OBSERVATION OF GALACIIC AND SOLAR COSMIC RAYS FROM OCTOBER 13, 1959 TO FEBRUARY 17, 1961 WITH EXPLORER VII (Satellite 1959 Iota)*

by

Wei Ching Lin**

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Physics and Astronomy in the Graduate College of the State University of Iowa

August, 1961

Chairman: Professor James A. Van Allen

* Supported in part by the National Aeronautics and Space Administration and by the Office of Maval Research.
** Graduate College Research Assistant.
ABSTRACI
This paper gives a comprehensive summary of cosmic-ray
intensity observations at high latitudes over North America andover Australia in the altitude range 550 to 1100 km by means ofGeiger tubes in Explorer VII (Farth satellite 1959 Iota). The timeperiod covered is October 13, 1959 to February 17, 1961. ofspecial interest are the observational data on some $\frac{20}{20}$ solarcosmic-ray events including major events of early April 1960,early September 1960, and of mid-November 1960. Detailed studyof the latitude dependence of solar cosmic ray intensity will bepresented in a later companion paper.The following is a brief tabular summary of the solar cosmicray events observed by Explorer VII during the period October 13,
1959 to February 17, 1961:
Dates
Approximate Absolute Peak Intensity of Protons having $\mathrm{E}>30 \mathrm{Mev}$ $\left.\left[\text { particles } \mathrm{cm}^{2} \mathrm{sec}\right)^{-1}\right]$ 10
November 9, 1959
November 30 - December 2, 1959 0.3
January 11-14, 1960 2
March 18-20, 1960 0.3
April 1-2, 1960 210
April 5-6, 1960 >5
April 28-29, 1960 32
April 29-30, 1960 18

Dates

> Approximate Absolute Peak Intensity of Protons having $\mathrm{E}>30 \mathrm{Mev}$ [particles $\left.\left.\mathrm{cm}^{2} \mathrm{sec}\right)^{-1}\right]$

May 4,	1960	40^{*}
May 5,	1960	11
May 6,	1960	13
May 7,	1960	25
May 13-14,	1960	50
May 18,	1960	0.8
May 26,	1960	0.8
June 1-2,	1960	5
June 4,	1960	1.3
August 12-16,	1960	2
September 3-9, 1960	12,000 to 46,000	
November 12-14, 1960	11,000	
November 15-19, 1960	1,800	

* Primary peak not observed with Explorer VII.

ACKNOWLEDGMENTS

The author wishes to express his sincere thanks to his advisor, Professor James A. Van Allen, for his original suggestion of this work, for his direction and encouragement throughout this work, and also for permitting the author to use his data for this thesis. The author also wishes to thank Dr. Carl E. McIlwain for his kindly guidance and friendly help, and to Dr. Brian J. O'Brien for his guidance. The author also wishes to express his appreciation to his friends, Mr. Curtis Laughlin and Mr. Guido Pizzella, for their assistance in obtaining calibration curves for the 112 Gelger tube. The general help of all the people in the data reduction department is acknowledged. The author also wishes to thank Mrs. Evelyn Robison for typing the manuscript with its more than 50 pages of tabulation.

The ephemerides of Explorer VII were prepared by the Space Control Center of the Goddard Space Flight Center of the National Aeronautics and Space Administration. For these data and for telemetry data from the world-wide network of N.A.S.A. stations, I am Indebted to arrangements by Mr. Herman E. LaGow of N.A.S.A. Additional telemetry data of importance were obtained by a station at Ottawa, Canada, through the courtesy of Dr. C. M. Hines.

TABLE OF CONTENTS

Chapter Page
I. Introduction 1
II. Method of Data Analysis 2
III. Observational Data and Discussion 8
A. Normal Cosmic Ray Intensity 8
B. November 9, 1959 Event 8
C. November 30 - December 2, 1959 10
D. January 11-14, 1960 10
E. March 18-20, 1960 11
F. April 1-2, 1960 and April 5, 1960 11
G. April 28-30, 1960 12
H. May 4-8, 1960 13
I. May 13-14, 1960 15
J. May 18 and May 26, 1960 16
K. June 1, 2 and 4, 1960 16
L. August 12-16, 1960 17
M. September 3-9, 1960 18
N. November 12-28, 1960 19
References 22

TABLE OF TABLES

Table PageI. Properties of SUI Detectors in
Explorer VII 24
II. Summary of Observations 25

TABLE OF FIGURES

Figure

Nos.
Page

> 1. Characteristic curves of apparent vs true counting rate of the 112 Geiger tube detector in Explorer VII. Apparent counting rate saturates at (a) 305 (b) 385 (c) 515 $\begin{array}{ll}\text { (d) } 930 \text { counts/sec } & \text {. }\end{array} 76$
2. True counting rates of the 112 Geiger tube, N_{112}^{*} vs true counting rates of the 302 Geiger
tube, $N_{302,}^{*}$ at the highest dip latitude
observed by Explorer VII 77
3. Apparent counting rate observed by the two Geiger tube detectors in Explorer VII (0718-0736 UT, November 18, 1959) 78
4. Apparent counting rate observed by the two Geiger tube detectors in Explorer VII (0542 - 0557 UT, June 17, 1960)79
5. Apparent counting rate observed by the two Geiger tube detectors in Explorer VII (1910-1922 UT, April 28, 1960) 80
6. Apparent counting rate observed by the two Geiger tube detectors in Explorer VII (1837-1848 UI, May 4, 1960) 81
7. Apparent counting rate observed by the two Geiger tube detectors in Explorer VII (1652 - 1705 UT, May 13, 1960) 82
8. Apparent counting rate observed by the two Geiger tube detectors in Explorer VII (0334 - 0337 UT, September 4, 1960) 83
9. Apparent counting rate observed by the two

Geiger tube detectors in Explorer VII (2050-2101 UT, November 12, 1960) 84

TABLE OF FIGURES (continued)

FigureNos.Page10. Apparent counting rate observed by the two Geiger tube detectors in Explorer VII (2324-2330 UT, November 12, 1960) 85
11. Corrected rate of the 112 Geiger tube detector at highest dip latitude observed by Explorer VII (January 1-24, 1960) 86
12. Corrected rate of the 112 Geiger tube detector at highest dip latitude observed by Explorer VII (March 23 - April 15, 1960) 87
13. Corrected rate of the 112 Geiger tube detector at highest dip latitude observed by Explorer VII (April 23 - May 16, 1960) 88
14. Corrected rate of the 112 Geiger tube detector at highest dip latitude observed by Explorer VII (May 17 - June 9, 1960) 89
15. Corrected rate of the 112 Geiger tube detector at highest dip latitude observed by Explorer VII (August 2-25, 1960) 90
16. Corrected rate of the 112 Geiger tube detector at highest dip latitude observed by Explorer VII (August 26 - September 18, 1960) 91
17. Corrected rate of the 112 Geiger tube detector at highest dip latitude observed by Explorer VII (November 12-31, 1960) 92

I. INIRODUCTION

The IGY composite satellite Explorer VII (1959 Iota), launched on October 13, 1959, included an instrument prepared by this department / Ludwig and Whelpley, 1960 for comprehensive study of (a) the lower parts of the inner and outer radiation belts, (b) the primary cosmic-ray intensity near the earth, and (c) the arrival of solar cosmic rays. Table I summarizes the properties of the two Geiger tube detectors in this instrument (Van Allen and Lin, 1960.

This paper reports the solar cosmic ray intensity at high latitudes, both north and south, measured by Explorer VII during the period October 13, 1959 to February 17, 1961. All data of the present report were derived from receptions at Iowa City, Iowa, and Ottawa, Canada, and at the NASA stations at Blossom Point, Maryland, and Woomera, Australia.

II. METHOD OF ANALYZING DATA

The method of analyzing data used in this paper is similar to that previously reported [Van Allen and Lin, 1960].

It has been found meanwhile by examination of counting rate data under high intensity conditions during the November 1960 solar cosmic ray events and during passages through the inner radiation zone that the apparent counting rate of the 112 G.M. tube saturated at a considerably lower value than that found by Ludwig and Whelpley [1960] in pre-flight calibrations. The apparent counting rate of the 302 tube also saturated at a lower value. Since the 302 tube has a considerably smaller geometric factor than that of the 112 and since the additional shielding of the 112 has little effect in absorbing the radiation encountered in the lower edge of the inner zone near the equator it was possible to construct an approximate curve of apparent rate vs true rate of the 112 by using in-flight data.

