are con-

models, the k,'s have been obtained by Chan- sidering does not change the total dynamical
drasckhar (1933) and later more extensively by energy and the total angular momentum of the
Brooker and Olin (1955) for _=2 to _1=7. The orbital motion.

k's for other stellar models have been obtained by The assumption that the axes of rotation of
Kellar (1948), by Motz (1941, 1950, 1953), by both component stars are perpendicular to the
Pike (1955), by Hiirm and Rogcnson (1955), and orbital plane is likely true in most close binaries.
by Kushv,aha (1957). However, if either or both axes of rotation make

Table l gives the k_ values for some polytropic a considerable angle with the normal of the orbital
gaseous spheres from Brooker and Olle's paper, plane, the motion of stars in a close binary would
It ilhistrates its relation to two other parameters be greatly complicated, because we then would
that also depend upon the density distribution in have to consider, apart from the motion in the
the sphere,. The two parameters are the ratio of orbital plane, the motion of the orbital plane it-
the central density p_ to the mean density _ and self and the motion of the equatorial planes of
the radius of gyration of the sphere. The values both components. Brouwer (1946) studied the
p¢/'_ given in Table 1 are taken from Chandra- problem by examining the motion of two rigid
sekhar's (1939) hook. The radius of gyration spheroids. His treatment was followed by Kopal
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:_ (1959) who has i:,cluded the revolution of the usually consists of a close pair accompanied by a
;,_ tidal bulge in his considerations, third companion which is at a relatively large dis-
_ Thus, if two components have similar distribu- tance from the close pair. In these cases, the

tions of density" so as to make corresponding k's orbit of the close pair and that of the distant com-

_: for the two components equal, we may express in panion are well defined and perturbation theories
_ general the ratio of periods in the following form developed for the motion of the moon can be ap-

(Sterne 1939b). plied directly because the perturbation of the
: earth-moon system i)y the sun is, in many re-
"_ P=a2k2+c_3k3+_k4-}-... (3.23) spects, similar to the perturbation of the close
'* pair by the distant companion in a triple system.

_r

where a's can be computed from the orbital ele- Thus, Slavenas (1927), Lyttleton (1934), Brown
ments alone, while k's depend upon the stellar (1936, 1937) and Martynov (1948) have respec-

._ model. For each one-parameter family of stellar tively applied different hmar theories to the stellar
models, such as the polytropic family, the ob- case. In principle, they all derive the change of

.!._ served value of p/p' determines uniquely the pa- orbital elements from the disturbing function, but
'_ r_meter, such as the polytropic index. Therefore, their detailed calculations arc so involved that it

it is frequent practice to express the observed is impractical to be given in this short article. It
,: motion of apsides in terms of the equivalent index will suffice to say that the elements of the close
:_ of polytrope for the component stars. If, how- orbits that show secular changes are the line of

*: ever, there are many plausible families of stellar apsides, the line of nodes and the mean longitude.
models, the apsidal motion does not give any in- If the p and p' are respectively the period of close
formation as to which is the physically correct binary and the orbital motion of the third body

i family. Hence, what the apsidal motion can pro- respectively, the periods of revolution of the
vide for the astrophysicist is only a consistency apsidal and nodal lines p" are given by
check of the computed model.

A large number of papers have been published p,, _.,(p,)2
on the observed motion of apsides of various close _-- \-_-/ (3.24)
binaries. The reader may find the references to

these papers in several I.A.U. reports on eclipsing in order of magnitude.
binaries by Kopal (1954, 1957), by O'Connell Actually, the discovery of triple systems does
(1960, 1962) and by Merrill (1964). Also, the not depend upon the results of these calculations.
catalogues of orbital elements of binaries provided Observationally it is the change in the -),velocity
by Kopal and Shapley (1956)and by Wood (1963) obtained from spectroscopic data as well as the
give the observed apsidal motion where ever avail- change in the period obtained mainly from photo-
able. The observed results of apsidal motion of metric data that leads to the identification of the

some binaries have been analyzed by Luyten, third body.
Struve, and Morgan (1939), by Sterne (1939b) Since the semi-major axis of the relative orbit
and by Schwarzschild (1958). of the close pair suffers neither secular nor long-

periodic perturbations by the third body, its
3.2 The PerturbationCaused by a Third Body period will remain constant. However, the ap-
In order to study the perturbation of the orbital parent period as observed between two successive

. elements of a close binary, caused by the presence light minima will not be strictly constant bet, 'lse
of a third body, we have to assume that all three of the motion of apsides and nodes. The va,'i,-
bodies behave like point masses. If the three tion arising from these ca(lses is small however,
bodies should move at distances of the same order since the periods of revolution of the apsidal and

of magnitude from one another, no orbital ele- nodal lines are very long, as one can see from
ments could be defined. Intuitively, such a state equation (3.24). The actual observed variation
of motion is perhaps not stable. Indeed, few in the apparent period is due to the continuous
such systems have be , found observationally change-in distance of the close pair from the
What we have actually obser',:ed of triple systems observer. Since the velocity of light is finite, the
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change in distance means also a variation in the nearly two hundred years. Eggen (1948) has
time-interval between two successive minima, shown that the system is composed of four stars,

Consider a rectangular coordinate system with namely the eclipsing pair themselves, a third corn-
its origin, 0, at the center of mass of the triple ponent causing wriggles in the light-time curve
system and with its Z-axis coinciding with the line with an orbital period of 1.873 years and a fourth

of sight. The distance of the center of mass S is of compunent causing the slow but dominant varia-
the eclipsing pair from the XY plane is evidently tions in 0-C with an orbital period of 188.4 years.

This interesting system is continuously being
r sin i sin (vToJ), studied with the purpose to make a better deter-

where r represents the radius vector from 0 to mination of the periods.
any point on the orbit of $1_, i, the angle of in- The determination of the (light-time) orbit from
clination of this orbit to the celestial sphere, v the light-time curve, which has been discussed by
the true anomaly of $12, and _o the longitude of Woltjer (1922), Martynov (19_8), Irwin (1952,
the periastron as defined before. If the space 1959) and Kopal (1959) is very similar to one of
motion of the entire triple system produces a _, determining orbital elements from the velocity
velocity-denoted by _'o-in the z-direction, the curve. Indeed, the two problems are basically
distance z between the eclipsing system and the identical because if we differentiate (3.25) with
observer at any time becomes respect to t, we obtain the radial velocity of $12

in its col_"se of orbital revolution around 0. Thus,
z= Zo-i-'ro(t-to)+r sin i sin(v+o0), (3.25) the light-time curve of an eclipsing pair in a triple

where Zodenotes the initial value of z at time to system is equivalent in p;inciple to a velocity
of a light minimum of the eclipsing system. Thus, curve of the motion of the center of mas_, $1_, of
a term (z-z,)/c, where c is the velocity of light, the eclipsing pair around the center of mass, 0,
will be introduced into the ephemeris of the light of the entire system.
minima. Actually the velocity curve of S_2can be directly

Any apparent difference in time, arising purely determined from observation. Since the motion
from the light propagation, of some cosmic event of S_ may be regarded as constant during a few
is known in astronomy as the time equation or cycles of the orbital motion of the close pair, the
light-time. For example, there is the light-time _,-velocity determined from the velocity curve
for converting observed time on the earth to the during these few cycles of one or both components
heliocentric time, because the light carrying the of the close pair represents the radial motion of
lJews of the event does not reach the earth and S_. Thus, a velocity curve of S;2 may be ob-
the sun at the same time as the result of a differ- rained by plotting the -r-velocity of the close pair
ence in distance. This converting factor can be in different epochs. Therefore, we can derive all

computed from our knowledge of the earth's posi- those orbital elements that are derivable in any
tion with respect to the sun's. In the present single-lined spectroscopic binary. For example,
case, the light-time results from the orbital motion the component, with a period of 1.873 years in the
of the eclipsing pair around a third body or bodies. Algol system, mentioned previously, was first
Thus, the light-time in this case is the difference detected in this way by McLaughlin (1934).
(0-C) hetween the time of observed light mini- Both the presence of a thi:'d body and the tidal

mum an(', the computed time based on the con- and rotational distortions of component stars pro-
stancy of the period of the eclipsing pair. A light- duce the effect of apsidal motion. It would be
time curve can therefore be plotted which, like difficult to separate the causes of the observed
the velocity curve, yields information as regard_ moti_m, if there were no other observable criteria.
the nature of orbit on which the center of mP,ss, Fortunately, because the presence of the third
S:_, of the eclipsing pair move. body in a binary system can be independently

The light-time curve--a plot of 0-C against dete.:ted by the change in _,-velocity or by the
the number of eclipsing cycles--of the Algol sys- light equation, there will be little ambiguity in
tem has been extensively studied by many inves- interpreting the motion of apsides in a close bi-
tigators because its records can be traced back nary. Thus, if the central condensation of the
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star is to be studied, we can always choose those there exists a definite distribution function,
close binaries in which no third component is (W(F"_, -f_), which governs the probability that
detectable, forces of intensities F-_Iand _ respectively, will

act simultaneously on the two components of the

3.3 Perturbationby Galactic Objects binary and which can be obtained by Markoff's
method (Chandrasekhar 1944a). Thus, the dif-

A binary system is continually perturbed by ference,

the encounters with other objects in the galaxy, aF--_F--_-F-_2, (3.26)
As a result the energy is fed into the binary sys-

tem, thereby increasing the separation of its two represents the differential force which tends to
components. Ambarzumian (1937) has esti- accelerate the star "1" relative to the star "2."

mated the effectiveness of the tidal forces, due to The differential force may be resolved into two
the neighboring stars, in modifying the 'orbital components, a parallel component given by where
elements of a binary. He has used the two-body __, ___ ._
approximation of stellar encounters to evaluate AF, = (F_-F2).kI, (3.27)
the tidal effects of the nearby stars. As Chan-

drasekhar (1944b) has pointed out, "the essen- k_ is a unit vector parallel to the direction of F--_
tially characteristic features of the problem are and a perpendicular component. Since the per-
ignored if an attempt is made to evaluate the dif- pendicular componcn_ is of a random character,
ferential effects of the neighboring stars on the it produces no net effect during a time scale, r,
components of a binary along the conventional

long compared to the periods of the elementary
lines of treating stellar encounters as a series of fluctuations in F--_.Therefore, the average net in-
independent two-body problems."

crease in the velocity of the star "1" relative to
In view of some recent investigations it becomes the star "2" during r is given by

apparent that encounters with interstellar clouds

play an important role in modifying the peculiar hv_.'----_=AF, r. (3.28)
velocities of single stars (Spitzer and Schwarzs-

child 1951) and in feeding energy into a cluster If the orbitis c!reular, it follows from the defini-
(Spitzer 1958). On the same ground we may tion ol W(F_, F,.)that
expect that encounters of a binary with inter-
stellar clouds would increase the separation of the i- J-® --, --_

binary system. A rigorous treatment of the en- hv_, _ _ ®J (F_-F2)

counter of a bi:mry with another object belongs .k--_W(F'-_,F'--_)dF,'_dF---_.(3.29)
to the well-known problem of three bodies in celes-

tial mechanics and a complete solution is still The evaluation of this integral is very involved
lacking. A brief review of some recent investiga- and we can only refer the reader to the original
tions along this line, however, may be found in paper by Chand_asekhar (1944a and b). When
the book by Leimanis and Minorsky (1958). the separation between the two components,

In the meantime, a general statistical method i.e., a, is small compared with the average dis-
has been proposed by Chandrasekhar (1943, 1944a tance between stars, the result may be approxi-
and b) for solving many problems in stellar dy- mately written in a simple form as follows:
namics. The method first analyzes the nature of

the force acting on a star by the rest of the stellar 5v_.----_= 4_dTNMar, (3.30)
system and then by Markoff's process derives the
probability distribution of the force field, where M denotes a certain average mass for the

In the case of a binary systew, it is apparent field stars and N the number of stars per unit
that the forces exert-d by the neighboring stars volume.
on the two components differ by a certain amount Instead of the time of dissociation of a wide
because of their different positions in space. For binary system that Chandrasekhar is interested,
any given separation between the components we set ourselves to calculate the slow increase in

1966028656-090



78 PUBLICATIONS OF GSFC, 1964: I. SPACE SCIENCES

separation of a close binary due to galactic per- which gives numerically
turbation.

Since _1,_ is the increase in the relative velocity Aa-- = 2.03 X 10-14 in 101°years (3.38)
of one component with respect to the other, a
hv_,_/2 represents the increase in the dynamical

energy per unit reduced mass E of the binary, if a is 1/10 A.U. Therefore, we may conclude
that close binaries are not effected by the per-

namely ,
5E=1/_-_1,2 (3.31) turbation due to neighboring stars in any timescale relevant in astronomical disscussions.

