
Brief 66-10089

NASA TECH BRIEF

NASA Tech Briefs are issued to summarize specific innovations derived from the U. S. space program and to encourage their commercial application. Copies are available to the public from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia 22151.

Automatic Gain Control Circuit Handles Wide Input Range

The problem:

Radio receivers that must handle a wide range of input signal levels must use some form of automatic gain control (AGC) to prevent overloading the final output stage. Presently available circuits are limited to maximum undistorted input signal strength of no more than 50 millivolts rms.

The solution:

An AGC circuit capable of handling input signals of the order of 1 volt rms. The transistorized circuit maintains a relatively constant output by varying attenuation of the input signal.

How it's done:

The input signal is coupled through C_1 , to the variable attenuator made up of diode tee-pad network CR_1 , CR_2 , and CR_3 . The attenuator is prebiased in the low-attenuation condition by a reference voltage coupled through rf chokes L_1 and L_2 . The attenuator control elements are R_1 , C_3 , and Q_1 . Output of the attenuator is coupled through C_2 to reflex amplifier Q_2 . The amplified rf output is taken from resonant tank circuit L_3 - C_6 . The dc control voltage is fed through blocking filter L_4 - C_7 to the dc input of reflex amplifier Q_2 . The amplified dc output voltage is developed

(continued overleaf)

across collector load resistor R_2 and is fed to attenuator control transistor Q_1 . Emitter resistor R_3 , in conjunction with R_2 determines the dc gain of Q_2 , while C_8 , C_4 , and C_5 act as ac bypass condensers to maintain the rf gain of Q_2 as high as possible.

Note:

Inquiries concerning this invention may be directed to:

Technology Utilization Officer Manned Spacecraft Center P.O. Box 1537 Houston, Texas, 77001 Reference: B66-10089

Patent status:

This invention is owned by NASA, and a patent application has been filed. Royalty-free, nonexclusive licenses for its commercial use will be granted by NASA. Inquiries concerning license rights should be made to NASA, Code GP, Washington, D.C., 20546.

Source: Stanley H. Black of Sperry Gyroscope Company under contract to Manned Spacecraft Center (MSC-166)