This curve was then checked and refined by an extended study of the characteristics of the spare flight unit of the Explorer VII apparatus. The significant variables were found to be the supply voltage to the amplifiers, pulse formers and scaler (nominal value 6.5 volts), and separately the high voltage supply for the G.M. tube (nominal value 700 volts). The following are sample results:

Circuit Voltage	High Voltage	Saturation Counting Rate of 112 Tube
4.05 volts	630 volts	305 counts/sec
5.35	630	385
5.20	640	515
6.00	700	930

Full characteristic curves of apparent vs true counting were run for each of the above conditions to correspond to various flight conditions (Figure I).

An additional check on the validity of this procedure was that the laboratory value of the saturation counting rate of the 302 automatically agreed (approximately) with its flight value for the same supply voltage conditions in the laboratory tests that mark the saturation rate of the 112 do so.

The saturation counting rate of the 112 G.M. tube as observed during passages through the inner zone showed a systematic dependence on local time with a maximum at 08:00 local time, a minimum at 19:00 local time, and a maximum-to-minimum excursion of 60 counts/sec out of a total value of about 400 counts $/ \mathrm{sec}$. This effect is presumably due to a combination of the effects of the state of charge of the batteries and the temperature.

It is felt that a reasonable level of confidence can be placed in the revised curves (Figure 1) of the relation of apparent
counting rate to true counting as obtained by the above method. Most of the data of the present paper required no dead-time correction and are, therefore, independent of the above discussion. Only the high counting rate data of the early April 1960 and midNovember 1960 events are significantly affected. Previously published absolute intensities for the April I, 1960 event are corrected herein (see pertinent section of Chapter III).

The data of the present paper are those obtained when the satellite was at or near the highest dip latitude which it reached (orbital inclination 50.4° to equatorial plane). In this way there are obtained counting rates having the smallest possible contribution from trapped particles in the outer zone. This contribution is further subtracted in order to obtain the net counting rate due to penetrating particles (i.e., cosmic rays, in contrast to the sof't radiation of the outer zone) by the following technique: (a) A large body of observations of the counting rates of the 112, N_{112}, and of the counting rate of the $302, N_{302}$, were assembled for quiescent (non-soler event) conditions and for the highest available dip latitudes.
(b) To any extent necessary these data were corrected for dead time to yield the respective true counting rates N_{112}^{*} and N_{302}^{*}. (For data shown in Figure 2, the dead time corrections were trivial.) (c) Then a plot was made of N_{112}^{*} vs N_{302}^{*} (Figure 2). From this plot it is seen that N_{112}^{*} is a linear function of N_{302}^{*} and that at $\mathrm{N}_{302}^{*} \rightarrow$ zero, N_{112}^{*} approaches 14.3 counts/second. Since the ratio of geometric factors (Table I) for penetrating particles (e.g. ordinary cosmic rays) is 13.3 an $\mathrm{N}_{112}^{*}=14.3$ corresponds to $N_{302}^{*}=1.08$. Hence, the intercept at $N_{302}^{*}=0$ is taken as the pure cosmic ray rate of the 112 tube. The equation of the curve of Figure 2 is
or

$$
\begin{aligned}
& N_{112}^{*}=14.3+0.119 N_{302}^{*} \\
& \left(\frac{N_{112}^{*}-14.3}{N_{302}^{*}}\right)=0.119 .
\end{aligned}
$$

This ratio is similar to that usually observed in the soft radiation region of the outer zone, thus further supporting the belief that Figure 2 can be used reliably in subtracting the contribution of soft radiation to the rate of the 112. It is, of course, evident from the latitude dependence of the counting rates of the two tubes that the time-varying outer boundary of the outer radiation zone is the principal cause of the variation of counting rates at high latitudes. The use of Figure 2 makes it possible to considerably
increase the sensitivity for the reliable detection of solar cosmic rays. When N_{302}^{*} is less than, say 100 counts/sec, one can clearly detect an intensity of solar cosmic rays as low as 2 particles $\left(\mathrm{cm}^{2} \mathrm{sec}\right)^{-1}$ (having energies greater than 30 Mev (for protons)). It is probable that one could improve this detection capability by an order of magnitude with a satellite passing over the polar caps.

Two examples of the use of Figure 2 follow:
In the pass which covered from 0720 to 0736 UT on November 18, 1959, the position of observation was chosen at 0729.5 UT (Figure 3 and Table II). N_{302}, the apparent counting rate of the 302 Geiger tube, is 17 counts/sec and N_{112}, the apparent counting rate of the 112 Geiger tube, at the same time is 16 counts $/ \mathrm{sec}$. From the curve of apparent counting via true counting rate for the 112 Geiger tube (Figure I), one finds the true counting rate N_{112}^{*}, corresponding to $N_{112}=16$ is also 16 . This is shown in Table II. By Figure 2 and the above discussion, the estimated contribution of soft trapped radiation in the outer edge of the outer zone to the counting rate of the 112 is $\Delta N_{112}^{*}=0.119 N_{302}^{*}=2$ counts $/ \mathrm{sec}$. The net true counting rate due to cosmic radiation is taken to be

$$
N_{112}^{* *}=N_{112}^{*}-\Delta N_{112}^{*}=14.0 \pm 1.0 \text { counts } / \mathrm{sec} .
$$

On 17 June 1960 in the pass which covered from 0542 to 0557 UT, the time of observation was chosen at 0551 UT (Figure 4 and Table II) at which $N_{302}=60$ and $N_{112}=20$ from which $N_{112}^{* *}$ can be inferred as about 13 ± 1.5. The error was estimated from (a) the fluctuation of N_{112} near the vicinity of the observation position, and (b) how large the correction term ΔN_{112}^{*} was. During large solar cosmic ray events there is an important (or perhaps dominant) contribution to N_{302}^{*} due to penetrating particles In addition to normal cosmic rays. Fortunately in such cases there is usually an accompanying depletion of the outer zone (cf. Van Allen and Iin, 1960) such that the correction for trapped radiation may be negligible. In solar cosmic ray events for intermediate size (say 20 times normal C.R. intensity) the final value of $N_{112}^{* *}$ is determined by a two stage iteration process -- i.e., by first using Figure 2 to find ΔN_{112}^{*}, then taking $\left(N_{112}^{*}-\Delta N_{112}^{*}\right)$ and the relative geometric factors of the 112 and 302 to estimate the penetrating contribution to N_{302}^{*}, then using Figure 2 again to get an improved ΔN_{112}^{*} and thereby an improved $\mathrm{N}_{112}^{* *}$ 。
III. OBSERVATIONAL DATA AND DISCUSSION
A. Normal Cosmic Ray Intensity.

During the period of observation the average net counting rate $\mathbb{N}_{112}^{* *}$ due to galactic cosmic rays as observed at the highest latitudes over North America and Australia by Explorer VII was about 14.5 counts/sec (cf. Table II). This rate corresponds to an omnidirectional intensity at the altitudes of observation

$$
J_{0}=2.0 \text { particles }\left(\mathrm{cm}^{2} \mathrm{sec}\right)^{-1}
$$

It is, of course, well know that such a measurement cannot be taken to represent the interplanetary cosmic ray intensity for the following reasons:
(a) the solid earth blocks a substantial fraction of 4π steradians.
(b) the magnetic influence of the earth may not be negligible even at these high latitudes.
(c) there is doubtless a contribution due to cosmic ray secondaries produced in the atmosphere (cosmic ray albedo).
B. November 9, 1959 Event (Table II).

The first case during the observation period of Explorer VII that $N_{112}^{* *}$ exceeded 20 counts/sec was on November 9, 1959 at about

1051 UT during the pass which covered the period 1042 UT to 1.058 UP. $N_{112}^{* *}$ was 30 ± 5 counts/sec. During the following pass which covered the period 1230 UT to 1240 UT on the same day, the counting rate curves of both the 112 and the 302 exhibited concatenated bumps in the high latitude portion of their counting rate vs time curves in the region where both curves usually exhibit valleys. The bumps were narrower in time extent than for usual solar cosmic ray cases (and therefore corresponded to a high latitude threshold). At the highest value of latitude, $N_{302}^{*}=107$ and $N_{112}^{*}=90$. The resulting $N_{112}^{* *}=85 \pm 9$ counts/sec. Hence the radiation being detected was considerably harder than typical outer zone radiation but considerably softer than that in a typical solar cosmic ray event.

After subtracting the contribution from cosmic rays, a net intensity of $10\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$ is found from the 112 data at the highest latitude at 1234.7 UP , on the assumption that the particles being counter are directly-penetrating ones (e.g. protons of $E>30 \mathrm{Mev})$ and are not non-penetrating electrons which are being detected via their bremsstrahlung. The latitude dependence leaves Iittle doubt that the primary radiation must consist of charged particles.