Chandrasekhar's investigation of dissolution of
while E itsclf is given by

binaries forced by the fluctuating field of stars has
been followed by Takase (1953) who considers the

E= G(M_-+.M2) (3.32) effect of the interstellar matter instead of s_ars.2a
He assumes that the interstellar medium may be

It follows from equations (3.30)---(3.32) that the regarded as a continuous mass distribution with

new separation, denoted by a', after a time r is strong density fluctuations in space (Chandrasek-
given by har and Mfinch 1952). The density fluctuation

may be measured by the mean square deviation of

(1 density in the medium, denoted by (_p)_. It may
G(M_TM2) - = (4_GNMar) 2. (3.33) be assumed that the scale of fluctuations (i.e., the

size of density irregularities) is much larger than
This equation re&rues to Chandrasekhar's equa- the distance between two components of a binary.
tion for determining the time scale of dissociation, Then using the relation derived by Osterbrock
rd, when we set a'--, _. (1952) between the fluctuating force field and the

fluctuating density field and following Chandra-

rd= (M_-i-Mo')z/2 sekhar's reasoning, Taka_e obtains a formula for
4_G_/2NMa3/2. (3.34) the time of dissociation of the binary system due

to interstellar matter. His formula can be writ-

Assuming, in the neighborhood of the sun, N-- 0.1 ten down by simply replacin___ggN _ m_ in equation
star/(parsec) _ and setting M=O.5Mo, M_WM_ (3.34) by ($p)'--'-2/B.Since (_ip)_ i_ about the same
= 1Mo, Chandrasckhar bas obtained from equa- order of magnitude as N _m _, Takase's result d_s
tion (3.34) the following numerical resu!ts not change our previous conclusion obtained from

Chandrasekhar's analysis.
rd =2.22 X 101ha-_/_ years (3.35)

3.4 ResistingMedium
if the separation, a, is expressed in astronomical
units. The effect of the resisting medium is to reduce

It becomes obvious from equation (3.35) that the dynamical energy and angular momentum of a
dissociation of close binaries does not take place binary system that is embedded in it. Histori-
in the galactic time scale, say 2X10 t° years, cally, this problem has created interest among
What we would like to calculate is the small in- astronomers mainly through the study of the ori-

crease in separation during this time. For this gin of our planetary system. As is evident, the
purpose let us write matter in the solar nebula in the early phase of the

solar system cannot all have condensed into pinn-

a'fflaths (3.36) eta, whatever the mechanism of their formation
is. A certain amount of gas and dust must have

Since ha is small, it can be shown as a first ap- remained in the space around the sun (especially
proximation that near the fundamental plane). This remnant

formed a resisting medium that the new-born

¥ planets were submerged. More recently the re-
Aa r

a=\_ -]1 (3.37) sisting medium has again been discussed in con-
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nection with the problem of accretion of matter equation (3.43) as would be expected. If the
: by stars (McCrea 1953). But the discussion has resistance to the motion should increase with the

been limited only to single st.,rs, speed of stars, their orbital motion would encoun-
As an illustration of the effect of a resisting tcr the strongest resistance near the periastron

medium on the binary motion, let us assume that (i.e., 0=_) and the least resistance near the apas-
the medium exerts simply a retarding couple on tron (i.e., O=Ir). Then dc/dt integrated over a

the binary system. For simplicity, we shall de- complete cycle would be negative, and the eccen-
note by _ the retarding couple that acts on unit tricity decreases in the medium. Or if the resist-
reduced mass of the system. Hence, the couple ance is independent of the speed, the same result
acting on the entire system is M_M_C/(M_TM2). follows because of the second term in the bracket
We further denote by h and E respectively the in equation (3.44), the first term in the bracket
angular momentum and dynamical energy per being zero on the average. However, if the
unit reduced mass of the binary system, thus resistance should decrease with increasing speed,

the eccentricity could either increase or decrease

h _dO depending upon the exact law of resistance.
=r _- (3.39) Jeffreys (1918, see also Jeans 1928) w,,_ advo-

cated the collisional theory for the formation of

while E has already been given in equation (3.32). the planetary system used this result to explain
We obtain why planets formed from the matter ejected from

the sun by the tidal ction of the colliding star
dh should finally settle into nearly circular orbits.
d---_=C (3.40) According to the current view, the planets were

and formed in a medium that was already revolving

dE dO around the sun. Hence, the planet would be
d_-= t_/-/. (3.41) rotating with about the same velocity as its sur-

rounding medium from which it had emerged and

from our assumption. Needless to say, the polar the medium was no longer a resisting one.
The previous example concerning the motion ofcoordinates (r,0), represent the position of one

component star with respect to the other, 0 being new-born pLnets illustrates very clearly the
measured from the periastron, difficulty of treating the problem of binary motion

Since it can be shown from the two-body prob- in a gaseous medium. It shows that the effect
of the medium on the binary motion depends

lem that critically upon the dynamical state of the medium

h2ffiG(M_+,_I_)a(1 -e 2) (3.42) itself.
Recently, two papers (Fesenkov 1956; Kiang

we find from equations (3.32) and (3.41) that 1963) have appeared which deal with the motion
of planets in a medium that is not static (with
respect to the sun). Actually, Kiang has con-

1 da 21 dO

a2 dt =G(M,+M_) dt (3.43) sidered three plausible cases for the state of theresisting medium: (1) static, (2) rotating freely
and (3) rotating uniformly and calculated the

and from equations (3.39), (3.40) and (3.42) that effect in a groat detail for each case. However,
the basic idea in his calculations is identical to

de _- what we have described here.

_ffi_[2 cos 0-be(l+cos10)]. (3.44) The effect of a resisting medium on the eccen-
tricity of a binary has been recently rediseussed

As the retarding couple acts against the orbital by Varsavsky (1962) who has followed the treat-
motion, $is negative. Therefore, the semi-major ment of Poincar_ (1911) and has been able to
axis, and consequently the period of the orbit explain why binaries of shorterandshorter periods
decrease in the resisting medium according to have a general, smaller and smaller eccentricities
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for their orbits. However it should be noted that 3.5 Change in Mass of the Component Stars
Poincar_ hag assumed that the resistance increases

The effect of mass loss of component stars on
with an increase of relative vel_ity of two corn-

the orbital elements has been discussed by Krat
ponents and with a decrease of separation be- (1950) and Wood (1950). The following discus-
tween them. Obviously this law of resistance has sions, however, will be based on Huang's (1963)
no physical ground. Conseque_ltly, Varsavsky's presentation.
quantitative analysis may not be regarded as

Because the orbital elements--period, P, semi-
realistic although the general idea may be valid, major axis, a, and eccentricity, e, -- are related to

The most difficult factor in treating the bip.ary
motion in a resisting medium is the variation of the masses of the two components, angular mo-

mentum, h, and dynamical energy, E, per unitmasses of star_ themselves. As we shall see later,
the medium may have been created as _ result of reduced mass of the system by the well-known
mass ejected from the componen' stars. Or the formulae in the two-body problem, it can be easilyshown that
3tars may accret mass from the medium in which
they are embedded, and which could exercise in-
finite varieties of laminar or turbulent motion that I da 1 d(M_+M2) 1 dE

we can conceive of. All these factors only indi- a dt =MI+M2 dt E d-i" (3.45)
cate that a medium surrounding the binary

system can give widely divergent results. Indeed 1 dp 1 d(M_ +M2) 3 1 dE
if the medium is rotating faster than the binary p dt =M_+M_ dt 2 ff_ -_' (3.46)
motion, the orbit will expand instead of shrinking.
Therefore, mathematically it may be interesting
to study the effect on the binary motion by assure- e de 1 d(M_ q-M_)
ing a particular state of motion for the medium 1-e _ dtffiM_+M_ dt

(with or without an accompanying change in 1 1 dE 1 dh

stellar masses), the result will represent only one 2 E dt tt dt' (3.47)
of a large number of possible cases that may or

may not actually confront us. What is impor- where E and h are given respectively by equations
rant astrophysically is to find out the actual eir- (3.32) and (3.39) or (3.42). Thus, the changes
cumstance under which a particular binary is in orbital elements are not uniquely determined
found: Is the binary system embedded in a

by the rate of mass variation hut are dependent
medium of its own creatms. Is the medium also upon dE and dh/dt. This ilhlstrates
resisting or accelerating? Does either of the clearly the importance of the mode with which
component stars lose or gain mass? While we can-

the variation of mass takes place because both
not answer all ,*hesequestions from the scanty data dE and dh/dt depend critically upon the mode
we have accumulated for any binary system, these of mass variation. Since the mass of the corn-

are astrophysi,'ally it_teresting questions. It fol- ponent star can lose or gain in an infinite variety
lows that it is not urgent to make any elaborate of ways, this makes the problem somewhat un-
calculation for a few possible eases. Rather we certain.
should consider the problem in a general way with The quantity, h, is related to the angular too-
the aid of some simple model. For only in this
way can we expect to obtain some physical insight mentum per unit mass, ho by
to the problem bv combining theoretical studies

MIM_ .
with observational ones. Otherwise, theoretical h°ffi(Ml-_-MM2)_h (3.48)calculations can never meet the challenge of
observations.

Since the resisting (or accelerating) medium is and a similar relation exists between E and E°
intimately related to the change in mass of corn- the latter being dynamical energy per unit mass
ponent stars, we shall come back to this problem Eliminating dE from equations (3.46) and
in the following section. (3.47) and combining the resulting equation with
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equation (3.48) we obtain ring (Huang and Struve 19_3; Huang 1957a) but
it is by no means prohibitive.

1 dp 4 d(Ml-i-M2) For a long time scale, the gaseous rings _e ex-
p dt _MI+M2 dt pected to dissipate since they are continuously

perturbed by the less massive component of the/

_3_ 1 dMl+ 1 a_t_ ) system. Hence, case (b)represents only a tran-
_I_ dt M_ sient stage of mass loss. In either case we may

___odho. 3e de set as a first approximation+3 --_--t 1-e 2 dt (3.49)

d(M_+M2) --0 (3.50)This is a very u_eful relation because dE/dt (or dl
equivalently dEo/dt) which is unknown in most

cases do not appear in it. In adopting this approxim._*ion we may regard
As in any problem that has multitudinous the rings in case (b) as a part of the more massive

choices of possibilities we may idealize a few sire- component.
pie modes of mass variation that have _, physical In case (a) we have
significance and then examine their etTect on the
orbital elements. In this way three modes of dho
mass loss from the component stars have been iso- d--t-ffi0 (3.51)

lated: (1) slow mode, (2) intermediate mode and which yields, ahc__ its combining with equations
(3) fast (or Jean's) mode. We shall discus3 these (3.49) and (3.50),
three modes here under the simplified assumption

that there is no interchal,ge of angular momentum 1 dp [M2-MI_dM_ 3e de (3.52)
between axial rotation and orbital revolution of p" d'T---3_. M--_"_M_}-_/i-'_ l-e _ dr"
the component stars. A treatment of coupling

between these two kinds of motion can be found For binaries of small eccentricities, the second
in Huang's (1963h) paper, term on the right-hand side of equation (3.52)

may be neglected. Thus, we arrive at the con-
L Slow _ clusion that a transfer of mass from the more mas-

This represents an extreme ca_e of losing mass. sire component to the less massive component
When tb_ ejection velocities from the stars are (i.e., M_>M2, dM_/dt<O) makes the period de-
low, the ejected matter will not be expected to crease with time and a transfer of mass in _ne
escape from the binary system. Consequently, reverse direction (i.e., Mr>M1, dMl/dt<O) re-
the total angular momentum of the system will suits in an increasing period. Woolf has privately
be conserved but the total dynamical energy of pointed out that the increase in period of _ Lyrae
the binary can vary in either way. may be precisely due to this mechanism, support-

We may subdivide this mode into two cases: ing the proposition (Huang 1962, Wooif 1962)that
(a) the particles ejected fall back either to the _he primary component of this system is _ess l,_uas-
origilml star or to its companion and (b) the par- sire than the secondary component.
ticles ejected from the less massive component More elaborate calculation of the variations of
form, after many coll,sions among themselves, a orbital elements with mass exchange has been
rotating ring around the more massivc component, recently carried out by Piotrowski (11;_4). He
The second ease is proposed in accordance with has considered separately the effect on the orbital
observational results (Joy 1942, 1947; also Sahade elements of ejection, of flight and of landin_ of
1960a). Formation of a rotating ring arouh,t the each r#Lassclement. While the calculations are
less massive component from matter ejected from mathematically interesting, it is hard to evaluate
the more massive component does not seem their significance in conneOmn with observed data
common because not a single case has been obser- because of the infinite van ,'ties or ways that an
rationally established without dispute. Theoreti- individual mass element can be transferred from
cally it is difficult to form and maintain such a one component to another. Also the results will
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be seriously upset by collisions of particles during rotating ring (or disk) around; and in the plane of,
the flight (Cf., §6). the binary system, the change in period may be

In case (b) he is no longer constant because a evaluated in terms of the size of the ring (Huang
part of angular momentum is absorbed in the 1963b). However, observationally there is no
rotating rings. If we approximate the ring clear-cut evidence to conclude that such is actu-
(formed out of matter ejected b) M:) as rotating ally the case.
directly in a circular orbit of radius, a_, around, Finally, we should again point out tho,t case (b)
aad under thegravitationalattraction of, the mc.e represents only a transient stage of this mode

massive component, MI, alone, we obtain since eventually the envelope will be dissipated.

1 dp c_l,MdM2 3e de-dl = .., dt f 1-_2 dt (3.53) 3. Fast(or Jeans's)Mode t

This is an extreme case, for it is assumed that _Jll
where there is no net reaction of the escaped mass on the ibinary itself. We call it Jeans's mode because

M.,_'_ _ (M_TM_)af Jeans (1924, 1925) was the first to treat this case 'a--3 _-l-Fll-_ ) and "y'_=M_a(l_e2 ) (3.54) when he examined the effect of r._diation loss

(which is equivalent to mass loss) on the binary
Numerical values of _ _',,[_ [_w c_es ot ,_/a and system. Since then it has been applied to cases -

M2/M_ have been given in Huang's (1963b) paper, involving direct toss of mass (Huang 1956,
Final!y, it is to be noted that (a) and (b) repre- Boersma 1961). The physical circumstance of

sent two physically different cases of idealized actual mass ejection that may be approximated
circumstances. Vvilen we mentioned that (a) by Jeans's mode must satisfy two conditions: (1) •
represent_ the ultimate situation of the slow mode, the ejection of ma_s has a statistically spherical
we do not mean that case (b) will reduce to case symmetry and (2) the velocities of ejection must
(a) if the ring coalesces with the stellar surface, be very high to insure a negligible interaction with
because that would result a transfer of angular the binary system. According to these conditions
momentum from orbital revolution to axial rota- the loss of mass resulting from a supernova ex-

tion--a situation precluded to the present discus- plosion (Blaa_lw 1961) and from ordinary nova
sloe. In such cases we must include the coupling outburst (Aht,'ert 1959) would closely approxi-
between orbital motion and axial rotation into mate this mode. Mass loss due to corpuscular
our considerations, radiation may also fall into this mode if emissioa

of particles is spherically symmetric. That cor-
2. IntermediateMode puscular radiation may be important has been

By the intermediate mode we mean that the pointed out by Fesenkov (1949) and Masevich
ejection velocities are large enough to overcome (1949) in their theory of stellar evolution. Tidman j
the attraction of botb components so that the (1958) has proposed on the other hand a theory
ejected p:_rticles can penetrate the inner contact that suprathermal particles may be produced in
surface (Cf 5) of the system but not large enough the binary system if the expanding coronas collide
to justify the neglect altogether of interaction be- each other, thus creating a region of violent mo-
tween the ejected particles and the binary system, tion favorable for accelerating charged particles. ,,
Actually the change of ori)ital elements under this In any case, corpuscular radiation from com-
mode of mass loss is most uncertain because we ponent stars may be the reason, according to

have no way to estimate the angular momentum Huang (1958), why a luminosity anomaly exists
carried away by escaped mass. in many binary s',ars.

