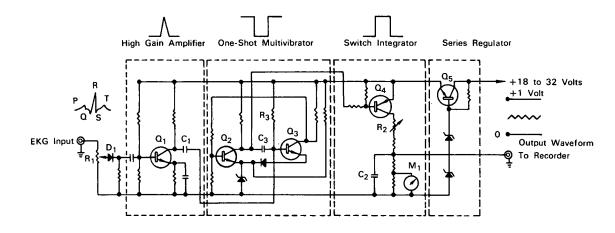
January 1965


Brief 65-10010

NASA TECH BRIEF

NASA Tech Briefs are issued by the Technology Utilization Division to summarize specific technical innovations derived from the space program. Copies are available to the public from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia, 22151.

The problem: Although circuits for measuring heart rate have been available for some time, they have either been more complex than basically necessary in order to accommodate a wide range of applications, or have been available only as part of an electrocardiograph (EKG) system. There is a need for a simple, inexpensive circuit that will provide a reliable indication of average heart rate.

The solution: An inexpensive, stable, transistorized circuit that provides an accurate analog indication of average heart rate in response to a preamplified EKG signal applied to its input. The device provides a meter indication of heart rate in addition to a proportional output voltage which may be fed to a high-input impedance recorder.

How it's done: The circuit uses the R-wave (positive spike) of an EKG signal to trigger a pulse generator. The metering circuit is basically an integrator which uses the constant-width, constant-amplitude pulses from the generator to produce a voltage proportional to the frequency of the pulses. The EKG input signal is applied across the trigger level control R_1 which is set so that D_1 passes only the large positive spikes (R-waves) of the signal. This spike is amplified by a high-gain, common emitter amplifier $(Q_1 \text{ and associated circuitry})$ and then coupled to a one-shot multivibrator through C_1 . The multivibrator $(Q_2 \text{ and } Q_3)$ produces a constant-duration, constant-amplitude, square-wave output for every input pulse from the amplifier. With no pulse present, Q_3 is conducting and Q_2 is cut off. Arrival of the negative pulse at the base of Q_3 decreases its collector current, producing a positive pulse at the base of Q_2 . This causes an increase in the collector current of Q_2 and a corresponding negative shift of its collector voltage. This negative pulse is fed back to the base of Q₃ causing a rapid switch in the conditions of Q_2 and Q_3 (Q_2 turns on, Q_3 turns off). The pulse duration is determined by the C_3R_3 time constant after which Q_2 and Q_3 revert to their original states. (continued overleaf)

This document was prepared under the sponsorship of the National Aeronautics and Space Administration. Neither the United States Government, nor NASA, nor any person acting on behalf of NASA: A. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in

this document, or that the use of any information, apparatus, method, or process disclosed in this document may not infringe privately-owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this document.

The square-wave pulses from the multivibrator are coupled to the base of Q_4 which controls the average rate of current flow to the resistor-capacitor integrating network. An increase in the frequency of the square-wave signal causes an increase in Q_4 's collector current and a corresponding increase in the voltage across C_2 . Output for a recorder with a high-input impedance (10,000-ohms minimum at 1 volt) is available directly across C_2 . Resistor R_2 is adjusted to provide full-scale deflection of M_1 with an average heart rate of 200 beats per minute. An internal series voltage regulator is provided in the circuit for portable operation with batteries. If a constant voltage source is available, the regulator circuit (Q_5 and associated circuitry) may be omitted. **Note:** Inquiries concerning this invention may be directed to:

Technology Utilization Officer Manned Spacecraft Center P.O. Box 1537 Houston, Texas, 77001 Reference: B65-10010

Patent status: NASA encourages the immediate commercial use of this invention. Inquiries about obtaining rights for its commercial use may be made to NASA, Code AGP, Washington, D.C., 20546.

Source: Howard A. Vick (MSC-95)

Category No. 01