Other interesting aspects of this event are that no associated geomagnetic disturbance was reported and that no plausibly re-
sponsible solar disturbance has been identified.
C. November 30 - December 2, 1959 (Table II).

On November 30, 1959 a flare of importance 3 was observed at Sacramento Peak beginning at 1722 UT and ending at 1904 UT at the location NO8 EN6 [Compilations of Solar-Geophysical Data].

Explorer VII data showed an increased counting rate of about $10 \% \sim 20 \%$ above normal cosmic ray intensity in early December 1 ; a similar increase was also observed during late December 1 and early December 2. The intensity had returned to normal by early December 3.
D. January 11-14, 1960 Event (Figure 11, Table II). At 2040 UT on January 11, 1960 the beginning of a solar flare of importance 3 at the location N2 EO3 was observed at Lockheed Observatory [Compilations of Solar-Geophysical Data]. The flare ended at 2355 UT.

Explorer VII showed that at the middle of January 10, $N_{112}^{* *}$ was 14 (which is the normal cosmic ray value), and at the middle of January 11, which is before the solar flare was observed, $\mathbb{N}_{112}^{* *}$ was about 17, an increase of about 20% above normal. At about the middle of January $12, N_{112}^{* *}$ was 27 , corresponding to an excess particle intensity of $2\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. Thereafter, the intensity decreased gradually, and was back to normal by about the middle of January 15. This small increase in intensity and long decay time were supposed
to be due to the location of the flare on the sun, according to the model of sun-earth magnetic field suggested by Obayashi and Hakura [1960].
E. March 18-20, 1960 (Table II).

An increased $\mathrm{N}_{112}^{* *}$ of about $10 \% \sim 20 \%$ above the normal cosmic ray value was observed from Explorer VII data. The increase, which does appear to be significant, has not been identified with any other phenomena.
F. April 1-2, 1960 and April 5, 1960 (Figure 12, Table II).

A full report on these events has been given previously by Van Allen and Lin [1960] including the report of a 24% Forbush decrease during the early morning of April 1.

An improved estimate of the maximum intensity on April 1 has been made with the help of the set of laboratory curves (Chapter II and Figure 1) of apparent rate vs true rate of the 112. The choice among the family of curves to be used was made by finding the flight saturation value of the 112 in nearby inner zone passes at a similar local time. The saturation value adopted was 340 counts/sec.

The resulting value of $\mathrm{N}_{112}^{* *}$ at about 1023 UT on April I was 1600 counts/sec. This yields

$$
J_{0}=220 \pm 30\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}
$$

for the omidirectional intensity of solar protons of energy greater than 30 Mev . At the same time the counting rate of the 302 yields

$$
J_{0}=210 \pm 20\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}
$$

of protons of energy greater than 18 Mev . The combination of these two results indicates that the spectrum was not rising appreciably between 30 and 18 Mev and hence invalidates the earlier spectral remark of Van Allen and Lin [pp. 3001 top of column 2, 1960].

The peak intensity of the April 5-6 event was not observed by Explorer VII. At about 1000 UT on April 5 the omnidirectional intensity of protons of $\mathrm{E}>30 \mathrm{Mev}$ was $5\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. G. April 28-30, 1960 (Figure 13, Table II).

Three important flares were observed during this period. The first occurred at about 0130 UT on April 28 (Hawaii Observatory), the location of the flare being SO 5 E 34 . The satellite data show a slight increase from normal cosmic ray intensity at about 0323 UT. Then there were no data until 1920 UT (Figure 5), but from the observed time history of the event (Figure 13), it appears that the peak of this event was not observed with Explorer VII. The proton onnidirectional intensity with $\mathrm{E}>30 \mathrm{Mev}$ at 1920 UT was about $32\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. The intensity decreased monotonically with time to about 03 UT on April 29. The increased counting rates shown in Figure 13 during late April 29 and early April 30
were presumably due to flares beginning at 0107 and ending at 0230 at $N 2$ W20, and also beginning at 0612 and ending at 0822 on April 29 at the location of N15, W2O (observed at Lockheed and Capri S respectively) [Compilations of Solar-Geophysical Data]. H. May 4-8, 1960 (Figure 13, Table II). On May 4 polar cap absorption began at 1044 UT [Ieinbach/. The flare which was apparently responsible for this event began before 1020 UT on the west limb of the sun, and was observed at Thule, Greenland.

The event at around 1100 UT was of very short time duration and was not observed by Explorer VII due to the absence of a suitable pass during the event. Explorer VII data show an increased $N_{112}^{* *}$ at 1516 UT and at the following pass at about 1700 UT the omnidirectional intensity was about $16.5\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$ which was about 8.3 times normal cosmic ray intensity. Balloon observations by Winckler, Mosley, and May [196] were obtained at the same time (1700 UI) the excess ionization rate at $6 \mathrm{~g} / \mathrm{cm}^{2}$ atmospheric depth was about 25% above the normal galactic cosmicray background ionization rate at that altitude. Explorer VII data show peak intensity for this later event on May 4 during the pass covering 1837 to 1848 UT (Figure 6). The omnidirectional intensity for protons with $\mathrm{E}>30 \mathrm{Mev}$ was about $40\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. The next and subsequent passes show a steady decrease of intensity
up to about 0040 UT on May 5. Then there were no data until about 1450 UT on the same day. The balloon observations showed the decay of the event from 1700 on May 4 to 0200 UT on May 5. Thus the peak intensity shown by Explorer VII at 1830 might not correspond to the maximum intensity of the May 4 event; the maximum intensity apparently occurred between 1700 UT and 1830 UT. There is a striking level of general agreement between the satellite- and balloon measurements on the time history of the event. From the 112 the omnidirectional intensity of protons with $\mathrm{E}>30 \mathrm{Mev}$ was about $40\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$ at 1842 ; and from the 302 , the omnidirectional intensity with $\mathrm{E}>18 \mathrm{Mev}$ was about $52\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$.

A thorough study of the spectrum of solar protons (and of solar alpha particles) during a balloon exposure of nuclear emulsions in the period 1700 UT May 4 to 0200 UT May 5 has been reported by Biswas and Freier [196]. The average differential number energy spectrum $\mathrm{dN} / \mathrm{dE}=$ const $\mathrm{E}^{-(1.0 \pm 0.3)}$ was found for $250 \leq \mathrm{E} \leq 1000 \mathrm{Mev}$ for protons.

Between 0040 and 1430 UT May 5 there were no satellite observations. $N_{112}^{* *}$ was about 35 at 1452 UT on May 5 and increased with time. At 1819 UT there was an apparently maximum value of $N_{112}^{* *}=77$, corresponding to an omnidirectional intensity of $9\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$, after subtraction of the galactic cosmic ray background. On May 6, at about 1844, Explorer VII reported another
value of $N_{112}^{* *}$ equal to about 110 counts/sec, which corresponds to about 15 particles $\left(\mathrm{cm}^{2} \mathrm{sec}\right)^{-1}$. After subtracting the cosmic ray background of 2 it gives the proton flux of about $13\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. On May 6 a Plare of importance 3^{+}was reported at Sacramento Peak beginning at 1404 UT at S10 EO8 /Compilations of Solar-Geophysical Data]. This flare was also observed at several other stations and is presumed to be the cause of the May 6 solar cosmic ray event [see Leinbach, 1960].

On May 7 no flare with inportance more than 1 was observed. However, Explorer VII data show an increase of intensity and at about 2100 UT the peak value of N_{112}^{*} was 195 , corresponding to $27\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$ absolute omnidirectional intensity. After subtracting the cosmic ray background of $2\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$ the solar proton intensity was $25\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. The intensity decreased thereafter and returned to normal by about 20 UT on May 8.
I. May 13-14, 1960 (Figure 13, Table II).