This mode may also be divided into two cases: It can be shown (Huang 1956) that Jeans's
(a) ejected par_ieles escape to infinity directly and mode of ejection leads to
(b) particles form an envelope around the entire

binary system, such as found in _ Lyrae (Struve dh 1 dE 2 d(M_+M2)
• " -- =9 and .... (3.55)

1941, 1958). If the envelope is a quasi-stable dt E dt M_-FM2 dt

1966028656-095



-$
¢
_ ASTRONOMY AND ASTROPItYSICS 83

'e which, when combined with equations (3.45)-- the relative motion of tile center of m:tss of the
(3.47), yield the following results due originally binary system with respe('t to the medimn, (2) the

._ to Jeans: state of internal motion of the me(lium, such as
rotation, turl)ulence, etc. antl (3) tile binary too-

lda 1 d(M_-I-Mo.) tion itself. From these factors we are supp¢)sed_ =
_ a dt M1TM2 dt ' to evaluate the rate of accretion as well as the

1 dp 2 d(M_+Mo) force (resisting or accelerating depending upon
._ = - (3.56)
_ p dt M_+M_ dt case,,;) that each component experiences. That

_ e de=o this is a difficult task may be seen from a siinple
"_ 1-e" dt case that the medium possesses no net angular

_" It follows from equation (3.48) and a similar ,..qua-
momentum with respect to anv point inside. Ill

tion between E and Eo, we may write eq,mAons such a case tim total rate of a('('redon by both
:- (3.55) in the following form: comp.ments may I)e roughly eslimaled by treat-

ing the system at large distances as "l :,ingle body
_ 1 dho 1 dM_ 1 dMo_ "_ and thereby deriving the :w('reli()n eohmm

_ ho dI M1 dt _--flo dt (McCrea 1953) of the entire sysWm. Ih)wever,t how can we estimate the proportion at whi(.h the

__, 2 d(M_-I-M2), - (3.57) two coml)onents divide their loot in the a('(.retion
_ M, TM,,. dt column? Since they move in the sam(, r(,oion,

I dE, 1 dM_ A l dM_. the more massive ('omponent which is gravita-
"i Eo dt - Ml tit Mo dt " tion'tlly stronger is expe(.ted to a('eret m.ltl(,r more

effectively titan the ](,ss massive ()he. ()n tim
' Thus, in Jeans's mode the angular momentum per other han(i if we (.onsidcr lhe size au_l hw'd ion ()f

unit mass changes, although h maintains con- the orl)its we may expe('l, the rev(,rse(I situation,
,_ _tant. Also, the dynamical energy pet"unit mass namely the less massive "omponent is more effe('-

of the system has increased as a result of this mode tire. Here we sec the imrinsi(, difficulty ,f the
of ejection, problem.

An extreme case of Jeans's mode of ejecting Ot)servationally, we c'm (leh,rmine onl3. lhe,
matter is the sudden explosion eithec with a period of a Ifinary wilh any a('('uvacy lh::l .iusti-
spherical symmetry or with an axial symmetry as ties the theorelical invesligation.,, ln_h,(,d, we
found by We_tver (1958) in his study of Nova hay(, found v.u'i.tti(,ns in orl)ilal l)evi()(i in ninny
Aquilae (1918). If the mass ejected during the e('lipsing t)in:,,i(,s, although il should t)e r(,mem-
explosion exceeds a critical amount of r(Ml+M,.)/ I)ered thai lhe varialions in t)('ri,_(Ie:m I)(,(lu(' to
(2a) where 7"represents the separation of the two m'my ('auses olher than the m: ss x':,rialions. For
stars at the instant when the instantaneous mass examl)le, any p(,rlurt)a_i(m due 1o the (h'l>ar|ure
ejection takes place, it wouhl result in a ('oml)letc from the idealized Idnary ('Oml)()s(,_lof two mass
separation of the two component stars, as was 1)oinls couh] l)ro[hw(, (.Oml)li(,.tl(,¢l varialion in
pointed out by Blaattw (1961). In(Iced he pro- ol)served p(,ri(,d whi(,la is lhe im_-int(rvai be-

posed that this is how the high-velo(.ity O and B lween lwo conse('utiv(, llrin('it):_: (or s(,(.,m_hu'y)
type stars sometimes ot)served in the g'daxy had e('lil)ses. Actually w(, h._ve in_h,(,,l foun_l lh:_t
acquired their velocities from orbital motion, l)('rio(ls -f many I)in:u'ies ('h._ng(, in irr¢_,l:_l' ways,

So far we have discussed only tile case of mass |h(, same I)inary may have fls I.'rio_l in,r(.:t.-in_
loss of component stars. It first appears that we and de('reasin_ at ,lifter(rot (,p(whs in a se(,min_ly
may treat the problem of mass gain in :t similar unlu('(li,"h,d nutntwr. This h,,ds Wood ¢1it50
manner. A('tually, the prol)iem is much more st,(, al,,o Sehn(,ller 1962) to suu_(,st lhal lh(;

complicated than the c'_se of mass loss I)ecause changes may b(, due to ejection of g:_:;jot t,y the
first, of all, we have to assign the state of motion ('oml)one,d star som(,lim(, in lhe dir(,('tion of its

of the medium from whit.h stars may "t('cret nmss. moti[,n and a! o_b(,r limes in the Ol)l)osile direc-
In general, tile problem of clmnges in ort)flal ele- lion. Wood's view Ires I)(,eu (.,'ilit'ized by Kopal
ments depends Ul)on the folh)wing factors: (1) (1959). The l)resent _ril(,r in(.lines h_ regard
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Wood's view to have its merit. We have found Since the property of space-time continuum corre-
that the changes in period depend upon the modes sponding to an empty space surrounding a gravi-
of ejection as well as the rate of mass loss. Since tational point mass is known, the equations for a
there is a continuous range of possible modes and geodesic can be written down immediately and
rates of ejection, it is apparent that there will be provides the basis for the treatment of the motion
statistical fluctuations with respect to time, pro- of planets around the sun. When these equations
ducing thereby corresponding fluctuations in are reduced to an ordinary polar coordinate (r, ¢)
period variations. Especially we should point they yield the equation (e.g. Eddington 1923)
out that if the velocities of ejection are high, m_,ss

could be thrown out of the star in any direction, d2u GM (4.1)
not necessarily limited to the channel through the _+u= _h-_(1 +3h2u 2)
Lagrangian points L1 and L... However, the
cause of variations in period observed in eclipsing as compared with the equation of a Newtonian
binaries is not uniquely determined. Most likely orbit
many factors are involved in producing the
observed variations, d2u GM

Extensive collections and analyses of observed _-_+_= (ch)2 (4.2)

period variations of eclipsing binaries have been
given by Tung and Chang (1957), by Kwee (1958), where u- 1/r, M is the mass of the central body,

by Prikhod'ko (1961), by Wood (1953) and by ch is a constant of integration, and c is the velocity
others (See references given by Kopal 1954, 1957; of light in empty space.
O'Connell 1960, 1962; and Merrill 1964). The ratio, 3 h2u2, of the second term to the first

term on the right hand side of equation (4.1) can
be shown to be practically equal to three times

4. RELATIVISTICEFFECT the square of the transverse velocity of the planet

The advance of perihelion of the orbit of a measured in unit of the velocity of light. For ex-
planet around the sun resulting from the relati- ample, the ratio for the earth is 0.000,000,03.
vistic considerations provides one of the crucial Thus, the difference between the relativistic and
tests of Einstein's theory of gravitation. Gravi- Newtonian orbits must be slight. It can be
tation in the general theory of relativity is closely shown (e.g. Eddington 1923) that the perturba-
interwoven with the four dimensional space-time tion caused by the presence o1 this small term
continuum. Using the language of geometry, we produces an advance of the perihelion equal to
may state that the absence of gravitational field

61rGM

corresponds to a four-dimensional Euclid_an (flat) A_o=c2a(1 -- e2) (4.3)space and the presence of any permanent gravi-
tational field distorts the space-time continuum
into a curved one. Indeed, the principles of radians per orbital revolution.

relativistic mechanics are mainly contained in The previous result is derived from the assump-
what is known as the field equation of Einstein tion that the planet has a negligible mass. The
(e.g. Eddington 1923), which connects the physi- case of two bodies of comparable masses has been
cal situation (i.e., the energy-momentum tensor studied by Levi-Civita (1937) who shows that as
which describes the distribution of matter and a first a_')roximation the same formula for the

energy) with the geometry of space-time and advance of periastron holds true in the case of
which may be regarded as the relativistic ana- binary stars as in the case of an infinitesimal
logue of Poisson's equation. Also, according to planet moving around a central mass having the

the theory, the space-time trajectory of a free tc' _l mass of the binary system. Thus, except
particle is given by the geodesic, which, as is well by replacing M by MwF M_ we have equation
known in geometry, directly depends upon the (4.3) for the advance of periastron in a binary sys-
property of the space-time continuum and conse- tem. If we write p, as the period that the peri°
quently on the gravitational field which shapes it. astron advances a complete cycle of 2% equation
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(4.3) can be u ritten as binary is directed along the major axis towards
the periastron of the more massive component,

P---_'=c_p_(1-e2) (4.4) and the increase 5V of the velocity of the center
p 12_"a2 of mass in a century is given by

If we now write K=KI+K2 where K_ and K2 AV= 12.55 _(1 -_)(1-2u)(1 __2)are respectively the semi-amplitude of the veloc- 3/2

ity curves of the two components the previous M_-M2 1 kin/see. (4.6)
equation can be expressed in terms of directly Mo p_
observable quantities, thus:

_ where Pdis the orbital period in days, Mo the mass
p' 1(c sin iy of the sun and # is the m_ss ratio defined by (2.4).

-3\--K--l" (4.5) Because of the factor #(1-_)(1-2_), A_ has a
maximum with respect to the mass ratio at

Since K rarely exceeds 300 kin/see while c _=(1-3-I)/2, which roughly corresponds to two
= 300,000 km/sec, p'/p is of the order of 3 × 105. stars respectively containing ]/_ and ,3/4of the total
Hence, the advance of periastron as a result of mass of the system. The maximum value of
relativistic correction must be very small. _(1-_) (1-2_) is about 0.1. Since e is usually small
Luyten, Struve and Morgan (1939) have com- for close binaries, the change in velocity, even in a
puted the motion of apsides according to equa- century, is too minute to be detccted by present
tion (4.5) and found that the computed values means of spectroscopic study. Actually, I doubt
are less than the uncertainty in the observed that this effect could be detected in ordinary cases
values for all the seven binaries whose apsidal even after we have observed a close binary for
motion they have studied, tens of centuries, because the apsidal motion re-

It is evident from (4.3) that apsidal motion due suiting from the rotational and tidal distortion
to relativistic correction should be most pro- obliterates this effect completely.
nounced in massive binaries with short separations. As two stars revolve around each other in a bi-

"" After calculations based on various assumptions nary, it is obvious that the gravitational field they
as to the dimensions and internal structure of the produce varies with their motion. According to
components, Rudkjbing (1959) has concluded Newtonian theory, the effect is instantaneously
that in the eclipsing binary, DI Hercules, the felt everywhere. Consequently, the notion of

_-:- relativistic part of the apsidal motion may well be gravitational waves never arises. As the relativ-
: larger than the part due to deformation of the ity theory presupposes that _o casual effect can

components. However, according to O'Connell travel faster than light, we might anticipate that

_ (1962) "no indication of apsidal motion has ;n the change in the gravitational field travels out
fact been observed as yet in this system." into space with the speed of light. A moving dis-

_ Levi-Civita (1937) has furthermore pointed out turbance thus propagatcd out may be called the
_.. tha_ a,_;defrom the slow precession of the relative gravitational wave. Such is the physical reason

orbit, _he general theory of relativity also predicts for the existence of gravitational waves (e.g.

i_ "the absolute motion in the sky of any double Eddington 1923;Synge 1960). A realisticevalua-
star system." This result comes naturally from tion however could be made only after empirical¢

the fact that general relativity does not include, as detection (which is now actually attempted)
: a rigorous law, the principle of action and reaction should be successful.

which plays such an important role in Newtop.ian We may expect that the emission and absorp-
mechanics. Thus, one of the most important con- tlon of gravitational waves carry, to be sure, very
sequences of this principle, namely, the uniform small amounts of energy. Hu (1947) has com-
motion of the center of mass of a system in puted the very small clamping forces due to the
absence of external forces, becomes invalid, emission of these waves. Actually, the rate of

According to the calculations by Levi-Civita, energy radiated in the form of gravitational wave
the secular acceleration of t.he center of mass of a by a binary star (in circular motion) as given by
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Landau and Lifshitz (1951) is investigated this problem in §3.1. But the result
is too involved to be useful for the present pur-

d_EE 32 G4 (Ml 2 2= +M2)MIM2 (4.7) pose. Here we shah consider a simple model
dt 5 c_ a 5 such that the gravitational potential due to each

component star may be regarded as equivalent to
From equation (4.7) Kraft, Mathews and Green- a mass-point. Then the potential field of the
stein (1962) have found that for the repeating entire system can be easily calculated and the
nova WZ Sagittae (1913, 1946) the rate is in the shape of star determined. Such is the Roche
range of l0 _2- l0 '_5ergs/sec if their mass ratio _ is model of close binary stars.
between 0.] and 0.5. However, they have pointed Let us assume that the two component stars in
out that the grawta_ional flux reaching the earth a system revolve around each other in circular
is qlii_e small and ltsdetection very difficult. But orbits. Furthermore, we choose as the unit of

they went on to suggest that the period change mass the total mass of the system, i.e.,
due to energy dissipation by gravitational wave is

probably detectable. As we have seen in §3, M2=_ M_---1-_ (5.1)
variations in period may arise from many causes.

