
January 1965 Brief 65-10011

NASA TECH BRIEF

NASA Tech Briefs are issued by the Technology Utilization Division to summarize specific technical innovations derived from the space program. Copies are available to the public from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia, 22151.

Circuit Improvement Produces Monostable Multivibrator with Load-Carrying Capability

The problem: The circuit shown in figure 1 (U.S. Patent No. 3,085,165) is satisfactory for certain applications of light loading. If one is required to drive a heavy load from the cathode of Q_1 , the biasing resistor R_2 must be of such a low value that circuit efficiency in standby would suffer. The reset capacitor C_2 would have to be so large that circuit cutoff by negative transients on the supply bus could occur.

The solution: Improvement of the circuit to provide greater reliability and load-carrying capability.

How it's done: In the circuit shown in figure 2, the reset transistor Q_1 and coupling diode D_1 (of figure 1)

have been eliminated. This circuit is inherently insensitive to both positive and negative transients on the supply bus. It is more efficient when heavily loaded and has essentially zero standby current (the leakage current of Q_1). In this circuit, reset is accomplished by adding the low impedance output from base 1 of Q_2 to the cathode voltage of Q_1 . This effectively back biases Q_1 and reduces the current to a value below its holding current. Coupling capacitor C_1 is large enough for the time constant R (effective load) X C_2 to sufficiently exceed the turn-off time of Q_1 . A resistance at R_1 of 470K ohms and a capacitance at C_1 of 100 microfarads give a time interval of approximately 50 seconds.

(continued overleaf)

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government, nor NASA, nor any person acting on behalf of NASA: A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in

this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately-owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this document.

Notes:

1. The circuit has driven loads up to 150 ma over a temperature range of -30° to $+80^{\circ}$ C.

2. Inquiries concerning this invention may be directed to:

Technology Utilization Officer Goddard Space Flight Center Greenbelt, Maryland, 20771 Reference: B65-10011 Patent status: NASA encourages the immediate commercial use of this invention. Inquiries about obtaining rights for its commercial use may be made to NASA, Code AGP, Washington, D.C., 20546.

Source: Justin C. Schaffert and Norman E. Goldman (GSFC-34A)