The next increased intensity was observed on May 13. The flare which was supposed to be responsible for this event was observed by several observatories [Compilations of the Solar-Geophysical Data] at about 0522 UT and of importance $3+$ at the location of approximately N3O W64. Unfortunately the first pertinent data from Explorer VII were not received until 1330 from the Woomera station, which showed an $N_{112}^{* *}$ of 58 . The next pass showed the highest observed value of
$N_{112}^{* *}$, namely 370, corresponding to a proton intensity of $50\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$ at 1512 UT. This reault was confirmed by the Woomera station which also showed the decline of intensity during the next pass covering the time 1652 to 1705 UT (Figure 7). The pass over North America at about 2112 showed that $N_{112}^{* *}$ was 25 but at this time the subsatellite point was at 75.5 degrees dip angle, compared to the previous pass over North America at about 1927 with dip angle of 78.3 degrees. Hence the rapidity of time decay was probably less than would appear at first glance. The value of $N_{112}^{* *}$ was back to the normal value of about 14.5 counts $/ \mathrm{sec}$ sometime before 1600 UT of May 15 .
J. May 18 and May 26, 1960 (Figure 14, Table II). On May 18 after 1200 UT an increase of about 40% above the normal intensity was observed by Explorer VII. About the same amount of increase was observed around 12 UT on May 26. K. June 1, 2 and 4, 1960 (Figure 14, Table II). On June 1 a flare of importance 3^{+}was observed at Capri s Observatory, starting at 0824 UT and ending at 1340 UT at the location of about N28 E46 [Compilations of Solar-Geophysical Data]. A slightly increased intensity $N_{112}^{* *}=18$ was observed by Explorer VII at 1021 UT, about two hours later than the beginning of the flare. The pass previous to 1021 showed normal intensity. Thus
the solar protons began arriving at the earth sometime before 1020 UT. The highest value of $\mathrm{N}_{112}^{* *}$ during the event was 51 counts/sec at 1205 UT, corresponding to a solar proton intensity of $5\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$ with $\mathrm{E}>30 \mathrm{Mev}$. During the middle of June 2 $\mathrm{N}_{112}^{* *}$ was 22 counts/sec, corresponding to a solar proton intensity of about $1\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. By 1120 UT on June $3 \mathbb{N}_{112}^{* *}$ had returned to its normal value.

Again at 0900 to 1230 UT on June 4, $N_{112}^{* *}$ was high, being about 21 counts/sec, and by about the same time on June $5, N_{112}^{* *}$ was normal.
L. August 12-16, 1960 (Figure 15, Table II).

On August 12, 1960 at 1924 UT a Plare of importance 3^{+}was observed at Hawail at the location of NR2 F27. The flare ended at 2042 UT. Explorer VII had only one pertinent set of observations, at about 1240 UT on August 12 . $N_{112}^{* *}$ was 29 counts/sec, corresponding to a solar proton intensity of $2\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. On August 13 during 0850 to 1220, the intensity was $1.3\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$ and on the following day, during 0820 to $1010 \mathrm{UT}, 0.8\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. On August 15, about 1130 UT, the excess intensity was slightly higher than $0.8\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. On August $16 \mathrm{~N}_{112}^{* *}$ was about 15% to 20% above normal. On the following day $N_{I I 2}^{* *}$ was back to the normal intensity.
M. September 3-9, 1960 (Figure 16, Table II).

One of the most interesting series of observations was made during this period. On September 2, two flares of importance 3 were observed without being accompanied by Type IV radio emission, and on September 3 a flare of importance 3 began at 0040 at N17 E9O. This latter flare was accompanied by Type IV radio emission and is presumed to have been responsible for the emission of the observed particles. Balloon observations were made at Minneapolis /Bhavsar, Mosley, and May, Phys. Rev. Letters 1961 on September 3. Rocket observations were also made /Davis, Fichtel, Guss, and Ogilvie, Phys. Rev. Letters 1961/. Unfortunately, there were no simultaneous data from Explorer VII for direct comparison with their results.

During three passes at 0037, 0221, and 2322 UT, on September 3, $N_{112}^{* *}$ was $12 \pm 2,10 \pm 3$, and 1000 counts/sec, respectively. Therefore the time at which solar protons arrived near the earth was after 0221 and before 2322 UT. From our data the peak intensity was observed at 0155 and 0337 on September 4 (Figure 8). $N_{112}^{* *}$ was about 1800 counts $/ \mathrm{sec}$, which corresponds to a solar proton flux of $250\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$ with $\mathrm{E}>30 \mathrm{Mev}$. A very interesting feature of this event is its very slow decay. If one assumes that the peak intensity observed by Explorer VII was the maximum intensity of this event, then the time width of this event at half-intensity exceeds eight
hours, being much longer than that of the April 1 event. N. November 12-28, 1960 (Figure 17, Table II).

At 2300 UT of November 12, the peak intensity of $N_{112}^{* *}$ observed by Explorer VII was between 85,000 to 330,000 counts/sec (Figure 10). There were two passes earlier than 2330 UT. Their $N_{112}^{* *}$ were $16,000 \pm 5,000$ and $32,000 \pm 10,000$ at 2101 UT (Figure 9) and at 2245 UT respectively.

The ground observation of November 12 and November 15 events were reported by Steljes, Carmichael, and McCracken [1961].

On November 12, the two distant peaks of the neutron monitor data (about 1600 UT and 2000 UT) were very well explained by the model they used. According to their observational results and explanation, both counting rate enhancements on November 12 were due to cosmic-ray production in the large flare which started at 1320 UT on November 12.

When we compare the peak intensity of Explorer VII at 2330 UT to the second peak of the neutron monitor data, the peak of Explorer VII data lagged behind by about $31 / 2$ hours. Since the detection of neutrons on the ground implies arrival of high energy particles, the lower energy particles lagged behind the high energy particles.

At 2330 UT on November 12 the proton (plus α-particle)
intensity was between 12,000 and $45,000\left(\mathrm{~cm}^{2} \mathrm{sec}\right)^{-1}$. The upper
limit of the peak intensity was determined by the 302 Geiger tube, since the 112 Geiger tube was driven far beyond its saturation value, namely into a portion of its calibration curve which involved substantial uncertainty, For the November event, apparent fluctuatrons of $N_{112}^{* *}$ in Figure 17 are in large part due to differences in the latitudes of observation. The successive entries do not provide a homogeneous series of observations from which the detailed time history of the intensity can be simply determined.

For geographic latitudes north of about $48^{\circ} \mathrm{N}$ at 1000 km altitude over the polar caps it is of interest to note the timeintegrated omnidirectional intensity.

This result [J. A. Van Allen, Private Communication] may be compared to the one year integral of galactic cosmic ray intensity in interplanetary space [Van Allen and Frank, 1959]

$$
\int_{\text {One Year }}\left(J_{o}\right)_{c . r} d t=6 \times 10^{7} / \mathrm{cm}^{2}
$$

The intensity enhancement on late November 20 and early November 21 (Figure 17) observed by Explorer VII was apparently due to the flare started at 2055 ± 10 UT on November 20 at a solar
longitude some $120^{\circ} \mathrm{N}$ of the center of the solar disk, which was predicted by Carmichael, Steljes, Rose, and Wilson Phys. Rev. Letters, 1961. Their postulate was strongly supported by Covington and Harvey [Phys. Rev. Letters, 196].

REFERENCES

Biswas, S., and P. S. Freier, "The High-Energy Cosmic-Ray Flare of May 4, 1960. 2. Emulsion Measurements", J. Geophys. Research 66, 1029-1034 (1961).

Carmichael, H., J. F. Steljes, D. C. Rose, and B. G. Wilson, "Cosmic-Ray Neutron Increase From a Flare on the Far Side of the Sun", Phys. Rev. Letters 6, 49-50 (1961).

Covington, Arthur E., and Gladys A. Harvey, "Measurement of 10.7 -cm Solar Noise Burst of November 20, 1960", Phys. Rev. Letters 6, 51-52 (1961).

Davis, L. R., C. E. Fichtel, D. E. Guss, and K. W. Ogilvie, "Rocket Observation of Solar Protons on September 3, 1960", Phys. Rev. Letters 6, 492-494 (1961).

Leinbach, Harold, "The Polar Cap Absorption Events of March 31 through May 13, 1960", Geophysical Institute, University of Alaska, June 1960.

Ludwig, G. H., and W. A. Whelpley, "Corpuscular Radiation Experiment of Satellite 1959 (Explorer VII)", J. Geophys. Research 65, 1119-1124 (1960).

Obayashi, T., and Y. Hakura, "Propagation of Solar Cosmic Rays through Interplanetary Magnetic Field", J. Geophys. Research 65, 3143-3148 (1960).

Steljes, J. F., H. Carmichael, and K. G. McCracken, "Characteristics and Fine Structure of the Large Cosmic-Ray Fluctuations in November 1960", J. Geophys. Research 66, 1363-1377 (1961).
U. S. Department of Commerce, National Bureau of Standard Central Radio Propagation Laboratory, Boulder, Colorado, Compilations of Solar-Geophysical Data.

REFFREACES (continued)

Van Allen, J. A., and L. A. Frank, "Radiation Measurements to $658,300 \mathrm{Km}$. with Pioneer IV", Nature (Iondon) 184, 219-224 (1959).