Thus, even if the period change in this star were Also, we choose the separation between two com-
detected, it would remain a difficult problem to

ponents as the unit of length. If we take P/21r
prove that the variation is indeed due to dissipa- as the unit of time (i.e., the angular velocity of
tion of energy through gravitational waves. This orbital motion is one), we shall have unity for the
kind of unce-ta!nty is intrinsic to observational gravitational constant. This can be easily seen
science and strongly contrasts to the high preci- from equation (2.5).

sion of controllable investigations in experimental We may easily write down the equations of I
science, such as physics and chemistry. But no- motion of a test particle in the gravitational field .
where in the entire field of astronomy do we of the binary system. It is equivalent to the
encounter more frustration than in the attempt to restricted three-body problem in celestial me-

detect relativistic effects in binary systems as we chanics and can be most advantageously expressed
have seen in this section, in a coordinate system rotating with the compo-

nent stars (e.g., Mou]ton 1914, Plummer 1918).
5. THi: ROCHE MODEt The rotating coordinate system (x, y, z) may be so

chosen that its origin locates at tbe center of mass
5.1 Stellar SurfacesAccordingto the

of the binary, that its z-axis is perpendicular toRocheModel
the orbital plane and that its x-axis coincides with

The shape of single stars without axial rotation the line joining the two component stars. If we
must be a sphere since there is no one particular denote by r the radius vector from the origin _o
dirc'.tion that is physically different from the the test particle (x, y, z) and by r_ and r_ the i e-

other. When it rotates, the shape will no longer spective distances of the test particle from the 1-_
I)e spherical because of the existence of a pre- component at t-u, o, o) and from the # component
fcrred direction, namely the axis of rotation. As at (1-#, o, o), the equation of motion becomes
a result, we wouhl expect that a rotating body,
like the earth, Jupiter, etc., will be flattened to d:_ - d_

--=-2kX_-Fgrad l' (5.2)bccom(, an ot)late spheroid, dr"

In general, the eumponent star (in the close where
binary) rotates in synchronism with its orbital •

rcv_)lution (Swings 1936, Plaut 1959). Hence, (r=l(x2[_y2)+l-_+ _ l(5.3)the centrifugal force d,.)es play a role in shaping r_ r..,
the component star. However, a more serious

complication arises from the force field due to its and k represents a unit vector in the positive z-
companion. What would be the shape of stars direction. Taking the scaler product of d?/dt and
thus influenced by its close companion? _:e have equation (2) and integrating the result;ng ecitmtion
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over t we obtain an integral for the test particle positive on both sides of a zero-velocity surface.
This happens when the function i.e., Id?/dtl '2in the

2U- =C (5.4) present case, has an extremum equal to zero at
some points in space. Indeed, such an occurrence

where C is a constant of integration and is there- gives rise to a few interesting and critical cases of
fore a characteri tic value for the test particle of a zero-velocity surface that will be discussed later.
given set of initial conditions. In celestial me- It is to be noted that we have _,._cdC sometimes
chanics it is often called the Jacobian integral, to characterize the condition of the test particle

The equation (5.4) relates the kinetic energy according to equation (5.4) and at other times to
with the coordinate of the test particle in the label the zero-velocity surfaces according to equa-
rotating frame of reference. Consequently nega- tion (5.5). Thus, a particle of a certain value of

tive U may be regarded as a potential function in C cannot penetrate the zero-velocity surface
this reference system and we may plot a series of labelled by the same value of C.
equipotential surfaces by setting 2U--C, namely Let us now examine the general behavior of the

zero-velocity surfaces defined by equation (5.5).
For very large values of C, say C_, we have three

x2+y2-{ 2(1-_)r_ F2_=Cr2 (5.5) possibilities: (l) large x _--ty-,_(2) small r_ and (3)
small r_, corresponding to three separate surfaces

where C nov," serves as a parameter labeling the for a single value of C. If x2+y 2 is large, other '_
surfaces. However, it may be noted that because terms on the left side of equation (5.5) may be
of the first term on the right side of equation neglected. Consequently, the surface represents i
(5.2), U does not behave exactly like a potential a large circular cylinder with its axis coinciding I
in an inertial system. It is for this reason that the with the z-axis. Similarly, when r_ (or r_.)is small, I
surfaces defined by equation (5.5) are not called other terms become negligible. Wc then obtain

the equipotential surfaces in celestial mechanics, a small sphere around the 1-_ component (or ,.
For a given value of C, which is fixed by the around the # component). If we do not neglect

initial conditions, e(luation (5.4) determines the small terms, we will obtain three surfaces slightly
speed Idr/dtl of the test particle at different points distorted from what have been described. There-
in space. Therefore, we can find all the points at fore, space around the binary can be divided into
which the speed will vanish. The locus of these four regions, one outside the nearly cylimh'ical sur-
points then define the so-called zero-velocity sur- face, two inside the two closed surfaces respec-
face in celestial mechanics. It is obvious from tive]y around the two stars, and the fourth I)e-
equation (5.4) that the zero-velocity surface thus tween these three surfaces. It is easy to see from
defined is identical to the one given by equation equation (5.4) that the test particle whose C value
(5.5) which we have previously called the equipo- is equal to C_ can be either inside the two small
tential surface, closed surfaces or outside the large cylindrical sur-

In order to see the importance of the zero- face. But it is forbidden to enter space between
velocity surface let us consider Id_/dtl 2 of a test these three surfaces. Thus, the test particle (of
particle of a given value of C as a function of the Ct) can move in any one of the three permitted
coordinate according to equation (5.4). On the regions but cannot jump from one to the other.
zero-velocity surface this function vanishes every- In a close system the shape of each component
where. Hence, in general, the function would be star that satisfies the Rochc model (i.e., a highly

positive on one side and negative on the other, centrally condensed star with an envelope of a
Since [d_/dtl _ cannot be negative, it only shows negligible mass) is determined I)y the closed zero-
that the test particle cannot penetrate the zero- velocity surface around it, since, as we have seen
velocity surface into the other side. Because of in equation (3.8), the equal pressure surfaces in a
this property, it is useful to know zero-velocity star must follow the equipotential surfaces as a
surfaces correspcnding to different values of C (or result of the hydrostatic equilihrium under which
different initial conditions). Finally, we may add negative U will now behave exactly like a poten-
that in some special cases, the values of C may be tial function in the rotating coordinate system.
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As C decreases, the two closed surfaces around $1 surface while the other star (the more massive
the two stars increase in size and the outer cylin- primary) is invariably small compared with its
drical-like surface shrinks. Eventually, these lobe of the same surface.
surfaces will come into contact. Actually, the In reality the star must be smaller than the
contact occurs first between the two closed sur- corresponding looe of the contact surface as the
faces at a certain value of C which will hereafter particles (atoms, ions, electrons in the surface
be denoted by C_. This critical zero-velocity sur-
face is often called the innermost contact surface ,.

(e.g., Kuiper 1941), or the S_ surface as we shall
call it later. The point of contact L_ is one of the '°
Lagrangian points (or double points), which are .... _"

special solutions of the restrictc,t thrce-body prob- ,. ........
lem. The contact point illustrates the case we ,

have mentioned earlier that in soLm special cases t /

Id_'/dt] _ can be positive on both sides of a zero- ,ii
!

/J
velocity surface. This is true at L_, say along the o. //
x-axis, o, UIn Figure 1 we have illustrated several zero- ,.................................... . /o
velocity surfaces including the o-itical or;es for the
case tz=_. Two cross-section_ for each surtace
have been drawn, one in the xy-plane (in the ,_
lower diagram) and the other in the xz-plane (in

the upper diagram). Because of symmetry we _ ._-_.have shown here only one half of each cross-see- ,

tion, namely for positive y and positive z only. .
Tile case C=4.1 represents the situation before \
surfaces come into contact. Thus, this value of
C corresponds to three distinct surfaces mentioned °'

before and all shown in the figure. The case °'
C=C_=3.946 corresponds to the innermost con- ' .................... _ ............ _ ........
tact (S_) surface. It consists of two lobes which FmvaE 1.--Zero-velocitysurfacescor:'espondingto ta-- 1/3.
we shall call the primary lobe (around the 1- tz The two cross-sectionsofseveralzero-velocity surfaces--
component) and the secondary lobe (around the one in the xy plane (below) and one in the xz plane
t_component). A large distorted cylindrical sur- (above) are illustratedhere. Tho two contact surfaces

face associated with the same C_ is also shown in are marked by C_ (inner) and C2 (outer) respectively

the figure, with Ct=3.95 and C2=3.55. It can be seen that forC>C_ illustrated by the case C=4.1 each surfacehas
The importance of the contact point is the fact three separate branches. For C2<C<_ (illustrated by

that it forms a channel through which a test par- the case C--3.6) there are two separate branches.
tiele with C only slightly less than (_'_may move
from the permitted region around one star to that layer of a star are exercising all kinds of motion,
around the other. As a result of this property we thermal, turbulent or else. Therefore, they can
can conclude that the two lobes of the S_ surface escape the inner contact surface even before the

provides respectively an upper limit to the size of stellar surface has reached the contact surface.
individual component stars because if either of However, the velocities in these motions (except
them touches the surface, the matter will leak out of course, corpuscular radiation) may in general
at the point of contact into the other lobe. We be regarded as small in the present consideration
may find examples for this situation in the Algol- because the unity velocity in the present unit sys-
type eclipsing binary systems in which one star tem is equal to [G(M_q-M_)/o]_ and amount to a

(the less mossive secondary) has usually a size few hundred km/see in close binaries. Therefore,
comparable with the corresponding lobe of the a velocity of a few tens of km/sec can be neglected
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! in equation (5.4), thus making the S_ surface the Finally, it may be noted that since the zero-
: actual limit of individual st-rs in a close system, velocity surfaces are defined in the rotating frame

When C decre_c_ from CI, the two lobes of the of reference, the Roche model predicts that axial
innermw_ contact surface coalesce into one single rotation of stellar envelope and orbital revolution
dumb-bell like surface (corresponding to C--3.6 are synchronized, i.e., the two component _tars
in Figure 1). They represent the appearance of revolve in their respective orbits face to face.
two stars in actual contact such as in W UMa This result appears to be valid in most close I)i-
stars. Such a binary, though consisting of two naries (Swings 1936, Plaut 1959 Struve 1950). In
stars, has a common envelope. A series of the a few cases, such as fl Lyric (Kopal 1959), where
contact configuration is possible, corresponding one or both component stars undergo secular ex-
to different values of C. The smaller the value of pansion as a result of internal evolution, this
C, tile greater is tile size of this dumb-bell like sur- synchronization could be temporarily violated.
face. On the other hand, the outer cylindrical We can now summarize the result briefly in the
like stlrface shrinks with decreasing C. Thus, C following way. The closed zero-velocity surfaces
cannot de(.rease indefinitely without encounter- around two stars for C> Ct represents the shape
ing another drastic change of the behavior of the of two components that are detached from each
zero-velocity surfaces. Thistimeit is the contact other. The smaller the radius, the ('lose to a
t)etween the dumb-bell like surface and the _utet' sphere is the surface. What we are intcrcste(i in,

cylindrical-like surface. Kuiper has called it the however, is only when the star approaches the size
outermost contac_ surface (or the $2 surface) of the inner contact surface and is strongly dis-
whose C value will be hereafter denoted by C2 as totted from a spherical shape. Thus, at C= C_

is shown in Figure 1. The point of contact L2 is each lobe of the S_ surface represents the limiting

another Lagrangian point. With this second coa- size of the individual component. The star in a
tact, the inner region is connected to the outer binary that is found actually in this limiting con-
region and the test particle with C only slightly figuration is usually ejecting mass through LI
less than Co can move without restriction due to towards its companion if the latter is still small
energy. Thus, particles with C i)etwcen C_ and compared with its own lobe of contact surface.

: C.o('an move either inside the dumb-bell like, sur- ForC_>/C>C.zthedumt)-belllikesurfaceofequa-
face or outside the distorted cylindrical surface, tion (5.5) represents the configuration of two tom-
This leaves a forbidden region between the two ponent stars in physical contact. The limiting
surfaces. In Figure l, this situation is illustrated case of the contact configuration is given l)y the
by the case C=3.6. When C<C2, there will not outer contact surface (C=C_). Binary stars that
be any forbidden region for the particle from the are in this limiting configuration lose mass to
consideration of the energy integral. Therefore, outer space through the point, L.. It can be seen
the S.z surface represents the maximum size of a from Figure I that the range of sizes of the contact
stable contact configuration of a close binary, systems (from the S_ to S.. surface) is quite small.
For if the ('ontact binary has reached this size, Therefore, any binary that is in physical contact is
mass will continuously flow out of the system usually losing mass through L2. The problem of
through L2 and the binary is no longer stable, losing mass from a star through the points L_ and

With the aid of the St surface we can now L2 was first extensively discussed by Kuiper (1941)
classify close binaries into three groups. If both (Cf. 6). Such an instability at the surface of the
components are well inside the S, surface, their close binary stars gives rise to a number of ob-

system is said to be a detached one. If one corn- servable phen_m-na which Martyn,,v (1957 also
ponent fills up the corresponding lobe of SI surface Krat 1960) has summed up in a review together
but the other is not, the two form a semi-contact with examples of stars that show these various
(or semi-detached) binary. In the third group, phenomena.
i.e., the contact binaries, two components are in Because of their impoltance in the stu(ly of (:lose
physical contact. More elaborate classification binaries both S_ and $2surfaces for different, wtlues
of close binaries may be found in Kopal's (1959) of _ have been computed by Kuiper (1941); l)y
and Sahade's (1960 a and I)) paper. Kopal, whose result was first published in 1954

|

!
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and is now included in his book (1959); and by 5.2 Departurefrom the RocheModel
Kuiper and Johnson (1956) and more recently by An actual star is built neither en the infinite
Szebehely and Williams (1964). Table 2 gives centralization nor on the homogeneous distribu-
C] and C_ for 9 values of # taken from Kuiper and tion oi' density. We have noted in 3.1 that the
Johnson's paper. Table 3 and 4 gives the inter- rate of apsidal motion decreases with the degree
section of the two contact surfaces with the xy- of central condensation• For component stars
plane (first and second column) and with the xz- built on the Roche model the binary would show
plane (first and third column) for those values of no apsidal motion at all. The fact that the ap-

listed m Table 2. They are partly taken also sidal motions in many binaries have been observed
in relatively a short time of a few decades only
shows how approximate the model is. However,

TABLE2.---Labellin9 Constants/or the C,)ntactSurfaces for a prediction of the stellar surfaces the Roche
model perhaps gives a good approximation. In-

u C_ (inner) C_(outer) deed, according to a recent estimate by Plavee
(1958), the departure of stars from the infinite
central condensation of the Roche model does not

• 5 4 3. 4567(.)62
.4 3.9809086 3. 5189346 produce a serious modification of the zero-velocity
1/3 3.(.)455706 3. 5474582 surfaces•
2/7 3.9074840 3. 558(.)342 On the other hand, Plavec has pointed out in
• 25 3. 8706588 3. 5611940 the same paper, that a deviation from the synchro-
.20 3. 8046582 3. 5523932 nization of axial rotation and orbital revolution
• 10 3. 5969532 3. 4666844
• 05 3. 4204164 3. 3543942 would cause an important change in the shape of
• 02 3. 2523262 3. 2257332 the contact surface. He has treated the problem

of non-synchronization by simply modifying that
term in U (given by equation [5.3]) which corre-
sponds to the centrifugal force. In this way he
has found that it is very simple to compute the

from Kuiper and Johnson's paper but partly corn- modified contact surfaces. Unfortunately Pla-
putcd especially for the use of the present occasion vet's process may not be regarded as legitimate
by Mr. C. Wade, Jr., of Goddard Space Flight because the centrifugal force arising from orbital
Center. The case of _ = _ is furthermore illus- motion and that arising from axial rotation do not
trated in Figure 1 as we have described. For have the same axi,_. This same problem has later
diagrammatic illustrations of the contact surfaces been studied by Limber (1963) and Kruszewski

corresponding to other values of _ we refer the (1963). The works by these two investigators
reader to Kuiper's (1941) paper, are parallel and suffer the same difficulties.

Finally, it should be noted that the basic size In order to see the difficulties let us assume that

of a star, whether single or in a close binary, is axial rotation, say of the 1-_ component, is not
determined by its internal structure. What we synchronized to the orbital motion, although its
have said previously is only about the external axis is still assumed to be perpendicular to the
shape of its envelope. That the envelope is all orbital plane• In considering the motion of a test
that we can observe of a star lies significance of the particle in the envelope of the 1-_ component we
zero-velocity surfaces in the study of close binaries, first translate the origin of the (xyz) coordinate

The Roche model of an infinitely centralised system along the x-axis to the center of the 1-#
star represents only one end of a series of stellar component star by making the simple trans-
models. At the other end there is the liquid formations:
model of a homogeneous density. Darwin (1906)

anti Jeans (1919) have studied the binary configu- x'ffix+#, y'ffiy, z'=z, (5.6)
rations and their stability based on the latter

(x t- izp_idealization. Darwin's and Jeans' results have and then rotate the . y ) system by a second
recently been examined by Chandrasekhar (1964). transformation so that in the end it will be in
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,_ TABLE 3.--Innermost Conlact Surfaces for Different Valwes of _,

: x +y .+.: x +y +z

J

_,---0.5 0. 5 0. 2701 0. 2585
-_ 0. 6 0. 3051 O. 2925
\ +0. 1 0. 1456 0. 1370 0. 7 0. 3123 0. 2990
_ ±0. 2 0. 2520 0. 2388 0. 8 0. _)12 0. 2779
' -4-0.3 0. 3205 0. 3050 0. 9 0. 2337 0. 2216

S0. 4 0. 3596 0. 3426 1.0 0. 0831 0_0781
S0. 5 0. 3740 0. 3561 1. 0120 0. 0000 0. 00o0
_-4-0.6 0. 3647 0. 3465

_,=2/7S0. 7 0. 3288 0. 3112

S0. 8 0. 2549 0. 2398 --0. 7743 0. 0000 0. 0000
S0. 9 0. 0595 0. 0555 -0. 7 0. 2482 0. 2288
S0. 9050 0. 0000 0. 0000 -0. 6 0. 3578 0. 3318

• --0. 5 0. 4187 0. 3901
; v=0"4 --0. 4 C. 4513 O.4220

--0. 8415 0. 0000 0. 0000 --0. 3 0. 4619 0. 4328
--0. 8 0. 1773 0. 1650 --0. 2 0. 4524 0. 424:3
--0.7 O.3065 O.2871 •-0._ O.4224 O.3960

--0. 6 0. 3712 0. 3494 0 0. 3691 0. 3453
--0. 5 0. 4037 0.3814 0. 1 0. 2867 0. 2672

: -O. 4 O. 4122 O. 3902 O. 2 O. 1663 O. 1543
-0. 3 O. 3987 O. 3777 O.3 O.O114 O.0106

_ -0. 2 0. 3625 0. 3431 O. 3072 0. 0000 0. 0000
O.4 O. 1283 O. 1214

--O. 1 0. 2996 0. 2827
0.0 0. 2025 0. 1900 0. 5 0. 2205 0. 2107
O.1 O. 0649 O.0606 O.6 O. 2729 O. 2618

: O.1416 O.0000 O. 0000 O. 7 O. 2939 O. 2_10
: 0. 2 0. 0872 0. 0819 0. 8 0. 2861 O. 2738

O. 3 O. 2045 O. 1941 O.9 O. 2453 O. 2335
" 0. 4 0. 2797 0. 2670 1.0 0. 1455 0. 1373

0. 5 0. 3221 0. 3081 1. 0415 0. 0000 0. 0000

0. 6 0. 3376 0. 3227 _ _.25
0. 7 0. 3272 0. 3120

; O.8 O. 2872 O. 2727 --0. 7554 O. 0000 O.0000
O. 9 O. 2001 O. 1878 --0. 7 O. 2215 O. 2027
O. 9696 O.0000 O.O0(X) --0. 6 O. 3502 O. 3228

-0. 5 O.4208 O.3899

= 1/3 -0. 4 O.4609 O.4286
-0. 3 O.4784 O.4460

-0. 8013 O. 0000 O. 0000 -0. 2 O.4761 O.4444
-0. 8 0. 0329 0. 0303 -0. 1 0. 4543 0. 4241
-0. 7 0. 2772 0. 2574 0 0. 4112 0. 3834
-0. 6 0. 3656 0. 3415 0. 1 0. 3426 0. 3185
-0. 5 0. 4144 0. 3886 0. 2 0. 2405 0. 2225
-0. 4 0. 4370 0, 4110 0. 3 0. 0976 0. 0903
-0. 3 0. 4380 0. 4126 0. 3607 0. 0000 0. 0000
-0. 2 0. 4182 0. 3940 0. 4 0. 0587 0. 0551
-0. 1 0. 3759 0. 3538 0. 5 0. 1738 0. 1655

0 0. 3068 0. 2878 0. 6 0. 2422 0. 2323
0. 1 0. 2028 0. 1893 0. 7 0. 2751 0. 2642
0. 2 0. 0591 0. 0550 0. 8 0. 2776 0. 2662
0. 2374 0. 0000 0. 0000 0. 9 0. 2482 0. 2369
0. 3 0. 0919 0. 0865 1.0 0. 1704 0. 1613
O.4 O.2022 O. 1925 1.0628 O.0000 O.0000
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TABt,E 3.--lnnermoa Contact Surfaces for Different V_lue8 o.f _ -- Continued
I

] +y ±z z +y +zx

I ..... r

-.2 _ =.05

-0. 7320 0. 0000 0.0000 -0. 7178 0. 0000 0. o000
-O. 7 0. 1758 0. 1590 -0. 7 0. 1510 0. 1256
-0. 6 0. 3388 0. 3090 -0. 6 O.373.3 0. 3152
--0. 5 O. 4235 O.3885 -0. 5 O. 4859 O. 4149
--0. 4 O. 4740 O. 4367 --0. 4 O. 5595 O. 4818
--0. 3 O. 5008 O. 4628 --0. 3 O. 6085 0. 5271
--0. 2 O. 5079 O. 4702 --0. 2 O. 6385 O. 5555
--0. 1 O. 4965 O. 4600 --0. 1 O. 6524 O. 5689

0 0. 4659 0. 4314 0 0. 6511 0. 5684
0. 1 0 4136 0. 3822 0. 1 0. 6347 0. 5537
0. 2 0. 3339 0. 3075 0. 2 0. 6023 0. 5243
O.3 0. 2178 0. 1997 0. 3 0. 5515 0. 4781
0. 4 0. 0619 0. 0571 0. 4 0. 4778 9. 4118
0. 4381 0. 0000 0. 0000 0. 5 0. 3724 0. 3187
0. 5 0. 0883 0. 0831 0. 6 0. 2189 0. 1875
0. 6 0. 1867 0. 1784 0. 7 0. 0257 0. 0232
0. 7 0. 2398 0. 2304 0. 7152 0. 0000 0. 0000
0. 8 0. 2583 0. 2482 0. 8 0. 1024 0, 0971
0.9 0. 2444 0. 2:!40 0. 9 0. 1554 0. 1494
I. 0 0. 1895 _. 1801 1.0 0. 1572 0. 1508
1. 0909 O. 0000 O.9000 1.1 O. 1002 O.0947

1. 1412 O.0000 O.0000

t_m .02

--0. 7050 0. 0000 0. 0000 --0. 7585 6. 0000 0. 0000
--9. 7 0. 0758 0. 0659 --0. 7 0. 2858 0. 2231
--0. 6 0. 3332 0. 2930 --0.6 0. 45:14 0. 3616
--0. 5 0. 4434 0. 39:11 --0. 5 0. 5563 0. 4508
--0, 4 0. 5125 0. 4572 --0. 4 0. 6273 0. 5143
--0. 3 0. 5559 0. 4982 --0. 3 0. 6765 0. 5593

--0. 2 0. 5797 0. 5211 --0. 2 0. 7085 0. 5891
--0. 1 0. 5862 0. 5278 --0, 1 0. 7255 0. 6053

I0 0. 5762 0. 5192 0 0. 7288 0. 6088
0. 1 0. 5493 0. 4945 0, I 0. 7184 0. 5997
0. 2 0. 50:14 0. 4522 0. 2 0. 6939 0. 5776
0. 3 0. 4344 0. 3887 0. 3 O.65:i9 0. 5415
6. 4 0. 3343 0. 2977 0. 4 0. 5956 0. 4893
0. 5 0. 1906 0. 1698 0. 5 0. 5136 0. 4;74
0. 6 0. 0147 0. 0134 0. t_ 0, 3973 0. 3187
0. 6000 0. 0000 0. 0000 6. 7 0. 2224 0. 1780
0. 7 0. ! 151 0. 1092 0. 8 0. 0058 0. 0052
0.8 0. 1819 0. 1747 0,8035 0. 0000 0. 0000
0. 9 0. 2037 0. 1960 0. 9 0. ,q_.)0 0. 0945
1.0 0. 1855 0. 1775 1.0 0. 1197 0. 1149
1.1 0. 1072 0. 1012 I. 1 0. 0671 O.0360
1. 1349 0. 0000 0. 0000 1. 1258 0. 0000 0. 0000

1966028656-105



w

qr
: ASTRONOMY AND ASq'P.OPHY3ICS 9_3

TABLE 4.--Outermost Contact S, ffaces for L '_'ercnt Values of j,

z I +y ±z x ±y +z, I
p-O.5 _,,ffi2/7

-0. 8714 O.0000 O.0000
0 0.3261 O.2911 -0. 8 O.2597 O. 22.16

±O. 1 0. 3488 0. 3129 --0 7 O.3829 0. 3367
±O. 2 0. '_948 O.357! -0. 5 0. 5007 0..1497
±0. 4 0. 4674 O.4247 -0. 3 0. 5314 0. 4824
+0. 6 0. 4819 0. 4329 -0. 1 0. 4945 0. 4500
+O. 8 0. 4325 O.3763 0. I 0. 3878 0. 3505
:t:1.0 0. 3019 0. 2431 0. 2 0. 3132 0. 2816
+ 1.1 0. 1873 0. 1382 0. 3 0. 2582 0. 2_28
* 1. 1984 0. 0000 0. 0000 0. 4 0. 2668 0. 2440

0. 5 0. 3085 0. 2857
0. 6 0. 3438 0. 3199

_, -0.4 0. 8 0. 3610 0. 3332
1.0 O. _162 O.2634

--O. 9,_nO O.0000 O. 0000 1.2 O. 1085 O.0848
--0.9 O. 2705 O.2292 1. 2597 O.0000 O.0000
--0. 8 O. 3761 O.3271
--0. 6 O.4794 O.4298 _,_0.25
--O. 4 O.5016 O. 4.561 --0_ 8404 O.0000 O.00_
--O. 2 0. 4580 O.4175 --0. 8 0. 2016 O.1737

0 O.3544 O.3200 --0. 7 O. 3581 O.3138
0. 1 0. 3046 O.2736 --0. 6 0. 4443 0. 3941
0. 2 0. 3000 O.2709 --0. 4 0 5_)4 0. 4770
0. 3 0. 3387 0. 3082 --0. 2 O.5386 0. 4887
0. 5 0. 4120 0. 3792 0 0. 4806 0. 4359
0. 7 0. 4255 0. 3873 0. 2 0. 3498 0.. 146
0. 9 0. 3678 0. 3235 0. 3 0. 2712 0. 2434
1.1 O. 2137 O.1708 O.4 O.? _7 O.2177
1.2 0. 0670 0. 0470 0. 5 0. 270_ 0. 2501
1.2308 0. 0000 O.0000 6. 7 0. 3365 0. 3141

' O.9 0. 3271 O.;_04

1. i 0. 2227 0. 1928
_-. 1/3 1.2 O. 1145 O. _}16

1. 2659 0. OCO0 0. 0000

-0.9165 O.0000 O.0000 _-.2
--0. 9 0. 1251 0. 1059
--O. 8 0. 3174 0. 2754 --0. 8014 0. 0000 O.0000
--0. 7 0. 4108 0. 3625 --0. 8 0. 0395 0. 0338
--O. 5 0. 5021 0. 4526 --0. 7 0. 3179 0. 27C_6
--0. 3 0. 5150 0. 4688 -0. 5 0. 4933 0. 4386
-0. 1 0. 4612 0. 4200 -0. 3 O.5569 0. 5011