Van Allen, James A., and Wei Ching Lin, "Outer Radiation Belt and Solar Proton Observations with Explorer VII During MarchApril 1960", J. Geophys. Research 65, 2998-3003 (1960).

Winckler, J. R., P. D. Bhavsar, A. J. Masley, and T. C. May, "Delayed Propagation of Solar Protons on September 3, 1960", Phys. Rev. Letters 6, 488-491 (1961).

Winckler, J. R., A. J. Masley, and T. C. May, "The High-Energy Cosmic-Ray Flare of May 4, 1960. 1. High-Altitude Ionization and Counter Measurements", J. Geophys. Research 66, 1023-1028 (1961).
TABLE I

Detector	$\in G_{0}^{*}$	Absorbers over 70\% of Solid Angle	Approximate Detection Thresholds		
			Proton	$\begin{aligned} & \text { Electron, }{ }^{+} \text {ex- } \\ & \text { trapolated range } \end{aligned}$	$\begin{aligned} & \text { X Rays, 5\% } \\ & \text { transmission } \end{aligned}$
Anton type 302 Geiger Tube 2048 Scaling Factor		$\begin{array}{ll} \text { Stainless steel } & 0.40 \\ \text { Mg } & 0.14 \end{array}$	18	1.1	30
* Counting rate intensity J_{0} • + For nonpenetra counting rate 10^{9} at 34 kev ; tion, April 1960 to SUI package	tube for ng electr 302 tube at 45 . Experi Explore	penetrating particles is equal ns, sample experimental values are: 10^{13} at $14 \mathrm{kev} ; 10^{12}$ at $\mathrm{ke} ; 10^{7}$ at $70 \mathrm{kev} ; 2 \times 10^{6}$ at ental values obtained by elect VII.)	to ϵG_{0} of rati 17 kev ; 105 kev . ron bomb	imes amidirection of amnidirectiona 11 at $20 \mathrm{kev} ; 10^{10}$ (L. A. Frank, pri rdment of an arran	intensity.to at 26 kev ; ate communica ment similar