0. 1 0. 3421 0. 3092 -0. ! 0. 5504 0. 4974
0. 2 0. 2841 0. '2556 0. 1 0. _761 0. 4292
0. 3 0. 2765 0. 2510 0.3 0.3238 0. 2892
0. 4 0. 3143 0. 2889 0. 4 0. _|g3 0. 2145
O.6 O.3820 O.3538 O.5 O. 220_ O. 2019
O.8 O. 3823 O. 3493 O. 6 O.2589 O. 2410
1.0 0. 3027 O._46 0.8 '1.3106 0. 2907
1.1 0. 2"224 0. 18,50 1.0 0. 27,,7 0. ?_S07
1.2 O. 09M 0.0717 1.2 O. 1169 O.0963
I. 2490 O. 0000 O. 0000 I. 2710 O.0000 O.O&qO
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'l'._,m,E4.---Outermost Cont,lct Surfaces for Different Values of _ -- Continued

x +y +_z z +y +z

=.1 0. 1 0. 6569 0. 5657
0.3 0. 5766 0. 4932

- 0. 7452 0. 0000 0. 0000 0. 5 0. 4087 0. 3444
-0. 7 0. 2311 0. 1954 0. 6 0. 2734 0. 2300
-0. 6 0. 3966 0. 3401 0. 7 0. 1340 0. 1179
-0 4 0. 5536 0. 4837 0. 8 0. 1390 0. 1295
-0. 2 0. 6147 0. 5424 0. 9 0. 1759 0. 1667

0 0. 6104 0. 5402 1.0 0. 1788 0. 1689

0. 2 0. 5416 0. 4778 I 1.1 0. 1418 0. 1306
0. 4 0. 3897 0. 3403 1.2 0. 0464 0. 0393 |
0. 5 0. 2739 0. 2388 1. 2281 0. 0000 0. 0000

I0. 6 0. 1708 0. 1526
0. 7 0. 1772 0. 1643 tt=0.02

0. 8 0. 2175 0. 2051 --0. 7717 0. 0000 0. 0000
0. 9 0. 2355 0. 2223 --0. 7 0. 3177 0. 2446
1.0 0. 2248 0. 2101 --0. 6 0. 4739 0. 3735
I. l 0 1815 0. 1653 --0. 4 0. 6420 0. 5212
I. ,_ 0. _)26 0. 0791 --0. 2 0. 7213 0. 5945
I. 2597 0. 0000 0. 0000 0. 0 0. 7410 0. 6139

0. 2 0. 7066 0. 5832
=.05 0. 4 0. 6102 0. 4967

0. 6 0. a188 0. 3322
--0. 7421 0. 0000 0. 0000 0. 7 0. 2562 0. 2030
-0. 7 0. 2347 0. 1913 0. 8 0. 0849 0. 0746
--0. 6 0. 4136 0. 3429 0. 9 0. 1133 0. 1069
--0. 5 0. 5170 0. 4342 1.0 0. 1306 0. 1241
--0. 3 0. 6328 0. 5404 1.1 0. 0934 0. 0861
--0. 1 0. 6745 0. 5805 1. 1801 0. 0000 0. 0000

synchronization with the axial rotation of the final result may be giveL _by
star.

d_
d2--_+2(_+'_) ×-_- =grad U_+_ (5.8)x' = _ cos c0t- 71sin wt, dt 2

y'= _ sin oJ.'q-_ cos cot, (5.7)

z' = _, where

• 1-u_u

where _ represents the rotational angular velocity U1 = ½(o_+ 1)2(/_'-.1-_2)-I---r-_--t-r2 , (5.9)
of the star in the (x'y'z') coordinate system.

Therefore, the (L_,l') coordinate system follows and _" represents a time-dependent unit vector

i)oth the orbital r(wolution and axial rotation of which has the following componentu"
the 1-_ ('omponcnt. The equations of motion of

th,_ test particle in the (/i,_d') system can be easily -cos cot, sin cot, o. (5.10)
derived by applying successively two transforma-

tions given by equations (5.6) and (5.7) tc equa- It is now apparent that non-synchronization

tion (5.2). If we denote by _."the rotational angu- cavnot be properly treated by simply replacing U

lar velocity-vector, bye" a unit vector in the same in equation (5.2) b2_ Uxin equation (5.9) because

direction and by _ the radius vector of the test equation (5.8) is not identical in form to equation

particle from the origin o' the (f,_,g) system, the (5,2). Because of the time-dependence of the

J
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_:, vector_and of r2 which is now given by namely (1) the orbital approach, (2) the hydro-
_!i dyna-nic approach and (3) a rudimentary statis-
:_ r22=-.(_-cgs o_t)2+(_-Fsin wt)2-F_-_, (5.11) tical approach. Needless to say, if the binary
_,_ stars possess magnetic fields, a magnetohydrody-

_ we cannot derive a simple relation like equation namic approach to the problem would be in order.
_':°, (5.4) in the present coordinate system. Conse- However, unless we clearly know the nature of the

,_: quent!y, the potential function U_ given by equa- magnetic field, we cannot proceed with our study.
tion (5.9)predicts neither the equilibrium surfaces Consequently, no one has seriously treated the

¢_ of the star in general nor its limiting surface in gaseous flow in the binary system as a magnetohy-
particular. A detailed discussion on this point drodynamic problem although magnetic activities

_- and a proper treatment of non-synchronization have been suggested rather quantitatively to ac-
't: will be given in a later paper, count for the peculiar behavior of some binaries
_. Actually, the non-synchronization represents (Huang 1959). However, one of the effects of

_ only one of several possibilities that will destroy magnetic activities may be predictable and that
_ the existence of zero-velocity surfaces. Indeed, is the braking of binary motion. Several mech-

_!_' under no circumstance can we define zero-velocity anisms have been proposed for braking stellar

"_i surface if the orbital motion of the binary is not axial rotation (e.g. Huang and Struve 1960) but

_.. circular or if a third star is present in the neighbor- the one proposed recently by Schatzman (1962)
_:. hood (Huang 1964). In these cases the envelope may be regarded as most effective. According to
._ of the component stars become unstable and stars him, the angular momentum of axial rotation of a

themselves may not be expected to have station- star is transferred outwards as mass is ejected out

:_ ary surfaces, during strong magnetic activities. Similarly, we
may propose that the same mechanism can dissi-

_ 6. @ASEOtIS MOTION IN THE pate the orbital angular momentum. If so, we
CtOSt: B[N,O,RY SYSTEM wonder whether the many close binaries are in-

_._ deed the result of braking due to magnetic activi-
._ As a result of spectroscopic observations by ties in the early phase of their evolution.
._ Struve (1941, 1945et seq. 1949a, 1950), Abhyankar

i_ (1959a, 1960) and many others, gaseous flow origi- 6.| The Orbital &pproach
: hating from stellar surfaces in the close binary
_ system has been fully established. In the mean- The motion of a particle in the binary system _s
._ time Kuiper (1941) has examined the gaseous flow computed according to equation (5.2), hence, the
i_ in the binary system from a theoretical point of particle is treated as if it were a celestial body in

view and introduced the idea of ejection of mass classical mechanics. Kuiper (1941) studied the
'_ by the component stars through the Lagrangian problem of gaseous motion in this way and his
_ points L_ and/4 discussed in the previous section, paper gives a simple but illuminating discussion

_ We may therefore, conclude that the components that has often been referred to in the literature.
:_ of some close binaries have touched the Sz surface Kuiper first emphasizes the symmetry of the

_nd their atmospheres become unstable such that equation of motion with respect to the xy-plane.
_ gaseous particles are flowing out of the star either At least this symmetry will not be disturbed if an
_; at L_ or L_. The conclusion is further strength- initial symmetry in the distribution of matter is
: ened by the photometric observations (Wood assumed. Consequently the principal current

1946, 1957; also Kopal 1959) which indicates that should be symmetrical with respect to the plane.
i the relative radii of component stars in such bi- Furthermore, since two symmetrical currents in

naries are indeed comparable to what would be the z-direction would lead to a dissipation of
=_: expected from the two lobes of the S_ surface for energy not present in currents parallel to the xy-
_ their respective mass ratios, plane, Kuiper concludes that very probably the

The establishment of gaseous flow in close bi- latter are the most important currents in the
naries opened up a new field of theoretical study, binary system. In what follows we shall consider
Several approaches have since been advanced, only the motion in the zy-plane which incidently
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is also the plane in which observations may be the primary component in the R W Tauri system
made in eclipsing binaries. --one of the Algol-type eclipsing binaries. Joy i

Kuiper next points out that because of the unaware of Kuiper's investigation, deduced the i
Coriolis force (the first term on the right side of existence of the gaseous ring from the emission :

flow near Ll in the positive x- lines. This discovery induced Struve (e.g. 1950) iequation (5.2)),a
direction will be deflected in the -y direction, and others to initiate an extensive study of the !
This can be seen easily from the vector product if emission structure of many Algol type binaries. I
we set the initial velocity d'f/dt to be pointing in Emission rings have been since discovered in many
the +x direction. The current wiil therefore go systems. A detailed discussion of rings has been

principally in the direction of a,_,.., as is shown given by Struve and Huang (1957a) and a up-to-
in Figure 2. date list of such binaries may be fermed in

Sahade's (1960a) paper.

8 r If the ejection velocity in the rotating systemis small, the motion of particles near the point of
ejection (namely L1 and L2) may be treated by
linearized theory for the stability of orbits in the

f_ neighborhood of the Lagrangian points (Moulton

1914). Physically, we may imagine the region
near the ejection point as a nozzle where the den-
sity is high and collisions are frequent. Conse-
quently, we would not expect that any result

derived from such a consideration will have any
FIOURE 2.- -Ga._eous flow in the orbital plane expected in a practical significance. If the ejection velocity is

close binary system (adopted from Kuiper's 1941 paper), large, only direct numerical integration of equa-

tion (5.2) is possibie. Abhyankar (1959b) has
Numerical integrations of gaseous motion in a studied the motion in the neighborhood of these

contact binary by Kuiper furthermore "show that points in this way.

if, the speed is below a certain value, the matter Kuiper has also investigated the motion of a
will go around the companion in the sense, a,_,_,.... particle farther away from the ejection points L_
If, however, the speed is large, the matter will fly and L_ by numerical integration. His pioneer
off near _. The returning stream (in the -x direc- work in this direction has since been followed by
tion) will experience a Coriolis force in the -Fy Kopal (1956, 1957b, 1959), Gould (1957, 1959)
direction." The current would continue in the and many others after the introduction of the high
direction of $,_,_ as is shown in the figure with speed digital computer. They have computed
perhaps decreasing strength. Similarly, if the extensive series of orbits according to equation
current starts in the negative x direction near Lb (5.2). Many orbits thus obtained are difficult to
the same flow pattern will result. Such a flow interpret because of their seemingly erratic be-
pattern is indeed consistent with what has been havior with loops, cusps, etc. which obviously will
observed, say in _ Lyrae. all be erased by collisions. A few, however, yield

Now if only one component of the binary is in some interesting results. For example, some of
contact with the S_ surface, the gaseous flow pat- the computed orbits indicate quite convincingly
tern following the ejection of matter at L_ will be that particles ejected from the less massive corn

affected by the Corio!is force in the same way as ponent may indeed coalesce into a rotating ring if
we have described for the contact binary. With we properly take into account in our mental proe-
frequent collisions among the ejected particles, ess the, effect of collisions among the particles
such a tendency of motion may bring them to form themselves.
a rotating ring or rings around the other compo-
nent star as K'fiper has suggested. Indeed 6.2 The Hydrodynamic Approach

Kuiper's prediction was soon verified by Joy's In spite of some success in the orbital approach,
(1942) discovery of a rotating gaseous ring around the motion of gaseous stream in a binary system
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is not faithfully described by equation (5.2) since both components outside the S_ surface. In this
it does not include collisions and pressure. A way it has been shown that the gaseous rings
more realistic treatment of this problem should at around the primary component of many Algol-
least take the collisions into consideration. Pren- type binaries is indeed a solution of the hyd,'o-
dergast (1960) has examined the problem along dy__amic equation.
this line. The hydrodynamic equation for the
flow velocity _ in space takes the following form 6.3 A Statistical Point of View

in the rotating (x, y, z) coordinate system: In the present section we shall present a point

I 0_" of view from a statistical consideration. Its scope

-F_.grad_'+2-_×_=--lgrad p+grad U (6.1) lies in the middle between the orbital approach

P (which neglects both pressure and collisions) and

where U is given by equation (5.3) while p and p the hydrodynamic approach (which includes
are respectively pressure and density in the gase- both). It may also be given some physical in-
ous medium. The unit vector _ has the same sight to the problem that cannot be seen by simply

meaning asi, equation (5.2). The hydrodynamic integrating equation of motion--be it equation
equation of motion is supplemented by the equa- (5.2) or (6.1). Also, it may develope into a sto-
tion of continuity, chastic method that treats the gaseous particles

in the binary system like stars in a cluster (Chan-

ap +do_(p-_)-_ =o (6.2) drasekhar 1943) and eddies in turbulence (e.g.,
Chandrasekhar 1949). However, this is only a
remote possibility.

A comparison of equations (5.2) and (6.1) is At preseI, t, we can only give some elementary
helpful in our understanding of the difference be- properties of gaseous particles in the binary sys-

_ tween the two approaches. In the first place we tem according to a recent paper by Huang (1965).
• have now introduced in equation (6.1) a new term Let us consider n particles of mass, m_ (i= 1,

grad pip due to the pressure, which does not ap- 2...n) moving in a binary system. Furthermore,')

i pear in the orbital study. Secondly, we now con- the particle m_ corresponds at a given instant to a
_ sider a continuous velocity field v_(x,y,z,O instead definite value of C_ for the Jacobian constant de-

,; of dr-'/dt of individual particles. Thus, d_/dt is fined in equation (5.4). Because of collisions the
.: replaced by the first two terms in equation (6.1). individual C_'s of the particles change continually.