TABLE II

```of 302 Geiger tube N N302 - apparent counting rate (= true counting rate if N N N N**112 - true counting rate of 112 Geiger tube N```											
Year	Month	Day			$\begin{gathered} \text { Geogr } \\ \text { of } \\ \text { Long. } \end{gathered}$	hic Po servat Lat. A	ition   on   t. (km)	$\mathrm{N}_{302}$	$\mathrm{N}_{112}$	$\mathbb{N}_{112}^{*}$	$\mathrm{N}_{112}^{* *}$
1959	Oct.	13	18	22.5	+118.4	-50.5	1056.0	20	16.0	16.0	$13.5 \pm 1.5$
			20	56.0	-80.7	+49.1	639.6	45	19.0	19.0	$13.5 \pm 2.0$
	Oct.	18	15	35.5	-67.3	+47.8	560.7	44	18.0	18.0	$13.0 \pm 2.0$
			17	20.0	-72.4	$+50.5$	571.6	20	16.0	16.0	$13.5 \pm 1.0$
			19	03.5	-88.2	+50.3	580.9	19	15.5	15.5	$13.5 \pm 1.5$
	Oct.	19	15	12.0	-70.6	+46.9	560.8	100	26.0	26.0	$14.0 \pm 3.0$
	Oct.	20	14	50.0	-68.8	+48.2	561.9	130	28.5	28.5	$13.0 \pm 4.0$
	Oct.	21	17	06.0	+105.3	-50.4	1097.6	24	18.5	18.5	$15.5 \pm 1.5$


1959	Oct.	22	15	50.5	-75.9	+50.5	560.5	6	15.0	15.0	$14.5 \pm 1.0$
		17	34.5	-85.9	+50.3	564.6	34	18.0	18.0	$14.0 \pm 1.5$	
Oct.	23	16	21.0	+105.5	-50.4	1103.8	5	14.0	14.0	$14.0 \pm 1.0$	
Oct.	24	12	34.0	+147.2	-50.4	1104.6	5	14.5	14.5	$14.0 \pm 1.0$	
		16	00.0	+112.9	-49.8	1102.8	5	14.0	14.0	$13.5 \pm 1.0$	
Oct.	25	13	52.0	+118.0	-50.2	1100.6	4	13.5	13.5	$13.5 \pm 1.0$	
		14	42.4	-80.8	+49.5	568.1	27	18.0	18.0	$15.0 \pm 1.5$	
		16	28.0	-79.6	+49.8	560.9	25	17.5	17.5	$15.0 \pm 1.5$	
Oct.	26	14	21.0	-73.1	+50.3	566.6	15	16.0	16.0	$14.5 \pm 1.5$	
Oct.	27	15	42.5	-86.6	+50.5	563.3	22	18.0	18.0	$14.5 \pm 1.5$	
Oct.	28	13	35.0	-79.8	+49.5	583.3	28	19.5	19.5	$16.0 \pm 1.5$	
Oct.	29	13	13.5	-77.5	+49.6	587.8	30	18.0	18.0	$14.5 \pm 1.0$	
Oct.	30	11	08.5	-58.9	+48.3	606.5	67	20.0	20.0	$12.0 \pm 3.0$	
		12	51.0	-75.3	+49.8	592.2	19	16.0	16.0	$14.0 \pm 1.0$	
Oct.	31	12	29.5	-72.9	+50.0	596.8	22	15.5	15.5	$13.0 \pm 1.5$	
		14	16.0	-66.6	+48.1	564.1	22	18.0	18.0	$15.0 \pm 2.0$	
Nov.	1	12	07.0	-70.5	+50.2	601.7	9	14.0	14.0	$13.0 \pm 1.0$	
		13	50.0	-86.3	+50.5	587.9	14	14.5	14.5	$13.0 \pm 2.0$	
		15	34.0	-96.7	+49.1	571.2	33	20.0	20.0	$16.0 \pm 2.0$	
Nov.	2	10	02.0	-52.0	+49.3	623.7	95	28.0	28.0	$17.0 \pm 3.0$	
		11	44.3	-73.6	+49.9	616.6	30	17.0	17.0	$13.5 \pm 2.0$	




¢ ${ }_{\text {¢ }}$	岳	$\stackrel{\square}{\sim}$	へ	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	앙
容 容	完	完	完	容	垵	亮

1959






1960	Jan.	16	08	48.0	-62.2	+49.3	697.6	8	16.0	16.0	$15.0 \pm 2.0$
			10	33.0	-67.6	+50.7	755.7	4	15.0	15.0	$14.5 \pm 1.0$
			12	14.5	-94.5	+50.7	750.8	5	15.2	15.0	$14.5 \pm 1.0$
	Jan.	17	08	25.5	-63.5	+49.0	679.5	10	15.5	15.5	$14.5 \pm 1.0$
			10	09.0	-74.3	$+50.7$	720.1	4	14.5	14.5	$14.0 \pm 1.0$
			11	52.0	-90.3	+50.6	746.9	8	16.0	16.0	$15.0 \pm 1.5$
	Jan.	18	09	46.0	-75.6	+50.6	701.2	2	12.0	12.0	$12.0 \pm 1.0$
			11	28.0	-97.1	+50.7	771.8	2	12.5	12.5	$12.5 \pm 1.0$
	Jan.	19	07	41.0	-55.5	+50.1	673.1	9	15.5	15.5	$14.5 \pm 1.5$
			09	23.0	-77.0	+50.5	683.1	4	13.0	13.0	$12.5 \pm 1.0$
			11	06.0	-92.9	+50.7	708.2	5	13.5	13.5	$13.0 \pm 1.0$
	Jan.	20	09	01.0	-72.8	+50.7	679.8	7	14.5	14.5	$13.5 \pm 1.0$
			10	44.0	-88.7	+50.6	704.6	7	15.0	15.0	$14.0 \pm 1.0$
	Jan.	21	06	54.0	-63.4	+48.6	628.7	7	15.0	15.0	$14.0 \pm 1.0$
			08	37.5	-79.7	+50.1	649.6	4	13.0	13.0	$12.5 \pm 1.0$
			10	21.5	-90.0	+50.7	686.5	8	13.5	13.5	$12.5 \pm 1.0$
	Jan.	22	08	16.0	-69.9	+50.7	659.8	9	14.0	14.0	$13.0 \pm 1.0$
			09	59.0	-85.7	+50.5	683.1	11	16.0	16.0	$14.5 \pm 1.5$
	Jan.	23	07	53.0	-71.3	+50.7	644.1	15	15.5	15.5	$13.5 \pm 1.0$
			09	36.0	-87.1	+50.6	666.1	18	17.0	17.0	$14.5 \pm 1.5$



$$
\begin{aligned}
& 12.0 \pm 1.0 \\
& 13.5 \pm 1.5 \\
& 12.0 \pm 1.0 \\
& 15.5 \pm 1.0 \\
& 14.0 \pm 1.0 \\
& 12.5 \pm 1.0 \\
& 12.5 \pm 1.0 \\
& 13.0 \pm 1.0 \\
& 13.0 \pm 1.0 \\
& 14.0 \pm 1.0 \\
& 13.0 \pm 1.0 \\
& 13.5 \pm 1.0 \\
& 14.0 \pm 1.5 \\
& 15.0 \pm 1.0 \\
& 14.0 \pm 1.0 \\
& 14.5 \pm 1.0 \\
& 16.0 \pm 1.5 \\
& 12.5 \pm 1.0 \\
& 13.0 \pm 1.0 \\
& 14.0 \pm 1.0 \\
& 16.0 \pm 1.5
\end{aligned}
$$

$$
\mathfrak{n} \% \sim \infty
$$

$$
m+\text { n } \quad \sim \infty \text { の }
$$

1960	Feb.	16	00	30.5	-82.5	+50.4	611.5	9	16.0	16.0	$15.0 \pm 1.0$
			02	14.0	-92.5	+49.9	589.9	12	16.5	16.5	$15.0 \pm 1.5$
	Feb.	17	00	09.0	-72.1	+50.4	593.0	8	15.0	15.0	$14.0 \pm 1.0$
			01	51.5	-93.4	+50.1	587.5	15	16.0	16.0	$14.0 \pm 1.0$
			23	46.0	-73.0	+50.5	602.8	6	13.5	13.5	$13.0 \pm 2.0$
	Feb.	18	01	29.5	-88.7	+49.6	588.4	5	13.5	13.5	$13.0 \pm 1.0$
			22	32.0	+124.7	-50.2	1052.3	18	17.0	17.0	$15.0 \pm 1.0$
	Feb.	19	01	06.0	-89.6	+49.8	597.6	10	16.0	16.0	$14.5 \pm 1.5$
	Feb.	20	00	44.0	-85.0	+49.2	598.6	10	14.0	14.0	$13.0 \pm 1.0$
			20	01.0	+131.3	-49.8	983.5	8	16.0	16.0	$15.0 \pm 1.0$
			21	46.5	+124.5	-50.3	1029.2	14	15.5	15.5	$14.0 \pm 1.0$
	Feb.	21	19	38.5	+131.1	-49.7	967.8	22	18.5	18.5	$15.5 \pm 1.5$
	Feb.	22	19	15.0	+131.0	-49.6	951.5	14	18.0	18.0	$16.0 \pm 1.5$
			20	59.0	+119.3	-50.5	989.6	15	14.0	14.0	$12.0 \pm 2.0$
	Feb.	23	20	37.0	+124.3	-50.4	987.9	27	17.5	17.5	$14.5 \pm 1.0$
	Feb.	24	20	12.0	+113.9	-50.3	943.7	45	18.0	18.0	$12.5 \pm 2.5$
			21	05.0	-78.2	+50.4	700.0	59	22.5	22.5	$14.5 \pm 1.5$
	Feb.	25	20	42.0	-78.8	+50.3	716.9	33	19.0	19.0	$15.0 \pm 1.5$
			21	33.0	+102. 3	-50.3	966.7	60	20.0	20.0	$13.0 \pm 2.0$
	Feb	26	17	44.5	+135.3	-49.8	897.8	125	25.0	25.0	$10.0 \pm 5.0$
			21	12.3	+172.1	-49.3	978.7	32	18.0	18.0	$14.0 \pm 1.5$


1960	Mar.	9	15	45.0	-71.0	+50.2	911.7	57	18.5	18.5	$12.0 \pm 2.5$
	Mar.	10	15	21.5	-75.9	+49.7	942.6	42	20.5	20.5	$15.5 \pm 2.0$
			17	06.0	-82.1	+50.2	886.0	59	19.5	19.5	$12.5 \pm 2.0$
	Mar.	11	14	59.0	-70.7	+50.2	943.7	75	24.0	24.0	$15.0 \pm 2.0$
			16	42.5	-87.2	+50.4	918.2	50	20.0	20.0	$14.0 \pm 1.5$
			18	26.5	-98.7	+49.3	875.4	130	29.0	29.5	$14.0 \pm 3.0$
	Mar.	12	14	36.0	-70.5	+50.1	958.8	62	22.0	22.0	$14.5 \pm 1.5$
			16	19.5	-87.0	+50.4	934.2	50	21.0	21.0	$15.0 \pm 1.5$
			18	03.0	-98.5	+49.3	892.3	123	29.0	30.0	$15.5 \pm 3.0$
	Mar .	13	14	13.0	-70.2	+50.1	973.4	80	24.0	24.0	$14.5 \pm 2.0$
			15	57.0	-81.7	+50.3	934.9	64	21.0	21.0	$13.5 \pm 1.5$
	Mar.	14	11	15.5	+142.1	-49.3	647.6	78	21.5	21.5	$12.5 \pm 2.0$
			12	58.0	+126.0	-50.3	669.6	12	16.0	16.0	$14.5 \pm 1.0$
	Mar.	15	13	26.5	$-74.4$	+49.5	1012.1	94	24.0	24.5	$13.5 \pm 2.0$
			15	11.0	-81.1	+50.3	965.0	104	25.0	25.5	$12.0 \pm 3.0$
	Mar .	16	11	20.0	-56.8	+47.9	1050.5	6	14.0	14.0	$13.5 \pm 1.5$
			13	03.0	-74.2	+49.5	1034.6	3	13.5	13.5	$13.5 \pm 1.5$
			14	47.0	-86.1	+50.5	1004.4	3	14.0	14.0	$14.0 \pm 1.5$
	Mar.	17	12	39.0	-78.4	+48.6	1053.5	12	16.5	16.5	$14.0 \pm 1.5$
			14	25.0	-80.6	+50.4	1004.7	8	16.0	16.0	$15.0 \pm 1.5$



1960	Mar.	25	09	36.0	-68.3	+49.5	1093.1	28	18.0	18.0	$14.5 \pm 1.0$
			11	20.0	-80.4	+50.5	1083.5	8	15.5	15.5	$14.5 \pm 1.0$
			13	04.0	-92.4	+49.7	1066.6	44	21.0	21.0	$15.5 \pm 1.5$
	Mar.	26	09	13.5	-67.5	+49.5	1095.0	85	25.0	25.0	$15.0 \pm 2.0$
			10	57.0	-79.6	+50.5	1087.8	25	19.0	19.0	$16.0 \pm 1.5$
			12	40.5	-96.5	+50.2	1079.5	80	24.0	24.0	$14.5 \pm 2.0$
	Mar.	27	08	50.0	-66.6	+49.5	1096.0	88	24.5	24.5	$14.5 \pm 2.0$
			10	34.5	$-78.7$	+50.5	1091.3	40	19.0	19.0	$14.5 \pm 1.5$
			12	18.0	-90.8	+49.7	1079.1	68	22.0	22.0	$14.0 \pm 1.5$
	Mar.	28	08	26.5	-70.4	+48.8	1095.1	111	24.0	24.0	$13.0 \pm 3.0$
			10	11.0	-77.8	+50.5	1093.9	5	14.0	14.0	$13.5 \pm 1.0$
			11	54.5	-94.7	+50.2	1088.6	8	15.5	15.5	$14.5 \pm 1.0$
	Mar.	29	08	03.5	-69.4	+48.9	1093.4	13	14.5	14.5	$13.0 \pm 1.5$
			09	48.0	-76.9	+50.5	1095.6	6	15.0	15.0	$14.5 \pm 1.5$
			11	32.0	-88.6	+49.6	1088.2	27	19.5	19.5	$16.0 \pm 1.5$
	Mar.	30	07	40.0	-68.5	+48.6	1090.9	24	20.0	20.0	$17.0 \pm 1.5$
			09	24.5	-80.8	+50.4	1096.3	9	16.5	16.5	$15.5 \pm 1.0$
			11	08.5	-92.8	+50.1	1094.2	27	21.0	21.0	$18.0 \pm 2.0$
	Mar.	31	07	16.0	-72.1	+48.1	1082.8	5	15.5	15.5	$15.0 \pm 1.0$
			09	02.0	$-74.9$	+50.5	1096.3	3	16.0	16.0	$16.0 \pm 1.0$


1960	Apr .	4	09	13.0	-87.4	+50.0	1091.6	28	16.5	16.5	$13.0 \pm 1.0$
			10	56.5	-104.7	+48.7	1094.6	100	24.0	24.0	$12.0 \pm 2.0$
	Apr .	5	04	35.0	+143.6	-50.5	582.6	7	14.0	14.0	$14.0 \pm 1.0$
			05	22.0	-62.2	+49.2	1055.5	3	15.0	15.0	$15.0 \pm 1.0$
			07	06.0	-74.3	+50.5	1075.6	7	20.0	20.0	$19.0 \pm 1.0$
			08	49.0	-91.2	+50.3	1084.8	9	45.0	53	$52 \pm 5.0$
			10	32.5	-105.9	+49.0	1092.0	105	45.0	53	$45 \pm 5.0$
	Apr .	6	04	12.0	+144.1	-50.5	588.5	6	33.0	36.0	$36.0 \pm 2.0$
			04	59.0	-61.1	+49.3	1047.5	40	40.0	45.0	$40.0 \pm 3.0$
			06	43.0	-73.2	+50.5	1069.8	23	35.0	38.0	$35.0 \pm 2.0$
			08	26.5	-87.5	+50.1	1082.6	23	34.0	37.0	$33.0 \pm 2.0$
	Apr.	7	04	35.5	-62.5	+49.0	1033.7	36	19.5	19.5	$15.0 \pm 1.5$
			06	20.0	-72.0	+50.5	1063.2	4	15.0	15.0	$15.0 \pm 1.0$
			08	03.5	-88.8	+50.3	1075.0	14	16.5	16.5	$15.0 \pm 1.0$
	Apr.	8	04	12.0	-63.6	+48.6	1018.7	60	19.0	19.0	$13.0 \pm 2.0$
			05	57.0	-70.8	+50.5	1056.0	12	15.0	15.0	$14.0 \pm 1.0$
			07	40.0	-87.6	+50.2	1069.2	11	16.0	16.0	$15.0 \pm 1.0$
	Apr.	9	05	33.0	-74.6	+50.4	1038.6	5	12.5	12.5	$12.0 \pm 1.0$
			07	17.0	-86.4	+50.2	1062.6	5	12.5	12.5	$12.0 \pm 1.0$
	Apr.	10	05	12.0	-63.4	+50.4	1049.1	5	13.0	13.0	$12.5 \pm 1.0$
			06	54.0	-85.2	+50.9.	1055.4	13	13.5	13.5	$12.0 \pm 1.0$


$\cdots$	\％	$\stackrel{\sim}{-}$	寺	$\stackrel{\sim}{\sim}$	$\stackrel{\square}{-1}$	$\stackrel{\text { H }}{ }$	$\stackrel{\infty}{+}$	$\stackrel{9}{-}$
$\dot{\dot{4}}$	安	笼	安	$\dot{4}$	究	$\dot{4}$	$\dot{\dot{C}_{4}^{\prime}}$	先

[^0]| 1960 | Apr. | 20 | 01 | 18.0 | -70.5 | +50.1 | 885.2 | 33 | 20.0 | 20.0 | $16.0 \pm 1.0$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 02 | 59.6 | -97.2 | +50.0 | 880.8 | 46 | 21.0 | 21.0 | $15.5 \pm 1.5$ |
|  | Apr | 21 | 00 | 54.0 | -74.3 | +49.6 | 855.5 | 62 | 23.5 | 23.5 | $16.0 \pm 2.0$ |
|  |  |  | 02 | 39.0 | -80.3 | +50.4 | 915.4 | 68 | 22.5 | 22.5 | $14.5 \pm 2.0$ |
|  | Apr. | 22 | 02 | 15.0 | -84.0 | +50.5 | 887.0 | 85 | 24.0 | 24.0 | $14.0 \pm 2.0$ |
|  |  |  | 21 | 39.0 | +148.6 | +50.0 | 802.7 | 34 | 21.0 | 21.0 | $17.0 \pm 2.0$ |
|  | Apr. | 23 | 01 | 51.5 | -87.8 | +50.5 | 857.8 | 38 | 19.0 | 19.0 | $14.5 \pm 1.0$ |
|  |  |  | 23 | 48.0 | -54.3 | +50.4 | 865.5 | 4 | 13.5 | 13.5 | $13.0 \pm 1.0$ |
|  | Apr | 24 | 01 | 26.0 | -96.8 | +49.7 | 811.5 | 4 | 13.5 | 13.5 | $13.0 \pm 1.0$ |
|  |  |  | 03 | 10.0 | -107.2 | +50.5 | 856.7 | 4 | 13.0 | 13.0 | $13.0 \pm 1.0$ |
|  |  |  | 23 | 21.0 | -73.8 | +49.3 | 796.3 | 4 | 14.0 | 14.0 | $13.5 \pm 1.0$ |
|  | Apr. | 25 | 01 | 03.5 | -95.3 | +49.8 | 798.5 | 8 | 14.0 | 14.0 | $13.0 \pm 1.5$ |
|  |  |  | 02 | 49.5 | -95.8 | +49.7 | 876.2 | 4 | 13.5 | 13.5 | $13.0 \pm 1.0$ |
|  |  |  | 22 | 59.5 | -67.1 | +50.0 | 790.1 | 5 | 13.0 | 13.0 | $12.5 \pm 1.0$ |
|  | Apr | 26 | 00 | 41.5 | -88.6 | +50.4 | 802.2 | 4 | 13.5 | 13.5 | $13.0 \pm 1.5$ |
|  |  |  | 02 | 25.5 | -99.4 | +50.1 | 847.3 | 14 | 15.0 | 15.0 | $13.0 \pm 1.0$ |
|  |  |  | 22 | 36.5 | -65.6 | +50.1 | 777.5 | 9 | 13.5 | 13.5 | $12.5 \pm 1.0$ |
|  | Apr. | 27 | 00 | 19.5 | -81.7 | +50.5 | 806.0 | 13 | 15.5 | 15.5 | $14.0 \pm 1.0$ |
|  |  |  | 22 | 10.0 | -79.5 | +47.7 | 717.0 | 10 | 13.5 | 13.5 | $13.5 \pm 1.5$ |
|  |  |  | 23 | 55.0 | -96.1 | +49.5 | 744.5 | 4 | 14.0 | 14.0 | $14.0 \pm 1.0$ |

$$
+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
$$

vin

$$
1960
$$

$$
\begin{array}{llll}
\mathrm{H} \text { @ } & \mathrm{m} & -
\end{array}
$$

密家
免

$$
\begin{aligned}
& \text { B } \\
& \text { © }
\end{aligned}
$$



$$
+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
$$

め

$$
\begin{array}{llllll}
\sim & \infty & a & O & H & \text { O }
\end{array}
$$

窓

$$
\begin{aligned}
& 8 \\
& \underset{\sim}{-}
\end{aligned}
$$

芑
完
寝 完 宊 灾
1960


May	24	11	46.0	-66.5	+49.5	1056.6	30	17.0	17.0	$13.0 \pm 1.5$
		12	38.0	+ 127.8	-50.3	1094.6	2	13.0	13.0	$13.0 \pm 1.0$
		13	28.0	-88.4	+49.1	1050.2	14	18.0	18.0	$16.5 \pm 1.0$
		15	12.0	-101.7	+46.1	1022.0	9	15.0	15.0	$14.0 \pm 1.0$
		16	53.0	-106.8	+50.1	562.1	8	15.0	15.0	$14.0 \pm 1.0$