We may take the continuity of the velocity field However, since the particles are of atomic and
_. as a consequence of collisions among particles, sdbatomic sizes, the colliding particles at the in-
._ This illustrates how by introducing the pressure stant of collision may be regarded as occupying

and collisions we derive the hydrodynamic equa-l: - the same point in space. If the total kinetic
: tion from equation (5.2). This point of view energy of the colliding particles is furthermore
,_ helps explain the statistical point of view of the conserved during the collisions, it follows from the
_ problem that will be discussed in §6.3. definition of C given by equation (5.4) that the
_: By considering a steady state (Off/Ot= Op/Ot= o) new Jacobian constants denoted by C'_ for these

and by neglecting the pressure term, Prendergast particles after collisions should satisfy the follow-
has obtained an approximate solution for the two ing equation
dimensional case (in the xy-plane). He has as-

_ sumed that the velocity component at right angles ,
; to the zero-velocity curve is small and to be neg- Y,m_C_-- Y,mtC_ (6.3)

lected whenever convenient. Thereiore, his solu-

_ tion is a very special one. But because of this Thus, if wc dcfine an average <C>, we have
assumption he can advantageously choose a co-

n
_ ordinate system based on the zero-velocity curves Z m_C

themselves. Thus, he has found that the solution _ffil
= _ = constant (6.4)

._ predicts circulatory currents around each of the <C> _ m_
i: two components inside the St surface and around _-i
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under the processes of elastic collisions. How- varies with time. However, it can be shown from
ever, it may be noted that the dispers;en of C_'s equations (6.5) and (5.2) that
from their average value will in general change

with collisions, dh (1 1_ (6.6)
For inelastic collisions an equation connecting d-t=#(1 -_)Y\rl-r2/'

C_'s and C't's can always be obtained from the
energy consideration if we know the detailed which is a function of coordinates of the particle
process of +,hecollision. In the present considera- only, being independent of its velocity. What is
tion we shall assume that the collisions that take more important is that the total angular momen-

place among atomic particles in the binary system turn is conserved among the colliding particles if
are statistically elastic, i.e., endoergic collisions the collision may be regarded as taking place
balancing exoergic ones. instantaneously.

As a result of the constancy of <C> during We can now derive the pi'operties of a continu-
collision, the problem of gaseous flow is consid- ous gaseous medium in the binary system from
erably simplified because we have now a macro- those derived from a consideration of discrete par-

scopic quantity, < C>, to deal with instead of ticles. Let us illustrate it by the two-dimensional
following the courses of numerous particles in the case. Since the average values of C and h do not
system. This situation resembles the introduc- change by collision, we may write in a steady state
tion of the concept of temperature and pressure
which simplifies the study of the chaotic motion of _.VC = o (6.7)
molecules in gases in free space. Therefore, what-
ever is the nature of ejection that occurs on the from equation (6.4) and

stellar surface, the mean value of C,'s of ejected (_ _)particles and their dispersion may serve as two of _. vh = _(I-_) 1 _ 1 (6.8)
the most characteristic indices for the physical
mode of ejection as regards the course of their from equation (6.6) if we follow the streamline.
subsequent motion. While we have obtained these two equations by

It should be noted, however, that although the physical arguments, they can be easily derived
gaseous particles maintain a constant < C >, the from the hydrodynamic equation by first ncglcct-
mean flow does not follow the orbit derived from ing the pressure term. Naturally, equations (6.7)
equation (5.2). and (6.8) yield the same approximate solution of

In this way, we can treat the problem of gaseous circulatory motions as Prendergast has obtained.
streams as a statistical problem of C_'s. One of From equations (6.7) and (6.8) we can also see
the possibilities for further investigations along clearly the range of validity of the approximate
this line of thought is to link the statistical prop- solutions. As expecCed, the solution gives a good
erties of C_'s from the theoretical consideration approximation for the circulatory motion close to
with the strengths of spectral lines arising from each of the component stars. It has been illus-
the gaseous streams observed at different phases trated by numerical calculation that wherever the
of the binary motion, solution represents a good approximation, the

Our immediate purpose is, however, to show predicted motion from equations (6.7) and (6.8)
that an intermediate approach between the orbital approaches the periodic orbits of the restricted
and hydrodynamic one may be obtained from a three-body problem (Huang 1964a). Thu_, the
statistical consideration of C_'s as well as of the gaseous ring observed in many binaries may be
angular momentum (the z-component) per unit regarded equivalently either as a hydrodynamic
mass, h, of each particle in the system. Since a flow or as m..';ons of particles in a continuous
particle is moving in a two-centered field of force, series of periodic orbits that exist around each of
its h, which is given by the component stars.

Since we have emphasi_.ed the two physical

, 2, dy dx (6.5) "_rameters, h and C it is interesting to note thath=x my -rx-_-y-_, _ some points in space certain combinationq of

P
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_ values for these two quantities are incompatible, have a central condensation much higher than the
_ In other words, with a given pair of values for h critical value, fission does not occur in them

_ and C a particle cannot go into a certain region (Jeans 1944).
_' of space which may be called the forbidden The fission theory encounters'mother difficulty
•_. zone (Huang 1965). Since h is not a constant of in that it cannot explain the existence of binaries
_ motion in the restricted three-body problem, the of large separations. Because of the conserv.t-

forbidden zone is not as important as the tion of angular momentum, it can be easily seen
* zero-velocity surfaces. However, it may serve that two components of a binary resulting from

some useful purposes in depicting the trend of the fission process must be very close together.
motion in general, especially when it is applied Thus, in order to account for binaries of wider

! in combination with equation (6.6). separations other mechanism of formation h-ts to

be derived. While it is not prohibitive to have

7. THl: ORIGIN OF CI.OSl: BINARIES two different mechanisms for the formation of one
! kind of objects, the smooth distril)ution of scpa-
._ Essential difficulties encountered in various rations and other statistical behavior of I)inaries

•_. hypotheses of the formation of binary systems in throws serious doubt, according to Kuiper (1935a
general, have been discussed by Hynek (1951). and b), on any theory that cannot explain the

• Many of his arguments can be applied to the close formation of all binaries, except perhaps those
'_ binaries and are indeed followed in the present really wide ones with separations of the order of

discussion. From a general ground we may state interstellar distances (e.g. Van Biesbroeck 1957),
that the close binaries can be formed by one or by a single mechanism.

more of the three possibilities. They were formed Next, let us examine the possibility of convert-
" (1) as a result of the fiss;)n process in rapidly ing distant biilaries into close ones. In proposing

rotating single stars, (2) from distant binaries and this possibility, the presence of distant binaries

(3) directly as clo_e binaries in the bcginning. We is assumed. Then two components are supposed
shall briefly discuss the plausibility of these three to drift together due to a resisting medium such

processes, as we have seen in 3.4 or due to other energy
: Jeans (1919, 1928, 1944) has _pent many years dissipating mechanisms. In order to make the

in ._tudying the fissinn process of rapidly rotating theory complete we must first of all answer the
stars. He has found that when the rotational question of how these distant binaries are formed.

velocity is small, the shape of a flattened spheroid It has often been suggested that they may be
is common to all rotating bodies whether they are formed by star capture. However. stars are far
composed of gases, liquids or plastic material, apart in space and are moving with an average
However, if the rotational velocity is high, their velocity of about 10-20 km/sec with respect to
shape depends greatly upo_ their internal consti- the local centroid. Thus, if one star by chance
tution and especially the degree of their central approaches another, each will move on an hyper-
condensation. Accordir_g to him fission would bolic orbit. Consequently, the two will recede

; occur in massive liquid bodies in which there is no from each other to large distances unless their
_: appreciable central concentration of mass. But energy can be dissipated during the encounter.

i for a gaseous body of an extreme central condensa- The agency which absorbs the dissipated energy
tion (i.e., the Roche model), rapid rotation only can be either a tb,rd star that happens to be in the
makes it flatten more and more with an accom- immediate neighborhood or a resisting medium.
panying loss of mass at its equator. No fission But the chance of a three-star encounter in the

will result. Jeans further shows that all bodies galaxy is vanishingly small and the interstellar
having less than a certain critical degree of central medium is in general too tenuous to be effective in

_ condensation behave very much like those made reducing stellar velocities (McCrea 1953; Dodd
of incompressible liquid while all bodies having 1954).
more than this c,'itical amount of central con.. For the same reason of low interstellar densities

densation behave very much like those of an in- and high orbital velocities, it is very doubtful that
finite central condensation. Since actual stars the resisting force of an ordinary interstellar cloud

!
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can greatly reduce the separation of a binary in a Krat (1952). He observed that if their formation
time scale, say of l0 '° years. Therefore, the pos- did not occur at the same time, then the second
sibility of first forming binaries by star capture component could never have been formed in the
and then converting them into close ones is also neighborhood of the first one because of the lat-
ruled out. ter's strong tidal force and intense radiation both

This leaves us only the third possibility, i.e., of which incline to disrupt the gaseous condensa-
the binaries--both close and distant--were formed tion that is to become the second star.

as they are. It appears that we have not found If the binary systems wele formed as they are,
any serious objection to this possibility. On the it is inevitable to conclude that two components
contrary many observed facts are consistent with of a binary muzt have the same age. Previously
it. For example, according to Kopal (1959) the this consequence was regarded as a difficulty, be-
relative frequency of close binaries found in the cause one might argue, as with Jeans (1944) for
general galactic field is about 0.1 percent and is of example, that co_-aponents of binaries like Sirius,
about the same order of magnitude as that found Procyon, and others show signs of very different

in galactic clusters and stellar associations where ,',g_s. Both Sirius and Procyon contain a white
star.-: are supposed to be formed. Indeed many ,twarf as one component together with an early-
eclipsing binaries have been identified to be mem- ¢.ype main-sequence companion. Since the white
bets of galactic clusters (e.g., Sahade and Frieboes lwarf is an old object while the early-type main-
1960) and of stellar associations (e.g., Kraft and seque_e star is regarded as young, it is difficult
Landolt 1959; Semeniuk 1962). If binaries of to I-:flic_-ethat they could be coeval. However,

different separations were formed as they are, it shoal: b, ,: :_lthat whether a star is young or
their h:gh abundance in the galaxy strengthens old refers only to its own evolutionary sequence
the suggestion made frequently (e.g., Roberts and has nothing to do with time in the absolute
1957) that stars (at least Pop. I stars) are formed measure. For example, a massive star of 10Mo

in groups. As a result of his statistical study or more passes through all of its evolutionary
Batten (1960) gives reasons to suggest that many Stages perhaps in a fraction o, time that a star of
binaries may have for,ned together in space. 1Mo remains on the main _equence. Thus with
However, statistics also give us some puzzling a loss of mass at late stages either continuously
results. Jaschek and Jaschek (1957, 1959) have (Deutsch 1956) ,)r cataclysmically, there is no
found that although the frequency occurrence of reason to object why one star has reached the
spectroscopic binaries is uniform among the young white dwarf while the other of the same age is still
stars (about 20 percent) whethe," they are in asso- at the main-sequence stage. This is a fortiori
ciations, in clusters or in the general field, thr. true for two components in a close binary, be-
percentages of spectroscopic binaries in old groups cause, as we have seen, one component can accret
of stars (ages from 3 x 109to 6 x 10_years) decreases mass from its companion. Since we may regard
with age. mass accretion as a rejuvenation process while

From the standpoint of star formation in gen- mass loss as an aging process, such an exchange of
eral we also find the emergence of binaries quite m:,ss will enhance the apparent age difference be-
natural. Two condensations just happened to be tween two components in a close binary. More
formed near together in the p _rimevalmedium and will be said about mass exchange and its effect on
they will evolve to become a binary if their rela- evolution of close binary stars in the next section.
tive velocity is not large enough to escape from Although we have concluded _hat binaries were
each other. Since the two adjacent condensa- formed in the way they now appear, we still do
tions evolve separately on their own, they will not know for sure the detailed mechanism how
become two stars as it' they _ere chosen from a they actually emerged from the primeval nebula,
random sample. This prediction is again con- as the study of formation of bi, _rie:_,like that of
sistent with the observed result (Kuiper 1935 a sing]_ "-tars, is still at the speculative stage. Here

and b). Here we may mention the interesting we sh_.,ffreview briefly three suggestions regarding
argument in favor of the simultaneous formation the physical processes that shape the binaries in
of two components of a close binary advanced by general and close binaries in particular. As we
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will see presently, these three suggestions are not the magnitudes of the total angular momenta of
mutually exclusive because each deals only one proto-stars follow the Maxwellian distribution of
aspect of the many faceted problem of binary vrlu_ity magnitudes, from which Kuipcr is able
formation, to derive a theoretical distribution for the sepa-

Dodd (1954) has advanced a model of binary rations between two components in binaries. He
formation after he has found that star capture in has found that the theoretical distritmtion curve
the present state of interstellar space is untenable, indicates a less dispersion than tile observed one
He takes for granted that stars are forming around but has given several convincing reasons to show
various centers of condensation in the originall_ why this should be expected.
homogeneous medium where there are no local Parenthetically it may be noted that unaw_.re
variations in the gravitational field. If two con- of Kuiper's investigation, McCrea (1959 see also
densations happen to be nearby, the material in Stxuve and Zebergs 1962) has used practically the
the cylindrical volume between the two condensa- same arguments to derive the angular momenta
tions, according to Dodd, wiU collapse on the axis of stars.
joining them mainly under the gravitational in- Finally, Huang (1957b) has suggested that solid
fluence of the condensations themselves. Because prestellar nuclei may serve as the basis for stellar
the collapse on to the axis is cylindrical, energy condensations. If a medium possesses a large
dissipation is much more effective than would be amount of angular momentum and is composed of
the case of a spherical collapse. This cylindrical only gas, its contraction will lead to a rotational
collapse results in a column of comparatively small break-up at the equator. It will not form a bi-
cross-section extending bet" n two condehsa- nary as we have already mentioned in connection
tiou_. When the latter moves towards each other with the fission problem. However, the situation
un.qo, their gravitation, they sweep the mass be- will be different if there are large solid bodies
tween them. In acquiring mass in this way the embedded in the ffaseeus medium. These large

condensations also meet resistance which dissi- bodies must move very slowly in comparison with
pates the dynamical energy of the system. In the gaseous molecules for the same reason that the

end two condensations become two component Brownian movement is slow compared with mo-
stP's in a binary. It appears that Dodd has lecular mot,oas. Consequently, they are gravi-
assumed the condensations to be at rest in the rationally less stable than the gaseous substratum.
medium in the beginning. They form a binary It could therefore happen that these bodies coa-
instead of a single star only by a further assump- lesce into two revolving nuclei which serve later
tion that the condensations will be deflected from as two centers of condensation. As a result, a

the straight collision course by perturbation due binary instead of a rapidly rotating single star
to neighboring stars. Perhaps by making these is formed.
two assumptions, Dodd h,_ proposed an unreal- All these ideas are qualitative in nature _d
istic model since without ,atial relative motions function no more than some vague suggestions.
among the various condensations, one can only Much work needs to be done before any of them