May	25	13	03.0	-79.4	+48.8	579.2	17	16.5	16.5	$14.5 \pm 1.0$
		14	48.0	-83.7	$+50.3$	564.1	12	15.5	15.5	$14.0 \pm 1.5$
		16	31.5	-123.4	+44.9	1024.5	27	19.0	19.0	$16.0 \pm 2.0$
May	26	10	08.0	+145.0	-49.5	1077.6	22	26.0	26.0	$23.0 \pm 1.5$
		11	52.2	+133.1	-50.3	1090.9	3	20.0	20.0	$20.0 \pm 1.0$
		12	42.5	-63.3	+50.2	570.1	32	24.0	24.0	$20.0 \pm 2.5$
		14	25.5	-83.4	+50.3	567.3	18	23.0	23.5	$21.5 \pm 2.5$
May	27	12	18.0	-69.7	+49.9	581.2	14	17.5	17.5	$16.0 \pm 1.0$
		14	01.0	-85.1	+50.4	571.8	11	17.0	17.0	$15.5 \pm 1.0$
May	28	11	04.0	+128.5	-50.2	1074.6	8	15.5	15.5	$14.5 \pm 1.0$
		11	55.0	-67.5	+50.0	585.5	24	17.0	17.0	$14.0 \pm 1.0$
		12	49.0	+121.5	-49.5	1092.2	10	15.5	15.5	$14.5 \pm 1.0$
		13	38.0	-83.0	+50.3	574.9	13	16.5	16.5	$15.0 \pm 1.0$
May ...	29	08	58.0	+148.0	-49.6	1056.6	10	15.0	15.0	$14.0 \pm 1.0$
		10	40.0	+126.3	-50.0	1062.8	6	14.0	14.0	$13.5 \pm 1.0$
		11	32.0	-65.4	+50.1	590.1	6	14.0	14.0	$13.5 \pm 1.0$
		13	15.0	-80.8	+50.3	578.4	9	14.5	14.5	$13.5 \pm 1.0$

1960
$\begin{array}{lllllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -i & -i & -i & -i & -i & n & m & n & m & - & 0 & 0 & 0 & 0 & 0 & \text { in } & \text { in } & \text { n } & \text { n }\end{array}$ n $+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1$














$\stackrel{\circ}{\circ}$
 $+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1$





※.






1960	June	25	04	26.5	-85.9	+50.4	904.9	9	14.5	14.5	$13.5 \pm 1.0$
			06	10.0	-97.2	+49.0	862.0	52	21.5	21.5	$15.5 \pm 2.0$
	June	26	02	18.0	-76.7	+49.6	965.5	7	18.0	18.0	$17.0 \pm 2.0$
			04	03.0	-83.0	+50.3	912.9	3	16.0	16.0	$15.5 \pm 1.0$
	June	27	03	40.0	-80.0	+50.2	921.0	8	15.0	15.0	$14.0 \pm 1.0$
	June	28	01	32.0	-70.8	+50.1	979.6	3	14.0	14.0	$13.5 \pm 1.0$
			03	16.0	-82.1	+50.4	943.0	4	14.0	14.0	$13.5 \pm 1.0$
			22	33.0	+138.0	-48.5	633.8	8	15.5	15.5	$14.5 \pm 1.5$
	June	29	O1	08.0	-72.8	+49.8	998.2	12	14.5	14.5	$13.5 \pm 1.0$
			02	52.0	-84.3	+50.5	964.0	13	17.5	17.5	$16.0 \pm 1.5$
			22	12.0	+151.4	-50.2	650.7	26	20.0	20.0	$17.0 \pm 1.5$
	June	30	00	43.0	-79.4	+48.6	1025.3	4	13.5	13.5	$13.0 \pm 1.5$
			02	27.0	-91.4	+50.3	995.9	20	13.0	13.0	$11.5 \pm 1.0$
			04	12.0	-97.8	+49.6	947,3	7	12.5	12.5	$11.5 \pm 1.0$
	July	1	00	22.0	-66.8	+50.2	1010.5	6	13.0	13.0	$12.5 \pm 1.0$
			02	06.0	-78.2	+50.3	977.9	4	12.0	12.0	$11.5 \pm 1.0$
			03	48.5	-99.8	+49.9	968.1	14	13.5	13.5	$12.0 \pm 1.5$
			21	27.0	+162.5	-50.5	650.0	4	15.5	15.5	$15.0 \pm 1.0$
			23	58.5	-68.7	+49.9	1032.6	14	16.5	16.5	$14.0 \pm 1.0$
	July	2	01	42.0	-80.3	+50.4	1002.4	10	16.0	16.0	$15.0 \pm 1.0$
			03	25.0	-96.9	$+49.7$	980.3	37	21.0	21.0	$16.5 \pm 1.5$

 $\circ$
$\stackrel{\circ}{\circ}$
-
-

1960	July	11	19	13.0	+134.9	-50.2	567.9	14	16.0	16.0	$14.5 \pm 1.0$
			21	46.5	-79.0	+50.4	1088.5	12	15.0	15.0	$14.5 \pm 1.0$
	July	12	21	23.0	-75.8	+50.5	1089.8	40	19.5	19.5	$14.5 \pm 2.0$
			23	06.5	-92.5	+50.1	1084.4	103	25.5	26.0	$14.0 \pm 3.0$
	July	13	21	00.0	-72.6	+50.5	1090.8	56	21.0	21.0	$14.0 \pm 1.0$
			22	42.5	-94.3	+50.3	1089.2	170	31.0	32.0	$13.0 \pm 5.0$
	July	14	18	52.5	-62.4	+49.5	1089.3	75	21.0	21.0	$12.0 \pm 3.0$
			20	36.0	-74.4	+50.5	1092.3	17	16.5	16.5	$14.5 \pm 1.0$
			22	20.0	-86.3	+49.7	1087.7	41	17.0	17.0	$12.0 \pm 3.0$
	July	15	18	30.0	-54.5	+50.2	1090.5	5	13.0	13.0	$12.5 \pm 1.0$
			20	13.0	-71.2	+50.5	1092.4	4	12.5	12.5	$12.0 \pm 1.0$
			21	56.0	-87.9	+49.9	1091.1	3	12.5	12.5	$12.0 \pm 1.0$
			23	39.0	-105.0	+48.7	1086.7	5	12.5	12.5	$12.0 \pm 1.0$
	July	16	18	05.0	-60.9	+49.5	1082.7	80	23.0	23.0	$14.5 \pm 2.5$
			19	49.0	-72.9	+.50.5	1091.0	9	13.0	13.0	$12.0 \pm 1.0$
			21	33.0	-84.8	+49.7	1091.6	5	13.0	13.0	$12.5 \pm 2.0$
	July	17	21	09.0	-86.5	+50.0	1086.5	150	27.0	30.0	$13.0 \pm 5.0$
	July	19	18	39.0	-68.3	+50.5	1078.9	9	15.0	15.0	$14.0 \pm 1.0$
			20	22.0	-85.0	+50.0	1083.9	27	15.0	15.0	$12.0 \pm 1.5$
	JuIy	20	18	14.0	-75.0	+50.3	1066.5	35	18.0	18.0	$14.0 \pm 1.5$
			19	57.0	-91.6	+50.4	1075.7	58	20.0	20.0	$14.5 \pm 1.5$

ㅍN N N N N N N N N N N N N N

\section*{| 8 |
| :--- |
| 8 |}


$+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1$ in $n 0$ in o n o o n in in in 0 in in 0.0000000










品
 $+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1$ in in in in in 0 in in in in 0.0 in in 0.00 in in 0.0




畕


















$\cdots \mathrm{H}$	m	$\pm$	ı	$\bigcirc$
	$\begin{aligned} & \stackrel{\rightharpoonup}{\stackrel{0}{0}} \underset{\substack{0 \\ 0}}{ } \end{aligned}$	$$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\stackrel{+}{\stackrel{\rightharpoonup}{2}}$

$\circ$
$\stackrel{8}{8}$
-1
志 in 古风Min
$\circ$
$\stackrel{8}{8}$
-1


$$
\begin{aligned}
& \circ \\
& \stackrel{\circ}{\circ} \\
& \underset{H}{2}
\end{aligned}
$$

$$
1960
$$



$$
\text { in } 0 \quad \sim \quad \infty \quad a \quad \text { O } \quad \begin{array}{lllll}
H & n & \text { M } & \text { N }
\end{array}
$$

$$
\begin{aligned}
& \text { ơ } \\
& \underset{-}{\prime}
\end{aligned}
$$

$\cdots$	$\square$	न	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\top}$
-	-80	-	$\dot{0}$ ®	-

[^1]\[

$$
\begin{array}{ll}
\circ-7 \\
\stackrel{\circ}{\circ} & \stackrel{-}{\circ} \\
\hline
\end{array}
$$
\]

$14.5 \pm 2.0$









$\stackrel{a}{\square}$	O	$\stackrel{\sim}{n}$	N	$\stackrel{N}{n}$	$\stackrel{9}{\sim}$	$M$	$\pm$	in
$\stackrel{\text { ๙ี }}{\text { ® }}$	$\begin{aligned} & \text { ロ } \\ & \sim \end{aligned}$	$\stackrel{\text { ๙゙ }}{\stackrel{1}{2}}$	$\begin{gathered} \text { 尔 } \end{gathered}$	$\begin{gathered} \text { ๙゙ } \\ \underset{\sim}{0} \end{gathered}$	喿	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \mid \end{aligned}$		－

$$
\begin{aligned}
& \vec{\circ} \\
& \underset{\sim}{\prime}
\end{aligned}
$$







Figure 5


Figure 6



Figure 8


Figure 9


Figure 10

Figure II

Figure 12


Figure 14


Figure 16

Figure 17


[^0]:    8
    9
    7

[^1]:    8
    8
    -