: expect the collapse of all condensations into one will develop into a complete and consistent theory.

big mass. Furthermore, other ideas may come up in the
Kuiper (1935b, 195".' has studied the problem future. Therefore, we cannot avoid the impres-

of angular momenta: _f binaries both obser_ sion that the problem of binary formation is a
tionaily and theoretically. If one considers the wide open field for further mvestigations.
proto-star as a single hydrodynamical unit, its Let us now put ,side the question of physical
Reynolds number is high and consequently mo- processes of formation and turn our attention to
tion inside it must be turbulent. Thus, its angular the phenomenological side of the problem. In hi_
momentum may be computed fror_ the random study of separations of binaries Kuiper (1935a and
motion of large eddies as Kuiper has done. Since b) has realized that the distances of the major

: ,_,hemotion is random, each of the three compo- planets from the sun fall nearly in the mid-range
nents of the total angular momenta of stars must of the binary separations from l0 -_ to 106 A.U.
be given by the Gaussian curve. In other words with a median value at about 20 A.U. Therefore,

m
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Kuiper (1951) believes that the binaries and the Sugimoto 1962) we are still not certain about eve-
planetary system form a single uniform group, lution of single stars after the red-giant stage.
In his way be has argued that the number of plane- The rea._on for this uncertainty lies in the first
tary systems in the galaxy must be considerable place with the complications of various nuclear
because binaries are numerous. His view is now reactions that take place in different layers of the

generally accepted, star. But a more serious one is the rate of loss of
At the same time Struve (1949b, 1950; also mass from the _tar at different phases at and after

Struve and Huang 1958) has raised some interest- the red-giant stage. As a result of investigations
ing points on the relation between binaries and by Deutsch (1956, 1960, 1961) there is no doubt

planetary systems. Especially, he has suggested that red giant or supergiant stars lose mass con-
from a consideration of angular momentum that tinuously but the exact amount is not certain.

planetary systems may result from the mass dissi- Coming back to the close binary stars we know
pa_ion of W Urase Majoris systems, even less about the rate of mass loss or gain at

Whether Struve's intuition will turn out right different stages.
we cannot tell at this moment. One point we are Because of this uncertainty we shall discuss
now certain is that the formation of close binaries evolution of close binaries here only on some gen-

and single stars are events with no intrinsic differ- eral ground. In the first place the component
ence. We suggest that only a few varying param- stars must follow the natural sequence of evolu-
eters in the identical process of formation make tion of every star because of the continuous out-
all the different catagories of stars. One of the flow of energy which is derived either from their

important parameters doubtless is the angular gravitational potentials or from thermonuclear
momentum. If a condensation has a low value reactions. Since two components of the saIne

of angvlar momentum, single stars neither rotat- binary are coeval as we have concluded in the
ing rapidly nor possessing planetary systems will previous section, the more massive component
be formed. If the angular momentum is high, departs from the zero-age main sequence at a

rapidly rotating single stars, stars possessing plan- faster rate because of its higher luminosity than
etary systems of clo_,', binaries will be formed, the less massive companion. According to Smak
Which one of these possibilities will actually be (1959) this is the reason why the primary come
followed depends presumably upon other parame- ponents in close binaries are systematically greater
ters, among them we may mention density, total than the secondaries of the same mass. However,
mass, turbulence, magnetic activities, and other unlike single stars we would expect that stars even
(Huang 1965). at the main-sequence stage will lose mass if they

are components of close binaries. This is true
8. EVOLUTION OF CLOSEBINARY STARS

not only for the components in contact and semi-

Concerning the evolution of close binary stars contact binaries but also for those in completely
we are faced with me,ny peculia- systems but with detached systems if prominence activities like
few tangible leads that may indical_e their stages those taking place on the solar surface are active
of evolution. Consequently, we have a wide there. Indeed the variations in period found in
choice of theories for the evolutionary scheme of the detached and semi-detached systems (Kwee

close binary stars. While it is interesting toknow 1958) may well be due to this kind of mass
the fascinating ideas about binary evolution ad- variations.

vanced in the past decades, we shall follow a con- When the star is well inside the S_ surface, the
servative course here in preparing this section not loss of mass is slow aed its internal structure will
only because we do not have enough space but also not be seriously different from that of a single star
because most of these ideas are tentative at best. of the equivalent mass. Therefore, its struct'lre

The difficulty in understanding the evolution of may be derived by linear perturbation as has beer,
close binary stars can be easily seen from the fact performed by Morton (1960). The situation be-
that in spite of recent successes in the study of comes quite different when one or both compo-
stellar evolution (e.g. Burbidge and Burbidge nents reach the si_.e of the corresponding lobe
1958; Schwar_child 1958; Hayashi, HSshi and of the S_ surface, such as in several important
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categories of (.lo_e t)inaries like fl Lyrae variables, Or we may put our arguments (tifferently. Ae-
W Ursae Majoris variables, Algol-type variables, cording to the Vogt-Russell theorem (e.g, ('h,'m-
etc. In these cases, the rate of mass variation is pre- drasekhar 1939), if tit(, pressure, tile el)at'it y 'rod
sumably high and the str,,cture of the overflowing the rate of generation of en(,rgy are funt'iions of
component star at any time perhaps will find no the h)(,al vahles of lira (lensity, the teml)era(llr(,

parallel among ;_ing!e stars. For example, it is and the chemical contl,_sition only, then the strut.-
doubtful theft the subgi:mt component of the ture of a star is uniquely (leternained by the mass
Algol-type binaries has any resemblance in their of the star and its chemical v,mlpositions. In
internal structure to ,be single subgiant st:_r_ other words, among other stru('lur:d properties of
(Struve 1954). Reddish (1957) has suggested a star, the ra(lius is determine(l internally I)y the
some special models for red giants in order to mass and the ('hemi('al ('ompositi(m. Now in the
account for the process of mass loss. ('ant.let. and somi-eonh_et I,inarie_, the r_,lius ,_f

If we cannot derive the structure of component the overflowing component is further limited I)y
stars of contact and semi-contact system_ by the ('ont:_ct surfa('e whit.h ix imposed extern:dly.
applying perturbation to the normal single stars, Therefore, in general, we ('anne/ lind a stellar
can we calculate directly their sequence of eve- model that can fulfili t)oth imern:,l and externttl
lution by assuming a given rate of mass loss? The condi don for its radius. This ixequivalent to say
prospect of doing so is not good. There are see- that no solulion can t)e obtained from the (.onsid-

eral intrinsic difficulties involved in this kind of eration of equilibrium. This exl)lains why we
calculations. In the first place the mass loss has cannot derive the evolutionary sequence of me(i-
an effect not only on the star itself but also on the els by computation for the overtlmving ('omponent
separation and the contact surfaces which limit as we have done for the single stars.
externally the radius of the overflowing compo- Afte_ what hrs been said it I)e(.omes quite ap-
nent star. In other words, the structure of the parent that discussions (m the evolution of bin'try
component stars is coupled to the orbit of the stars arc necessarily qualitative and highly sl)ecu-
binary itself. Now the contact surface is not lative. We shouhl always rememl)er th.tt these
uniquely determined by the amount of mass lost discussions represent only the preliminary l)r(_bing
from the star. It depends critically on the mode of the possibilities but not the final verdict.

of ejection that can vary greatly from case to case Since the secondary components of many W
as we have already seen in 3.5. Thus, starting Ursae Majoris stars are over-luminous with
from one configuration of contact or semi-contact respect to their masses i)y more th,m two magni-
we do not know exactly what will be the configura- tudes on the average, Kitamura ( 1959. 1960) has

tion at the next moment even if we assume a suggested that the extr'_ energy radittted away in
definite rate of mass loss. derived from the gravitational eontrn,'tion of m.tss

We also er.eounter difficulty bttsic to the calcu- that is treing accunmlated on the secondary sur-
lation of stellar structure itself. The effect of face at the expense of the prim'_ry. Ac.(.or(lingly,
mass loss produces not only a pressure inbalance he has built a series of gravitationally ('ontraeting
but also a thermal inbalance in the interior. The stellar models that are accreting m'tss. Hmvever,

time of adjustment to the equilibrium condition he has not given any reason why the secon!Lary
is therefore measured by the Kelvin scale of gravi- captures mass from the primary instead ,_f the
tational contraction instead of the much shorter reversed course, namely the primary captures
time scale of pulsation (Crawford and Kraft 1957; mass from the seeondar), for after all the gases

Morton 1960; Schwarzsehild !9a_'2_. In other are flowing aroun(l both components of these
words we no longer have the simple relation of contact binaries. Therefore, the present writer
energy loss (at the surface through radiation) bal- personally inclines to regard Kuiper's (1918)
anted exactly by energy production in the interior interpretation of the deparl .Je, from the mass-

by thermonuclear reactions. It follows that the luminosity relation of W Ursae Majoris stars still
stellar structure in the present case becomes a worthy of our attention.
time-dependent problem instead of a problem of Because of the slowness of energy transfer in
equilibrium, the star. the loss of mass at the surface will change
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the internal structure and the luminosity only While this i_ an appealing idea there remain
slowly (on the Kelvin time scale as we have said) some difficulties in applying it to the Algol-type
Thhs, we arrive as with Krat (1957) at the con- binaries as was initially suggested ,)y Crawford
clusion that the star fwolves under the conditions and Kopal. Let us first consider the difficulty

of a constant luminosity and decreasing mass. raised by Struve and Huang (1958). If Mt and
Using a simple model Krat has shown that the M_ arc respectively the present masses of the pri-
process of mass ejection under these conditions mary and secondary component and if in their
will be a ,_,,if-accelerating process. Hence, he evolution, mass of an amount AM has been trans-

|
went on to suggest that the ejection velocity will ferred from the secondary to the primary and mass
increase. In this way he has tried to understand of an amount &l[ has been dissipated into outer
the high v(.lo(.ities of ejected ma'ter from the space by the secondary, the following inequality
Wolf-Rayet st,-rs Aet,,_rtling to him "the ev,;lu- can be easily established from the condition that
tion of masswe stars proceeds from the stage of the initial mass of the secondary must be greater
stable hot supergiants thr_mgh the stage of Wolf- than that of the primary:

Rayet st ar., and red giants to the main sequence 2AM + _M > Mr- M., (8.1)
(thus approaching solar-type stars)" as a result
of mass loss. It appears that Krat's view may Now the primary of the Algol-type binaries is
have overs(retched the idea of mass loss. How- u_ually a normal main-sequence star of spectral
ever, he is not alone in putting the Wolf-Rayet l,, A and may be assigned a mass of Mt=3Mo.
stars I)efore the nmin sequence (e.g., Sahade _.. _-ome cases, M: has been found to be 0.2Mo

1958). or less (Sahade 1945, 1949). if wc assume :
Among the many interesting views concerning M:=O.2Mo, we find from the ihequality (8.1)

the evolution of close binary stars one that is that hM>l.4Mo if all mass dissipated by the
appealing is about mass exchange between two secondary has hcen collected by the primary and
components and the conse(l_,cnce as regards their AM= _M> 14/15MG if equal amounts are col-
evohttion, proposed independently by Crawford letted by the primary and escaped to outer space.
(1955) and by Kopal (1955) for the Algol-type Thus, eight-tenths to nine-tenths of the initial
I)inaries. Consider in a detached close binary mass of the secondary must have beer lost. If
two comp, ments of di,ierent masses. Since the we remember that when the envelope of a star
luminosity is t)roportional to about 4th power of expands during its evolution after the main _e-
the mass (Russell and Moore 1940), the more quence the central core of more than one-tenth of

massive one evolves faster and consequently the total mass of the star contracts, it is hard to
reaches the stage of hydrogen-exhaustion in the see a star to lose eight-tenths to nine-tenths of its
('cntral cure earlier than its companion. Accord- mass by the mechanism described above.
ing to the curtvnt understanding of _tellar evolu- Indeed Kopal (1959) has finally rescinded this
tion, once the hydrogen has been exhausted in the intert.retation. In addition to the mass consi:l-
central core, its envelope expands. Eventually, eration, he has also called attention to the fact
it will reach the S_ surface. ,Mass that flows out that there is a complete lack of binaries whose
from the expanding component at near the point more massive component fills up the h" ' of St
L_ I)ec'tuse of the contract _.ondition will be col- surface. However, the ptvsent writer does net
h,cted at least partly by the other component. In :_gard this as a serious difficulty because the Kel-
this way the more massive coml)onent loses while vin time scale is short and the chance of discovery
the less massive one gains r, ass. According to is small (Morton 1960). Kopai has further
('rawfi,rd this process (.an proceed until the origi- pointed out that there is not enough energy to lift
rally nmre massive component i,ecomes the less the mass from the hydrogen-depleted central core
massive of the t_,'o. In this way, he explain.,', why of the secondary to the level of the primary sur-
in the Algol-type I)inaries !t is the less massive face, if more than eight-tenths of the total mass
component that now fills Ul) one lobe of the St is to be transported. Therefore, his second objec-
surfiwe while the nmre massive component is small tion arises from the difficulty of too much mass to
aml .,tM)le. be transferred which was discussed before. Kopal
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has not provided a new explanation for the A gol- explodin; stars and binarie:- (Crawford and Kraft

_ type binaries. However, he presumes on the 1950; Huang 1956; Kraft 1962, 1964; Schatzman

'_ observational ground that the less massive second- 1958). A review of extensive works in this field

aries in these systems for some unknown reason is beyond the scope of the present article.

begin to expand at a certain stage of their evolu- Finally I would like to express my sincere

tion before the more massive primaries will do so. thank_ to Mr. Clarence Wade, Jr. for performing
From these coasiderations this idea of mass on the IBM "o94 computer some calculaiions used

transfer between two components does not appear in this paper.

promising for the interpretation of the Algol-type
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